DPDK  18.11.0-rc3
examples/ipsec-secgw/ipsec-secgw.c
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2016 Intel Corporation
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <string.h>
#include <sys/queue.h>
#include <stdarg.h>
#include <errno.h>
#include <getopt.h>
#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_eal.h>
#include <rte_launch.h>
#include <rte_atomic.h>
#include <rte_cycles.h>
#include <rte_prefetch.h>
#include <rte_lcore.h>
#include <rte_per_lcore.h>
#include <rte_interrupts.h>
#include <rte_random.h>
#include <rte_debug.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_acl.h>
#include <rte_lpm.h>
#include <rte_lpm6.h>
#include <rte_hash.h>
#include <rte_jhash.h>
#include <rte_cryptodev.h>
#include <rte_security.h>
#include "ipsec.h"
#include "parser.h"
#define RTE_LOGTYPE_IPSEC RTE_LOGTYPE_USER1
#define MAX_JUMBO_PKT_LEN 9600
#define MEMPOOL_CACHE_SIZE 256
#define NB_MBUF (32000)
#define CDEV_QUEUE_DESC 2048
#define CDEV_MAP_ENTRIES 16384
#define CDEV_MP_NB_OBJS 2048
#define CDEV_MP_CACHE_SZ 64
#define MAX_QUEUE_PAIRS 1
#define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
#define NB_SOCKETS 4
/* Configure how many packets ahead to prefetch, when reading packets */
#define PREFETCH_OFFSET 3
#define MAX_RX_QUEUE_PER_LCORE 16
#define MAX_LCORE_PARAMS 1024
#define UNPROTECTED_PORT(port) (unprotected_port_mask & (1 << portid))
/*
* Configurable number of RX/TX ring descriptors
*/
#define IPSEC_SECGW_RX_DESC_DEFAULT 1024
#define IPSEC_SECGW_TX_DESC_DEFAULT 1024
static uint16_t nb_rxd = IPSEC_SECGW_RX_DESC_DEFAULT;
static uint16_t nb_txd = IPSEC_SECGW_TX_DESC_DEFAULT;
#if RTE_BYTE_ORDER != RTE_LITTLE_ENDIAN
#define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \
(((uint64_t)((a) & 0xff) << 56) | \
((uint64_t)((b) & 0xff) << 48) | \
((uint64_t)((c) & 0xff) << 40) | \
((uint64_t)((d) & 0xff) << 32) | \
((uint64_t)((e) & 0xff) << 24) | \
((uint64_t)((f) & 0xff) << 16) | \
((uint64_t)((g) & 0xff) << 8) | \
((uint64_t)(h) & 0xff))
#else
#define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \
(((uint64_t)((h) & 0xff) << 56) | \
((uint64_t)((g) & 0xff) << 48) | \
((uint64_t)((f) & 0xff) << 40) | \
((uint64_t)((e) & 0xff) << 32) | \
((uint64_t)((d) & 0xff) << 24) | \
((uint64_t)((c) & 0xff) << 16) | \
((uint64_t)((b) & 0xff) << 8) | \
((uint64_t)(a) & 0xff))
#endif
#define ETHADDR(a, b, c, d, e, f) (__BYTES_TO_UINT64(a, b, c, d, e, f, 0, 0))
#define ETHADDR_TO_UINT64(addr) __BYTES_TO_UINT64( \
addr.addr_bytes[0], addr.addr_bytes[1], \
addr.addr_bytes[2], addr.addr_bytes[3], \
addr.addr_bytes[4], addr.addr_bytes[5], \
0, 0)
/* port/source ethernet addr and destination ethernet addr */
struct ethaddr_info {
uint64_t src, dst;
};
struct ethaddr_info ethaddr_tbl[RTE_MAX_ETHPORTS] = {
{ 0, ETHADDR(0x00, 0x16, 0x3e, 0x7e, 0x94, 0x9a) },
{ 0, ETHADDR(0x00, 0x16, 0x3e, 0x22, 0xa1, 0xd9) },
{ 0, ETHADDR(0x00, 0x16, 0x3e, 0x08, 0x69, 0x26) },
{ 0, ETHADDR(0x00, 0x16, 0x3e, 0x49, 0x9e, 0xdd) }
};
#define CMD_LINE_OPT_CONFIG "config"
#define CMD_LINE_OPT_SINGLE_SA "single-sa"
#define CMD_LINE_OPT_CRYPTODEV_MASK "cryptodev_mask"
enum {
/* long options mapped to a short option */
/* first long only option value must be >= 256, so that we won't
* conflict with short options
*/
CMD_LINE_OPT_MIN_NUM = 256,
CMD_LINE_OPT_CONFIG_NUM,
CMD_LINE_OPT_SINGLE_SA_NUM,
CMD_LINE_OPT_CRYPTODEV_MASK_NUM,
};
static const struct option lgopts[] = {
{CMD_LINE_OPT_CONFIG, 1, 0, CMD_LINE_OPT_CONFIG_NUM},
{CMD_LINE_OPT_SINGLE_SA, 1, 0, CMD_LINE_OPT_SINGLE_SA_NUM},
{CMD_LINE_OPT_CRYPTODEV_MASK, 1, 0, CMD_LINE_OPT_CRYPTODEV_MASK_NUM},
{NULL, 0, 0, 0}
};
/* mask of enabled ports */
static uint32_t enabled_port_mask;
static uint64_t enabled_cryptodev_mask = UINT64_MAX;
static uint32_t unprotected_port_mask;
static int32_t promiscuous_on = 1;
static int32_t numa_on = 1;
static uint32_t nb_lcores;
static uint32_t single_sa;
static uint32_t single_sa_idx;
static uint32_t frame_size;
struct lcore_rx_queue {
uint16_t port_id;
uint8_t queue_id;
struct lcore_params {
uint16_t port_id;
uint8_t queue_id;
uint8_t lcore_id;
static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
static struct lcore_params *lcore_params;
static uint16_t nb_lcore_params;
static struct rte_hash *cdev_map_in;
static struct rte_hash *cdev_map_out;
struct buffer {
uint16_t len;
struct rte_mbuf *m_table[MAX_PKT_BURST] __rte_aligned(sizeof(void *));
};
struct lcore_conf {
uint16_t nb_rx_queue;
struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
struct buffer tx_mbufs[RTE_MAX_ETHPORTS];
struct ipsec_ctx inbound;
struct ipsec_ctx outbound;
struct rt_ctx *rt4_ctx;
struct rt_ctx *rt6_ctx;
static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
static struct rte_eth_conf port_conf = {
.rxmode = {
.max_rx_pkt_len = ETHER_MAX_LEN,
.split_hdr_size = 0,
.offloads = DEV_RX_OFFLOAD_CHECKSUM,
},
.rx_adv_conf = {
.rss_conf = {
.rss_key = NULL,
.rss_hf = ETH_RSS_IP | ETH_RSS_UDP |
ETH_RSS_TCP | ETH_RSS_SCTP,
},
},
.txmode = {
.mq_mode = ETH_MQ_TX_NONE,
.offloads = (DEV_TX_OFFLOAD_IPV4_CKSUM |
},
};
static struct socket_ctx socket_ctx[NB_SOCKETS];
struct traffic_type {
const uint8_t *data[MAX_PKT_BURST * 2];
struct rte_mbuf *pkts[MAX_PKT_BURST * 2];
uint32_t res[MAX_PKT_BURST * 2];
uint32_t num;
};
struct ipsec_traffic {
struct traffic_type ipsec;
struct traffic_type ip4;
struct traffic_type ip6;
};
static inline void
prepare_one_packet(struct rte_mbuf *pkt, struct ipsec_traffic *t)
{
uint8_t *nlp;
struct ether_hdr *eth;
eth = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
nlp = (uint8_t *)rte_pktmbuf_adj(pkt, ETHER_HDR_LEN);
nlp = RTE_PTR_ADD(nlp, offsetof(struct ip, ip_p));
if (*nlp == IPPROTO_ESP)
t->ipsec.pkts[(t->ipsec.num)++] = pkt;
else {
t->ip4.data[t->ip4.num] = nlp;
t->ip4.pkts[(t->ip4.num)++] = pkt;
}
nlp = (uint8_t *)rte_pktmbuf_adj(pkt, ETHER_HDR_LEN);
nlp = RTE_PTR_ADD(nlp, offsetof(struct ip6_hdr, ip6_nxt));
if (*nlp == IPPROTO_ESP)
t->ipsec.pkts[(t->ipsec.num)++] = pkt;
else {
t->ip6.data[t->ip6.num] = nlp;
t->ip6.pkts[(t->ip6.num)++] = pkt;
}
} else {
/* Unknown/Unsupported type, drop the packet */
RTE_LOG(ERR, IPSEC, "Unsupported packet type\n");
}
/* Check if the packet has been processed inline. For inline protocol
* processed packets, the metadata in the mbuf can be used to identify
* the security processing done on the packet. The metadata will be
* used to retrieve the application registered userdata associated
* with the security session.
*/
struct ipsec_sa *sa;
struct ipsec_mbuf_metadata *priv;
struct rte_security_ctx *ctx = (struct rte_security_ctx *)
pkt->port);
/* Retrieve the userdata registered. Here, the userdata
* registered is the SA pointer.
*/
sa = (struct ipsec_sa *)
if (sa == NULL) {
/* userdata could not be retrieved */
return;
}
/* Save SA as priv member in mbuf. This will be used in the
* IPsec selector(SP-SA) check.
*/
priv = get_priv(pkt);
priv->sa = sa;
}
}
static inline void
prepare_traffic(struct rte_mbuf **pkts, struct ipsec_traffic *t,
uint16_t nb_pkts)
{
int32_t i;
t->ipsec.num = 0;
t->ip4.num = 0;
t->ip6.num = 0;
for (i = 0; i < (nb_pkts - PREFETCH_OFFSET); i++) {
rte_prefetch0(rte_pktmbuf_mtod(pkts[i + PREFETCH_OFFSET],
void *));
prepare_one_packet(pkts[i], t);
}
/* Process left packets */
for (; i < nb_pkts; i++)
prepare_one_packet(pkts[i], t);
}
static inline void
prepare_tx_pkt(struct rte_mbuf *pkt, uint16_t port)
{
struct ip *ip;
struct ether_hdr *ethhdr;
ip = rte_pktmbuf_mtod(pkt, struct ip *);
ethhdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, ETHER_HDR_LEN);
if (ip->ip_v == IPVERSION) {
pkt->l3_len = sizeof(struct ip);
ip->ip_sum = 0;
} else {
pkt->l3_len = sizeof(struct ip6_hdr);
}
memcpy(&ethhdr->s_addr, &ethaddr_tbl[port].src,
sizeof(struct ether_addr));
memcpy(&ethhdr->d_addr, &ethaddr_tbl[port].dst,
sizeof(struct ether_addr));
}
static inline void
prepare_tx_burst(struct rte_mbuf *pkts[], uint16_t nb_pkts, uint16_t port)
{
int32_t i;
const int32_t prefetch_offset = 2;
for (i = 0; i < (nb_pkts - prefetch_offset); i++) {
rte_mbuf_prefetch_part2(pkts[i + prefetch_offset]);
prepare_tx_pkt(pkts[i], port);
}
/* Process left packets */
for (; i < nb_pkts; i++)
prepare_tx_pkt(pkts[i], port);
}
/* Send burst of packets on an output interface */
static inline int32_t
send_burst(struct lcore_conf *qconf, uint16_t n, uint16_t port)
{
struct rte_mbuf **m_table;
int32_t ret;
uint16_t queueid;
queueid = qconf->tx_queue_id[port];
m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
prepare_tx_burst(m_table, n, port);
ret = rte_eth_tx_burst(port, queueid, m_table, n);
if (unlikely(ret < n)) {
do {
rte_pktmbuf_free(m_table[ret]);
} while (++ret < n);
}
return 0;
}
/* Enqueue a single packet, and send burst if queue is filled */
static inline int32_t
send_single_packet(struct rte_mbuf *m, uint16_t port)
{
uint32_t lcore_id;
uint16_t len;
struct lcore_conf *qconf;
lcore_id = rte_lcore_id();
qconf = &lcore_conf[lcore_id];
len = qconf->tx_mbufs[port].len;
qconf->tx_mbufs[port].m_table[len] = m;
len++;
/* enough pkts to be sent */
if (unlikely(len == MAX_PKT_BURST)) {
send_burst(qconf, MAX_PKT_BURST, port);
len = 0;
}
qconf->tx_mbufs[port].len = len;
return 0;
}
static inline void
inbound_sp_sa(struct sp_ctx *sp, struct sa_ctx *sa, struct traffic_type *ip,
uint16_t lim)
{
struct rte_mbuf *m;
uint32_t i, j, res, sa_idx;
if (ip->num == 0 || sp == NULL)
return;
rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
ip->num, DEFAULT_MAX_CATEGORIES);
j = 0;
for (i = 0; i < ip->num; i++) {
m = ip->pkts[i];
res = ip->res[i];
if (res & BYPASS) {
ip->pkts[j++] = m;
continue;
}
if (res & DISCARD) {
continue;
}
/* Only check SPI match for processed IPSec packets */
if (i < lim && ((m->ol_flags & PKT_RX_SEC_OFFLOAD) == 0)) {
continue;
}
sa_idx = ip->res[i] & PROTECT_MASK;
if (sa_idx >= IPSEC_SA_MAX_ENTRIES ||
!inbound_sa_check(sa, m, sa_idx)) {
continue;
}
ip->pkts[j++] = m;
}
ip->num = j;
}
static inline void
process_pkts_inbound(struct ipsec_ctx *ipsec_ctx,
struct ipsec_traffic *traffic)
{
struct rte_mbuf *m;
uint16_t idx, nb_pkts_in, i, n_ip4, n_ip6;
nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
traffic->ipsec.num, MAX_PKT_BURST);
n_ip4 = traffic->ip4.num;
n_ip6 = traffic->ip6.num;
/* SP/ACL Inbound check ipsec and ip4 */
for (i = 0; i < nb_pkts_in; i++) {
m = traffic->ipsec.pkts[i];
struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
if (ip->ip_v == IPVERSION) {
idx = traffic->ip4.num++;
traffic->ip4.pkts[idx] = m;
traffic->ip4.data[idx] = rte_pktmbuf_mtod_offset(m,
uint8_t *, offsetof(struct ip, ip_p));
} else if (ip->ip_v == IP6_VERSION) {
idx = traffic->ip6.num++;
traffic->ip6.pkts[idx] = m;
traffic->ip6.data[idx] = rte_pktmbuf_mtod_offset(m,
uint8_t *,
offsetof(struct ip6_hdr, ip6_nxt));
} else
}
inbound_sp_sa(ipsec_ctx->sp4_ctx, ipsec_ctx->sa_ctx, &traffic->ip4,
n_ip4);
inbound_sp_sa(ipsec_ctx->sp6_ctx, ipsec_ctx->sa_ctx, &traffic->ip6,
n_ip6);
}
static inline void
outbound_sp(struct sp_ctx *sp, struct traffic_type *ip,
struct traffic_type *ipsec)
{
struct rte_mbuf *m;
uint32_t i, j, sa_idx;
if (ip->num == 0 || sp == NULL)
return;
rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
ip->num, DEFAULT_MAX_CATEGORIES);
j = 0;
for (i = 0; i < ip->num; i++) {
m = ip->pkts[i];
sa_idx = ip->res[i] & PROTECT_MASK;
if (ip->res[i] & DISCARD)
else if (ip->res[i] & BYPASS)
ip->pkts[j++] = m;
else if (sa_idx < IPSEC_SA_MAX_ENTRIES) {
ipsec->res[ipsec->num] = sa_idx;
ipsec->pkts[ipsec->num++] = m;
} else /* invalid SA idx */
}
ip->num = j;
}
static inline void
process_pkts_outbound(struct ipsec_ctx *ipsec_ctx,
struct ipsec_traffic *traffic)
{
struct rte_mbuf *m;
uint16_t idx, nb_pkts_out, i;
/* Drop any IPsec traffic from protected ports */
for (i = 0; i < traffic->ipsec.num; i++)
rte_pktmbuf_free(traffic->ipsec.pkts[i]);
traffic->ipsec.num = 0;
outbound_sp(ipsec_ctx->sp4_ctx, &traffic->ip4, &traffic->ipsec);
outbound_sp(ipsec_ctx->sp6_ctx, &traffic->ip6, &traffic->ipsec);
nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
traffic->ipsec.res, traffic->ipsec.num,
MAX_PKT_BURST);
for (i = 0; i < nb_pkts_out; i++) {
m = traffic->ipsec.pkts[i];
struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
if (ip->ip_v == IPVERSION) {
idx = traffic->ip4.num++;
traffic->ip4.pkts[idx] = m;
} else {
idx = traffic->ip6.num++;
traffic->ip6.pkts[idx] = m;
}
}
}
static inline void
process_pkts_inbound_nosp(struct ipsec_ctx *ipsec_ctx,
struct ipsec_traffic *traffic)
{
struct rte_mbuf *m;
uint32_t nb_pkts_in, i, idx;
/* Drop any IPv4 traffic from unprotected ports */
for (i = 0; i < traffic->ip4.num; i++)
rte_pktmbuf_free(traffic->ip4.pkts[i]);
traffic->ip4.num = 0;
/* Drop any IPv6 traffic from unprotected ports */
for (i = 0; i < traffic->ip6.num; i++)
rte_pktmbuf_free(traffic->ip6.pkts[i]);
traffic->ip6.num = 0;
nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
traffic->ipsec.num, MAX_PKT_BURST);
for (i = 0; i < nb_pkts_in; i++) {
m = traffic->ipsec.pkts[i];
struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
if (ip->ip_v == IPVERSION) {
idx = traffic->ip4.num++;
traffic->ip4.pkts[idx] = m;
} else {
idx = traffic->ip6.num++;
traffic->ip6.pkts[idx] = m;
}
}
}
static inline void
process_pkts_outbound_nosp(struct ipsec_ctx *ipsec_ctx,
struct ipsec_traffic *traffic)
{
struct rte_mbuf *m;
uint32_t nb_pkts_out, i;
struct ip *ip;
/* Drop any IPsec traffic from protected ports */
for (i = 0; i < traffic->ipsec.num; i++)
rte_pktmbuf_free(traffic->ipsec.pkts[i]);
traffic->ipsec.num = 0;
for (i = 0; i < traffic->ip4.num; i++)
traffic->ip4.res[i] = single_sa_idx;
for (i = 0; i < traffic->ip6.num; i++)
traffic->ip6.res[i] = single_sa_idx;
nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ip4.pkts,
traffic->ip4.res, traffic->ip4.num,
MAX_PKT_BURST);
/* They all sue the same SA (ip4 or ip6 tunnel) */
m = traffic->ipsec.pkts[i];
ip = rte_pktmbuf_mtod(m, struct ip *);
if (ip->ip_v == IPVERSION)
traffic->ip4.num = nb_pkts_out;
else
traffic->ip6.num = nb_pkts_out;
}
static inline int32_t
get_hop_for_offload_pkt(struct rte_mbuf *pkt, int is_ipv6)
{
struct ipsec_mbuf_metadata *priv;
struct ipsec_sa *sa;
priv = get_priv(pkt);
sa = priv->sa;
if (unlikely(sa == NULL)) {
RTE_LOG(ERR, IPSEC, "SA not saved in private data\n");
goto fail;
}
if (is_ipv6)
return sa->portid;
/* else */
return (sa->portid | RTE_LPM_LOOKUP_SUCCESS);
fail:
if (is_ipv6)
return -1;
/* else */
return 0;
}
static inline void
route4_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
{
uint32_t hop[MAX_PKT_BURST * 2];
uint32_t dst_ip[MAX_PKT_BURST * 2];
int32_t pkt_hop = 0;
uint16_t i, offset;
uint16_t lpm_pkts = 0;
if (nb_pkts == 0)
return;
/* Need to do an LPM lookup for non-inline packets. Inline packets will
* have port ID in the SA
*/
for (i = 0; i < nb_pkts; i++) {
if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) {
/* Security offload not enabled. So an LPM lookup is
* required to get the hop
*/
offset = offsetof(struct ip, ip_dst);
dst_ip[lpm_pkts] = *rte_pktmbuf_mtod_offset(pkts[i],
uint32_t *, offset);
dst_ip[lpm_pkts] = rte_be_to_cpu_32(dst_ip[lpm_pkts]);
lpm_pkts++;
}
}
rte_lpm_lookup_bulk((struct rte_lpm *)rt_ctx, dst_ip, hop, lpm_pkts);
lpm_pkts = 0;
for (i = 0; i < nb_pkts; i++) {
if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) {
/* Read hop from the SA */
pkt_hop = get_hop_for_offload_pkt(pkts[i], 0);
} else {
/* Need to use hop returned by lookup */
pkt_hop = hop[lpm_pkts++];
}
if ((pkt_hop & RTE_LPM_LOOKUP_SUCCESS) == 0) {
rte_pktmbuf_free(pkts[i]);
continue;
}
send_single_packet(pkts[i], pkt_hop & 0xff);
}
}
static inline void
route6_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
{
int32_t hop[MAX_PKT_BURST * 2];
uint8_t dst_ip[MAX_PKT_BURST * 2][16];
uint8_t *ip6_dst;
int32_t pkt_hop = 0;
uint16_t i, offset;
uint16_t lpm_pkts = 0;
if (nb_pkts == 0)
return;
/* Need to do an LPM lookup for non-inline packets. Inline packets will
* have port ID in the SA
*/
for (i = 0; i < nb_pkts; i++) {
if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) {
/* Security offload not enabled. So an LPM lookup is
* required to get the hop
*/
offset = offsetof(struct ip6_hdr, ip6_dst);
ip6_dst = rte_pktmbuf_mtod_offset(pkts[i], uint8_t *,
offset);
memcpy(&dst_ip[lpm_pkts][0], ip6_dst, 16);
lpm_pkts++;
}
}
rte_lpm6_lookup_bulk_func((struct rte_lpm6 *)rt_ctx, dst_ip, hop,
lpm_pkts);
lpm_pkts = 0;
for (i = 0; i < nb_pkts; i++) {
if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) {
/* Read hop from the SA */
pkt_hop = get_hop_for_offload_pkt(pkts[i], 1);
} else {
/* Need to use hop returned by lookup */
pkt_hop = hop[lpm_pkts++];
}
if (pkt_hop == -1) {
rte_pktmbuf_free(pkts[i]);
continue;
}
send_single_packet(pkts[i], pkt_hop & 0xff);
}
}
static inline void
process_pkts(struct lcore_conf *qconf, struct rte_mbuf **pkts,
uint8_t nb_pkts, uint16_t portid)
{
struct ipsec_traffic traffic;
prepare_traffic(pkts, &traffic, nb_pkts);
if (unlikely(single_sa)) {
if (UNPROTECTED_PORT(portid))
process_pkts_inbound_nosp(&qconf->inbound, &traffic);
else
process_pkts_outbound_nosp(&qconf->outbound, &traffic);
} else {
if (UNPROTECTED_PORT(portid))
process_pkts_inbound(&qconf->inbound, &traffic);
else
process_pkts_outbound(&qconf->outbound, &traffic);
}
route4_pkts(qconf->rt4_ctx, traffic.ip4.pkts, traffic.ip4.num);
route6_pkts(qconf->rt6_ctx, traffic.ip6.pkts, traffic.ip6.num);
}
static inline void
drain_buffers(struct lcore_conf *qconf)
{
struct buffer *buf;
uint32_t portid;
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
buf = &qconf->tx_mbufs[portid];
if (buf->len == 0)
continue;
send_burst(qconf, buf->len, portid);
buf->len = 0;
}
}
/* main processing loop */
static int32_t
main_loop(__attribute__((unused)) void *dummy)
{
struct rte_mbuf *pkts[MAX_PKT_BURST];
uint32_t lcore_id;
uint64_t prev_tsc, diff_tsc, cur_tsc;
int32_t i, nb_rx;
uint16_t portid;
uint8_t queueid;
struct lcore_conf *qconf;
int32_t socket_id;
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1)
/ US_PER_S * BURST_TX_DRAIN_US;
struct lcore_rx_queue *rxql;
prev_tsc = 0;
lcore_id = rte_lcore_id();
qconf = &lcore_conf[lcore_id];
rxql = qconf->rx_queue_list;
socket_id = rte_lcore_to_socket_id(lcore_id);
qconf->rt4_ctx = socket_ctx[socket_id].rt_ip4;
qconf->rt6_ctx = socket_ctx[socket_id].rt_ip6;
qconf->inbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_in;
qconf->inbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_in;
qconf->inbound.sa_ctx = socket_ctx[socket_id].sa_in;
qconf->inbound.cdev_map = cdev_map_in;
qconf->inbound.session_pool = socket_ctx[socket_id].session_pool;
qconf->outbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_out;
qconf->outbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_out;
qconf->outbound.sa_ctx = socket_ctx[socket_id].sa_out;
qconf->outbound.cdev_map = cdev_map_out;
qconf->outbound.session_pool = socket_ctx[socket_id].session_pool;
if (qconf->nb_rx_queue == 0) {
RTE_LOG(INFO, IPSEC, "lcore %u has nothing to do\n", lcore_id);
return 0;
}
RTE_LOG(INFO, IPSEC, "entering main loop on lcore %u\n", lcore_id);
for (i = 0; i < qconf->nb_rx_queue; i++) {
portid = rxql[i].port_id;
queueid = rxql[i].queue_id;
RTE_LOG(INFO, IPSEC,
" -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
lcore_id, portid, queueid);
}
while (1) {
cur_tsc = rte_rdtsc();
/* TX queue buffer drain */
diff_tsc = cur_tsc - prev_tsc;
if (unlikely(diff_tsc > drain_tsc)) {
drain_buffers(qconf);
prev_tsc = cur_tsc;
}
/* Read packet from RX queues */
for (i = 0; i < qconf->nb_rx_queue; ++i) {
portid = rxql[i].port_id;
queueid = rxql[i].queue_id;
nb_rx = rte_eth_rx_burst(portid, queueid,
pkts, MAX_PKT_BURST);
if (nb_rx > 0)
process_pkts(qconf, pkts, nb_rx, portid);
}
}
}
static int32_t
check_params(void)
{
uint8_t lcore;
uint16_t portid;
uint16_t i;
int32_t socket_id;
if (lcore_params == NULL) {
printf("Error: No port/queue/core mappings\n");
return -1;
}
for (i = 0; i < nb_lcore_params; ++i) {
lcore = lcore_params[i].lcore_id;
if (!rte_lcore_is_enabled(lcore)) {
printf("error: lcore %hhu is not enabled in "
"lcore mask\n", lcore);
return -1;
}
socket_id = rte_lcore_to_socket_id(lcore);
if (socket_id != 0 && numa_on == 0) {
printf("warning: lcore %hhu is on socket %d "
"with numa off\n",
lcore, socket_id);
}
portid = lcore_params[i].port_id;
if ((enabled_port_mask & (1 << portid)) == 0) {
printf("port %u is not enabled in port mask\n", portid);
return -1;
}
if (!rte_eth_dev_is_valid_port(portid)) {
printf("port %u is not present on the board\n", portid);
return -1;
}
}
return 0;
}
static uint8_t
get_port_nb_rx_queues(const uint16_t port)
{
int32_t queue = -1;
uint16_t i;
for (i = 0; i < nb_lcore_params; ++i) {
if (lcore_params[i].port_id == port &&
lcore_params[i].queue_id > queue)
queue = lcore_params[i].queue_id;
}
return (uint8_t)(++queue);
}
static int32_t
init_lcore_rx_queues(void)
{
uint16_t i, nb_rx_queue;
uint8_t lcore;
for (i = 0; i < nb_lcore_params; ++i) {
lcore = lcore_params[i].lcore_id;
nb_rx_queue = lcore_conf[lcore].nb_rx_queue;
if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
printf("error: too many queues (%u) for lcore: %u\n",
nb_rx_queue + 1, lcore);
return -1;
}
lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
lcore_params[i].port_id;
lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
lcore_params[i].queue_id;
lcore_conf[lcore].nb_rx_queue++;
}
return 0;
}
/* display usage */
static void
print_usage(const char *prgname)
{
fprintf(stderr, "%s [EAL options] --"
" -p PORTMASK"
" [-P]"
" [-u PORTMASK]"
" [-j FRAMESIZE]"
" -f CONFIG_FILE"
" --config (port,queue,lcore)[,(port,queue,lcore)]"
" [--single-sa SAIDX]"
" [--cryptodev_mask MASK]"
"\n\n"
" -p PORTMASK: Hexadecimal bitmask of ports to configure\n"
" -P : Enable promiscuous mode\n"
" -u PORTMASK: Hexadecimal bitmask of unprotected ports\n"
" -j FRAMESIZE: Enable jumbo frame with 'FRAMESIZE' as maximum\n"
" packet size\n"
" -f CONFIG_FILE: Configuration file\n"
" --config (port,queue,lcore): Rx queue configuration\n"
" --single-sa SAIDX: Use single SA index for outbound traffic,\n"
" bypassing the SP\n"
" --cryptodev_mask MASK: Hexadecimal bitmask of the crypto\n"
" devices to configure\n"
"\n",
prgname);
}
static int32_t
parse_portmask(const char *portmask)
{
char *end = NULL;
unsigned long pm;
/* parse hexadecimal string */
pm = strtoul(portmask, &end, 16);
if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
return -1;
if ((pm == 0) && errno)
return -1;
return pm;
}
static int32_t
parse_decimal(const char *str)
{
char *end = NULL;
unsigned long num;
num = strtoul(str, &end, 10);
if ((str[0] == '\0') || (end == NULL) || (*end != '\0'))
return -1;
return num;
}
static int32_t
parse_config(const char *q_arg)
{
char s[256];
const char *p, *p0 = q_arg;
char *end;
enum fieldnames {
FLD_PORT = 0,
FLD_QUEUE,
FLD_LCORE,
_NUM_FLD
};
unsigned long int_fld[_NUM_FLD];
char *str_fld[_NUM_FLD];
int32_t i;
uint32_t size;
nb_lcore_params = 0;
while ((p = strchr(p0, '(')) != NULL) {
++p;
p0 = strchr(p, ')');
if (p0 == NULL)
return -1;
size = p0 - p;
if (size >= sizeof(s))
return -1;
snprintf(s, sizeof(s), "%.*s", size, p);
if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
_NUM_FLD)
return -1;
for (i = 0; i < _NUM_FLD; i++) {
errno = 0;
int_fld[i] = strtoul(str_fld[i], &end, 0);
if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
return -1;
}
if (nb_lcore_params >= MAX_LCORE_PARAMS) {
printf("exceeded max number of lcore params: %hu\n",
nb_lcore_params);
return -1;
}
lcore_params_array[nb_lcore_params].port_id =
(uint8_t)int_fld[FLD_PORT];
lcore_params_array[nb_lcore_params].queue_id =
(uint8_t)int_fld[FLD_QUEUE];
lcore_params_array[nb_lcore_params].lcore_id =
(uint8_t)int_fld[FLD_LCORE];
++nb_lcore_params;
}
lcore_params = lcore_params_array;
return 0;
}
static int32_t
parse_args(int32_t argc, char **argv)
{
int32_t opt, ret;
char **argvopt;
int32_t option_index;
char *prgname = argv[0];
int32_t f_present = 0;
argvopt = argv;
while ((opt = getopt_long(argc, argvopt, "p:Pu:f:j:",
lgopts, &option_index)) != EOF) {
switch (opt) {
case 'p':
enabled_port_mask = parse_portmask(optarg);
if (enabled_port_mask == 0) {
printf("invalid portmask\n");
print_usage(prgname);
return -1;
}
break;
case 'P':
printf("Promiscuous mode selected\n");
promiscuous_on = 1;
break;
case 'u':
unprotected_port_mask = parse_portmask(optarg);
if (unprotected_port_mask == 0) {
printf("invalid unprotected portmask\n");
print_usage(prgname);
return -1;
}
break;
case 'f':
if (f_present == 1) {
printf("\"-f\" option present more than "
"once!\n");
print_usage(prgname);
return -1;
}
if (parse_cfg_file(optarg) < 0) {
printf("parsing file \"%s\" failed\n",
optarg);
print_usage(prgname);
return -1;
}
f_present = 1;
break;
case 'j':
{
int32_t size = parse_decimal(optarg);
if (size <= 1518) {
printf("Invalid jumbo frame size\n");
if (size < 0) {
print_usage(prgname);
return -1;
}
printf("Using default value 9000\n");
frame_size = 9000;
} else {
frame_size = size;
}
}
printf("Enabled jumbo frames size %u\n", frame_size);
break;
case CMD_LINE_OPT_CONFIG_NUM:
ret = parse_config(optarg);
if (ret) {
printf("Invalid config\n");
print_usage(prgname);
return -1;
}
break;
case CMD_LINE_OPT_SINGLE_SA_NUM:
ret = parse_decimal(optarg);
if (ret == -1) {
printf("Invalid argument[sa_idx]\n");
print_usage(prgname);
return -1;
}
/* else */
single_sa = 1;
single_sa_idx = ret;
printf("Configured with single SA index %u\n",
single_sa_idx);
break;
case CMD_LINE_OPT_CRYPTODEV_MASK_NUM:
ret = parse_portmask(optarg);
if (ret == -1) {
printf("Invalid argument[portmask]\n");
print_usage(prgname);
return -1;
}
/* else */
enabled_cryptodev_mask = ret;
break;
default:
print_usage(prgname);
return -1;
}
}
if (f_present == 0) {
printf("Mandatory option \"-f\" not present\n");
return -1;
}
if (optind >= 0)
argv[optind-1] = prgname;
ret = optind-1;
optind = 1; /* reset getopt lib */
return ret;
}
static void
print_ethaddr(const char *name, const struct ether_addr *eth_addr)
{
char buf[ETHER_ADDR_FMT_SIZE];
ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
printf("%s%s", name, buf);
}
/* Check the link status of all ports in up to 9s, and print them finally */
static void
check_all_ports_link_status(uint32_t port_mask)
{
#define CHECK_INTERVAL 100 /* 100ms */
#define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
uint16_t portid;
uint8_t count, all_ports_up, print_flag = 0;
struct rte_eth_link link;
printf("\nChecking link status");
fflush(stdout);
for (count = 0; count <= MAX_CHECK_TIME; count++) {
all_ports_up = 1;
if ((port_mask & (1 << portid)) == 0)
continue;
memset(&link, 0, sizeof(link));
rte_eth_link_get_nowait(portid, &link);
/* print link status if flag set */
if (print_flag == 1) {
if (link.link_status)
printf(
"Port%d Link Up - speed %u Mbps -%s\n",
portid, link.link_speed,
(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
("full-duplex") : ("half-duplex\n"));
else
printf("Port %d Link Down\n", portid);
continue;
}
/* clear all_ports_up flag if any link down */
if (link.link_status == ETH_LINK_DOWN) {
all_ports_up = 0;
break;
}
}
/* after finally printing all link status, get out */
if (print_flag == 1)
break;
if (all_ports_up == 0) {
printf(".");
fflush(stdout);
rte_delay_ms(CHECK_INTERVAL);
}
/* set the print_flag if all ports up or timeout */
if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
print_flag = 1;
printf("done\n");
}
}
}
static int32_t
add_mapping(struct rte_hash *map, const char *str, uint16_t cdev_id,
uint16_t qp, struct lcore_params *params,
struct ipsec_ctx *ipsec_ctx,
const struct rte_cryptodev_capabilities *cipher,
const struct rte_cryptodev_capabilities *auth,
const struct rte_cryptodev_capabilities *aead)
{
int32_t ret = 0;
unsigned long i;
struct cdev_key key = { 0 };
key.lcore_id = params->lcore_id;
if (cipher)
key.cipher_algo = cipher->sym.cipher.algo;
if (auth)
key.auth_algo = auth->sym.auth.algo;
if (aead)
key.aead_algo = aead->sym.aead.algo;
ret = rte_hash_lookup(map, &key);
if (ret != -ENOENT)
return 0;
for (i = 0; i < ipsec_ctx->nb_qps; i++)
if (ipsec_ctx->tbl[i].id == cdev_id)
break;
if (i == ipsec_ctx->nb_qps) {
if (ipsec_ctx->nb_qps == MAX_QP_PER_LCORE) {
printf("Maximum number of crypto devices assigned to "
"a core, increase MAX_QP_PER_LCORE value\n");
return 0;
}
ipsec_ctx->tbl[i].id = cdev_id;
ipsec_ctx->tbl[i].qp = qp;
ipsec_ctx->nb_qps++;
printf("%s cdev mapping: lcore %u using cdev %u qp %u "
"(cdev_id_qp %lu)\n", str, key.lcore_id,
cdev_id, qp, i);
}
ret = rte_hash_add_key_data(map, &key, (void *)i);
if (ret < 0) {
printf("Faled to insert cdev mapping for (lcore %u, "
"cdev %u, qp %u), errno %d\n",
key.lcore_id, ipsec_ctx->tbl[i].id,
ipsec_ctx->tbl[i].qp, ret);
return 0;
}
return 1;
}
static int32_t
add_cdev_mapping(struct rte_cryptodev_info *dev_info, uint16_t cdev_id,
uint16_t qp, struct lcore_params *params)
{
int32_t ret = 0;
const struct rte_cryptodev_capabilities *i, *j;
struct rte_hash *map;
struct lcore_conf *qconf;
struct ipsec_ctx *ipsec_ctx;
const char *str;
qconf = &lcore_conf[params->lcore_id];
if ((unprotected_port_mask & (1 << params->port_id)) == 0) {
map = cdev_map_out;
ipsec_ctx = &qconf->outbound;
str = "Outbound";
} else {
map = cdev_map_in;
ipsec_ctx = &qconf->inbound;
str = "Inbound";
}
/* Required cryptodevs with operation chainning */
if (!(dev_info->feature_flags &
return ret;
for (i = dev_info->capabilities;
continue;
ret |= add_mapping(map, str, cdev_id, qp, params,
ipsec_ctx, NULL, NULL, i);
continue;
}
continue;
for (j = dev_info->capabilities;
continue;
continue;
ret |= add_mapping(map, str, cdev_id, qp, params,
ipsec_ctx, i, j, NULL);
}
}
return ret;
}
/* Check if the device is enabled by cryptodev_mask */
static int
check_cryptodev_mask(uint8_t cdev_id)
{
if (enabled_cryptodev_mask & (1 << cdev_id))
return 0;
return -1;
}
static int32_t
cryptodevs_init(void)
{
struct rte_cryptodev_config dev_conf;
struct rte_cryptodev_qp_conf qp_conf;
uint16_t idx, max_nb_qps, qp, i;
int16_t cdev_id, port_id;
struct rte_hash_parameters params = { 0 };
params.entries = CDEV_MAP_ENTRIES;
params.key_len = sizeof(struct cdev_key);
params.hash_func = rte_jhash;
params.hash_func_init_val = 0;
params.name = "cdev_map_in";
cdev_map_in = rte_hash_create(&params);
if (cdev_map_in == NULL)
rte_panic("Failed to create cdev_map hash table, errno = %d\n",
params.name = "cdev_map_out";
cdev_map_out = rte_hash_create(&params);
if (cdev_map_out == NULL)
rte_panic("Failed to create cdev_map hash table, errno = %d\n",
printf("lcore/cryptodev/qp mappings:\n");
uint32_t max_sess_sz = 0, sess_sz;
for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
void *sec_ctx;
/* Get crypto priv session size */
if (sess_sz > max_sess_sz)
max_sess_sz = sess_sz;
/*
* If crypto device is security capable, need to check the
* size of security session as well.
*/
/* Get security context of the crypto device */
sec_ctx = rte_cryptodev_get_sec_ctx(cdev_id);
if (sec_ctx == NULL)
continue;
/* Get size of security session */
sess_sz = rte_security_session_get_size(sec_ctx);
if (sess_sz > max_sess_sz)
max_sess_sz = sess_sz;
}
void *sec_ctx;
if ((enabled_port_mask & (1 << port_id)) == 0)
continue;
sec_ctx = rte_eth_dev_get_sec_ctx(port_id);
if (sec_ctx == NULL)
continue;
sess_sz = rte_security_session_get_size(sec_ctx);
if (sess_sz > max_sess_sz)
max_sess_sz = sess_sz;
}
idx = 0;
for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
struct rte_cryptodev_info cdev_info;
if (check_cryptodev_mask((uint8_t)cdev_id))
continue;
rte_cryptodev_info_get(cdev_id, &cdev_info);
if (nb_lcore_params > cdev_info.max_nb_queue_pairs)
max_nb_qps = cdev_info.max_nb_queue_pairs;
else
max_nb_qps = nb_lcore_params;
qp = 0;
i = 0;
while (qp < max_nb_qps && i < nb_lcore_params) {
if (add_cdev_mapping(&cdev_info, cdev_id, qp,
&lcore_params[idx]))
qp++;
idx++;
idx = idx % nb_lcore_params;
i++;
}
if (qp == 0)
continue;
dev_conf.socket_id = rte_cryptodev_socket_id(cdev_id);
dev_conf.nb_queue_pairs = qp;
uint32_t dev_max_sess = cdev_info.sym.max_nb_sessions;
if (dev_max_sess != 0 && dev_max_sess < (CDEV_MP_NB_OBJS / 2))
rte_exit(EXIT_FAILURE,
"Device does not support at least %u "
"sessions", CDEV_MP_NB_OBJS / 2);
if (!socket_ctx[dev_conf.socket_id].session_pool) {
char mp_name[RTE_MEMPOOL_NAMESIZE];
struct rte_mempool *sess_mp;
snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
"sess_mp_%u", dev_conf.socket_id);
sess_mp = rte_mempool_create(mp_name,
CDEV_MP_NB_OBJS,
max_sess_sz,
CDEV_MP_CACHE_SZ,
0, NULL, NULL, NULL,
NULL, dev_conf.socket_id,
0);
if (sess_mp == NULL)
rte_exit(EXIT_FAILURE,
"Cannot create session pool on socket %d\n",
dev_conf.socket_id);
else
printf("Allocated session pool on socket %d\n",
dev_conf.socket_id);
socket_ctx[dev_conf.socket_id].session_pool = sess_mp;
}
if (rte_cryptodev_configure(cdev_id, &dev_conf))
rte_panic("Failed to initialize cryptodev %u\n",
cdev_id);
qp_conf.nb_descriptors = CDEV_QUEUE_DESC;
for (qp = 0; qp < dev_conf.nb_queue_pairs; qp++)
&qp_conf, dev_conf.socket_id,
socket_ctx[dev_conf.socket_id].session_pool))
rte_panic("Failed to setup queue %u for "
"cdev_id %u\n", 0, cdev_id);
if (rte_cryptodev_start(cdev_id))
rte_panic("Failed to start cryptodev %u\n",
cdev_id);
}
/* create session pools for eth devices that implement security */
if ((enabled_port_mask & (1 << port_id)) &&
int socket_id = rte_eth_dev_socket_id(port_id);
if (!socket_ctx[socket_id].session_pool) {
char mp_name[RTE_MEMPOOL_NAMESIZE];
struct rte_mempool *sess_mp;
snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
"sess_mp_%u", socket_id);
sess_mp = rte_mempool_create(mp_name,
CDEV_MP_NB_OBJS,
max_sess_sz,
CDEV_MP_CACHE_SZ,
0, NULL, NULL, NULL,
NULL, socket_id,
0);
if (sess_mp == NULL)
rte_exit(EXIT_FAILURE,
"Cannot create session pool "
"on socket %d\n", socket_id);
else
printf("Allocated session pool "
"on socket %d\n", socket_id);
socket_ctx[socket_id].session_pool = sess_mp;
}
}
}
printf("\n");
return 0;
}
static void
port_init(uint16_t portid)
{
struct rte_eth_dev_info dev_info;
struct rte_eth_txconf *txconf;
uint16_t nb_tx_queue, nb_rx_queue;
uint16_t tx_queueid, rx_queueid, queue, lcore_id;
int32_t ret, socket_id;
struct lcore_conf *qconf;
struct ether_addr ethaddr;
struct rte_eth_conf local_port_conf = port_conf;
rte_eth_dev_info_get(portid, &dev_info);
printf("Configuring device port %u:\n", portid);
rte_eth_macaddr_get(portid, &ethaddr);
ethaddr_tbl[portid].src = ETHADDR_TO_UINT64(ethaddr);
print_ethaddr("Address: ", &ethaddr);
printf("\n");
nb_rx_queue = get_port_nb_rx_queues(portid);
nb_tx_queue = nb_lcores;
if (nb_rx_queue > dev_info.max_rx_queues)
rte_exit(EXIT_FAILURE, "Error: queue %u not available "
"(max rx queue is %u)\n",
nb_rx_queue, dev_info.max_rx_queues);
if (nb_tx_queue > dev_info.max_tx_queues)
rte_exit(EXIT_FAILURE, "Error: queue %u not available "
"(max tx queue is %u)\n",
nb_tx_queue, dev_info.max_tx_queues);
printf("Creating queues: nb_rx_queue=%d nb_tx_queue=%u...\n",
nb_rx_queue, nb_tx_queue);
if (frame_size) {
local_port_conf.rxmode.max_rx_pkt_len = frame_size;
local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
}
if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_SECURITY)
local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_SECURITY;
if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SECURITY)
local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_SECURITY;
if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
local_port_conf.txmode.offloads |=
local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
dev_info.flow_type_rss_offloads;
if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
printf("Port %u modified RSS hash function based on hardware support,"
"requested:%#"PRIx64" configured:%#"PRIx64"\n",
portid,
local_port_conf.rx_adv_conf.rss_conf.rss_hf);
}
ret = rte_eth_dev_configure(portid, nb_rx_queue, nb_tx_queue,
&local_port_conf);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Cannot configure device: "
"err=%d, port=%d\n", ret, portid);
ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, &nb_txd);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Cannot adjust number of descriptors: "
"err=%d, port=%d\n", ret, portid);
/* init one TX queue per lcore */
tx_queueid = 0;
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;
if (numa_on)
socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
else
socket_id = 0;
/* init TX queue */
printf("Setup txq=%u,%d,%d\n", lcore_id, tx_queueid, socket_id);
txconf = &dev_info.default_txconf;
txconf->offloads = local_port_conf.txmode.offloads;
ret = rte_eth_tx_queue_setup(portid, tx_queueid, nb_txd,
socket_id, txconf);
if (ret < 0)
rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
"err=%d, port=%d\n", ret, portid);
qconf = &lcore_conf[lcore_id];
qconf->tx_queue_id[portid] = tx_queueid;
tx_queueid++;
/* init RX queues */
for (queue = 0; queue < qconf->nb_rx_queue; ++queue) {
struct rte_eth_rxconf rxq_conf;
if (portid != qconf->rx_queue_list[queue].port_id)
continue;
rx_queueid = qconf->rx_queue_list[queue].queue_id;
printf("Setup rxq=%d,%d,%d\n", portid, rx_queueid,
socket_id);
rxq_conf = dev_info.default_rxconf;
rxq_conf.offloads = local_port_conf.rxmode.offloads;
ret = rte_eth_rx_queue_setup(portid, rx_queueid,
nb_rxd, socket_id, &rxq_conf,
socket_ctx[socket_id].mbuf_pool);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"rte_eth_rx_queue_setup: err=%d, "
"port=%d\n", ret, portid);
}
}
printf("\n");
}
static void
pool_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t nb_mbuf)
{
char s[64];
uint32_t buff_size = frame_size ? (frame_size + RTE_PKTMBUF_HEADROOM) :
RTE_MBUF_DEFAULT_BUF_SIZE;
snprintf(s, sizeof(s), "mbuf_pool_%d", socket_id);
ctx->mbuf_pool = rte_pktmbuf_pool_create(s, nb_mbuf,
MEMPOOL_CACHE_SIZE, ipsec_metadata_size(),
buff_size,
socket_id);
if (ctx->mbuf_pool == NULL)
rte_exit(EXIT_FAILURE, "Cannot init mbuf pool on socket %d\n",
socket_id);
else
printf("Allocated mbuf pool on socket %d\n", socket_id);
}
static inline int
inline_ipsec_event_esn_overflow(struct rte_security_ctx *ctx, uint64_t md)
{
struct ipsec_sa *sa;
/* For inline protocol processing, the metadata in the event will
* uniquely identify the security session which raised the event.
* Application would then need the userdata it had registered with the
* security session to process the event.
*/
sa = (struct ipsec_sa *)rte_security_get_userdata(ctx, md);
if (sa == NULL) {
/* userdata could not be retrieved */
return -1;
}
/* Sequence number over flow. SA need to be re-established */
return 0;
}
static int
inline_ipsec_event_callback(uint16_t port_id, enum rte_eth_event_type type,
void *param, void *ret_param)
{
uint64_t md;
struct rte_eth_event_ipsec_desc *event_desc = NULL;
struct rte_security_ctx *ctx = (struct rte_security_ctx *)
RTE_SET_USED(param);
if (type != RTE_ETH_EVENT_IPSEC)
return -1;
event_desc = ret_param;
if (event_desc == NULL) {
printf("Event descriptor not set\n");
return -1;
}
md = event_desc->metadata;
return inline_ipsec_event_esn_overflow(ctx, md);
else if (event_desc->subtype >= RTE_ETH_EVENT_IPSEC_MAX) {
printf("Invalid IPsec event reported\n");
return -1;
}
return -1;
}
int32_t
main(int32_t argc, char **argv)
{
int32_t ret;
uint32_t lcore_id;
uint8_t socket_id;
uint16_t portid;
/* init EAL */
ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
argc -= ret;
argv += ret;
/* parse application arguments (after the EAL ones) */
ret = parse_args(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid parameters\n");
if ((unprotected_port_mask & enabled_port_mask) !=
unprotected_port_mask)
rte_exit(EXIT_FAILURE, "Invalid unprotected portmask 0x%x\n",
unprotected_port_mask);
if (check_params() < 0)
rte_exit(EXIT_FAILURE, "check_params failed\n");
ret = init_lcore_rx_queues();
if (ret < 0)
rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
nb_lcores = rte_lcore_count();
/* Replicate each context per socket */
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;
if (numa_on)
socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
else
socket_id = 0;
if (socket_ctx[socket_id].mbuf_pool)
continue;
sa_init(&socket_ctx[socket_id], socket_id);
sp4_init(&socket_ctx[socket_id], socket_id);
sp6_init(&socket_ctx[socket_id], socket_id);
rt_init(&socket_ctx[socket_id], socket_id);
pool_init(&socket_ctx[socket_id], socket_id, NB_MBUF);
}
if ((enabled_port_mask & (1 << portid)) == 0)
continue;
port_init(portid);
}
cryptodevs_init();
/* start ports */
if ((enabled_port_mask & (1 << portid)) == 0)
continue;
/* Start device */
ret = rte_eth_dev_start(portid);
if (ret < 0)
rte_exit(EXIT_FAILURE, "rte_eth_dev_start: "
"err=%d, port=%d\n", ret, portid);
/*
* If enabled, put device in promiscuous mode.
* This allows IO forwarding mode to forward packets
* to itself through 2 cross-connected ports of the
* target machine.
*/
if (promiscuous_on)
RTE_ETH_EVENT_IPSEC, inline_ipsec_event_callback, NULL);
}
check_all_ports_link_status(enabled_port_mask);
/* launch per-lcore init on every lcore */
if (rte_eal_wait_lcore(lcore_id) < 0)
return -1;
}
return 0;
}