5. dpdk-test-bbdev Application

The dpdk-test-bbdev tool is a Data Plane Development Kit (DPDK) utility that allows measuring performance parameters of PMDs available in the bbdev framework. Available tests available for execution are: latency, throughput, validation and sanity tests. Execution of tests can be customized using various parameters passed to a python running script.

5.1. Compiling the Application

Step 1: PMD setting

The dpdk-test-bbdev tool depends on crypto device drivers PMD which are disabled by default in the build configuration file common_base. The bbdevice drivers PMD which should be tested can be enabled by setting

CONFIG_RTE_LIBRTE_PMD_<name>=y

Setting example for (baseband_turbo_sw) PMD

CONFIG_RTE_LIBRTE_PMD_BBDEV_TURBO_SW=y

Step 2: Build the application

Execute the dpdk-setup.sh script to build the DPDK library together with the dpdk-test-bbdev application.

Initially, the user must select a DPDK target to choose the correct target type and compiler options to use when building the libraries. The user must have all libraries, modules, updates and compilers installed in the system prior to this, as described in the earlier chapters in this Getting Started Guide.

5.2. Running the Application

The tool application has a number of command line options:

python test-bbdev.py [-h] [-p TESTAPP_PATH] [-e EAL_PARAMS] [-t TIMEOUT]
                     [-c TEST_CASE [TEST_CASE ...]]
                     [-v TEST_VECTOR [TEST_VECTOR...]] [-n NUM_OPS]
                     [-b BURST_SIZE [BURST_SIZE ...]] [-l NUM_LCORES]

5.2.1. command-line Options

The following are the command-line options:

-h, --help
Shows help message and exit.
-p TESTAPP_PATH, --testapp_path TESTAPP_PATH
Indicates the path to the bbdev test app. If not specified path is set based on $RTE_SDK environment variable concatenated with “/build/app/testbbdev”.
-e EAL_PARAMS, --eal_params EAL_PARAMS
Specifies EAL arguments which are passed to the test app. For more details, refer to DPDK documentation at http://doc.dpdk.org/guides/linux_gsg/linux_eal_parameters.html.
-t TIMEOUT, --timeout TIMEOUT
Specifies timeout in seconds. If not specified timeout is set to 300 seconds.
-c TEST_CASE [TEST_CASE ...], --test_cases TEST_CASE [TEST_CASE ...]

Defines test cases to run. If not specified all available tests are run.

Example usage:

./test-bbdev.py -c validation
Runs validation test suite
./test-bbdev.py -c latency throughput
Runs latency and throughput test suites
-v TEST_VECTOR [TEST_VECTOR ...], --test_vector TEST_VECTOR [TEST_VECTOR ...]

Specifies paths to the test vector files. If not specified path is set based on $RTE_SDK environment variable concatenated with “/app/test-bbdev/test_vectors/bbdev_null.data” and indicates default data file.

Example usage:

./test-bbdev.py -v app/test-bbdev/test_vectors/turbo_dec_test1.data
Fills vector based on turbo_dec_test1.data file and runs all tests
./test-bbdev.py -v turbo_dec_test1.data turbo_enc_test2.data
The bbdev test app is executed twice. First time vector is filled based on turbo_dec_test1.data file and second time based on turb_enc_test2.data file. For both executions all tests are run.
-n NUM_OPS, --num_ops NUM_OPS
Specifies number of operations to process on device. If not specified num_ops is set to 32 operations.
-l NUM_LCORES, --num_lcores NUM_LCORES
Specifies number of lcores to run. If not specified num_lcores is set according to value from RTE configuration (EAL coremask)
-b BURST_SIZE [BURST_SIZE ...], --burst-size BURST_SIZE [BURST_SIZE ...]
Specifies operations enqueue/dequeue burst size. If not specified burst_size is set to 32. Maximum is 512.

5.2.2. Test Cases

There are 6 main test cases that can be executed using testbbdev tool:

  • Sanity checks [-c unittest]
    • Performs sanity checks on BBDEV interface, validating basic functionality
  • Validation tests [-c validation]
    • Performs full operation of enqueue and dequeue
    • Compares the dequeued data buffer with a expected values in the test vector (TV) being used
    • Fails if any dequeued value does not match the data in the TV
  • Offload Cost measurement [-c offload]
    • Measures the CPU cycles consumed from the receipt of a user enqueue until it is put on the device queue

    • The test measures 4 metrics
      1. SW Enq Offload Cost: Software only enqueue offload cost, the cycle counts and time (us) from the point the enqueue API is called until the point the operation is put on the accelerator queue.
      2. Acc Enq Offload Cost: The cycle count and time (us) from the point the operation is put on the accelerator queue until the return from enqueue.
      3. SW Deq Offload Cost: Software dequeue cost, the cycle counts and time (us) consumed to dequeue one operation.
      4. Empty Queue Enq Offload Cost: The cycle count and time (us) consumed to dequeue from an empty queue.
  • Latency measurement [-c latency]
    • Measures the time consumed from the first enqueue until the first appearance of a dequeued result
    • This measurement represents the full latency of a bbdev operation (encode or decode) to execute
  • Poll-mode Throughput measurement [-c throughput]
    • Performs full operation of enqueue and dequeue
    • Executes in poll mode
    • Measures the achieved throughput on a subset or all available CPU cores
    • Dequeued data is not validated against expected values stored in TV
    • Results are printed in million operations per second and million bits per second
  • Interrupt-mode Throughput [-c interrupt]
    • Similar to Throughput test case, but using interrupts. No polling.

5.2.3. Parameter Globbing

Thanks to the globbing functionality in python test-bbdev.py script allows to run tests with different set of vector files without giving all of them explicitly.

Example usage:

./test-bbdev.py -v app/test-bbdev/test_vectors/turbo_<enc/dec>_c<c>_k<k>_r<r>_e<e>_<extra-info>.data

It runs all tests with following vectors:

  • bbdev_null.data
  • turbo_dec_c1_k6144_r0_e34560_sbd_negllr.data
  • turbo_enc_c1_k40_r0_e1196_rm.data
  • turbo_enc_c2_k5952_r0_e17868_crc24b.data
  • turbo_dec_c1_k40_r0_e17280_sbd_negllr.data
  • turbo_dec_c1_k6144_r0_e34560_sbd_posllr.data
  • turbo_enc_c1_k40_r0_e272_rm.data
  • turbo_enc_c3_k4800_r2_e14412_crc24b.data
  • turbo_dec_c1_k6144_r0_e10376_crc24b_sbd_negllr_high_snr.data
  • turbo_dec_c2_k3136_r0_e4920_sbd_negllr_crc24b.data
  • turbo_enc_c1_k6144_r0_e120_rm_rvidx.data
  • turbo_enc_c4_k4800_r2_e14412_crc24b.data
  • turbo_dec_c1_k6144_r0_e10376_crc24b_sbd_negllr_low_snr.data
  • turbo_dec_c2_k3136_r0_e4920_sbd_negllr.data
  • turbo_enc_c1_k6144_r0_e18444.data
  • turbo_dec_c1_k6144_r0_e34560_negllr.data
  • turbo_enc_c1_k40_r0_e1190_rm.data
  • turbo_enc_c1_k6144_r0_e18448_crc24a.data
  • turbo_dec_c1_k6144_r0_e34560_posllr.data
  • turbo_enc_c1_k40_r0_e1194_rm.data
  • turbo_enc_c1_k6144_r0_e32256_crc24b_rm.data
./test-bbdev.py -v app/test-bbdev/turbo_*_default.data

It runs all tests with “default” vectors.

  • turbo_dec_default.data is a soft link to turbo_dec_c1_k6144_r0_e10376_crc24b_sbd_negllr_high_snr.data
  • turbo_enc_default.data is a soft link to turbo_enc_c1_k6144_r0_e32256_crc24b_rm.data

5.3. Running Tests

Shortened tree of isg_cid-wireless_dpdk_ae with dpdk compiled for x86_64-native-linux-icc target:

|-- app
    |-- test-bbdev
        |-- test_vectors
            |-- bbdev_null.data
            |-- turbo_dec_c1_k6144_r0_e34560_sbd_negllr.data
            |-- turbo_enc_c1_k40_r0_e1196_rm.data
            |-- turbo_enc_c2_k5952_r0_e17868_crc24b.data
            |-- turbo_dec_c1_k40_r0_e17280_sbd_negllr.data
            |-- turbo_dec_c1_k6144_r0_e34560_sbd_posllr.data
            |-- turbo_enc_c1_k40_r0_e272_rm.data
            |-- turbo_enc_c3_k4800_r2_e14412_crc24b.data
            |-- turbo_dec_c1_k6144_r0_e10376_crc24b_sbd_negllr_high_snr.data
            |-- turbo_dec_c2_k3136_r0_e4920_sbd_negllr_crc24b.data
            |-- turbo_enc_c1_k6144_r0_e120_rm_rvidx.data
            |-- turbo_enc_c4_k4800_r2_e14412_crc24b.data
            |-- turbo_dec_c1_k6144_r0_e10376_crc24b_sbd_negllr_low_snr.data
            |-- turbo_dec_c2_k3136_r0_e4920_sbd_negllr.data
            |-- turbo_enc_c1_k6144_r0_e18444.data
            |-- turbo_dec_c1_k6144_r0_e34560_negllr.data
            |-- turbo_enc_c1_k40_r0_e1190_rm.data
            |-- turbo_enc_c1_k6144_r0_e18448_crc24a.data
            |-- turbo_dec_c1_k6144_r0_e34560_posllr.data
            |-- turbo_enc_c1_k40_r0_e1194_rm.data
            |-- turbo_enc_c1_k6144_r0_e32256_crc24b_rm.data

|-- x86_64-native-linux-icc
    |-- app
        |-- testbbdev

5.3.1. All bbdev devices

./test-bbdev.py -p ../../x86_64-native-linux-icc/app/testbbdev
-v turbo_dec_default.data

It runs all available tests using the test vector filled based on turbo_dec_default.data file. By default number of operations to process on device is set to 32, timeout is set to 300s and operations enqueue/dequeue burst size is set to 32. Moreover a bbdev (baseband_null) device will be created.

5.3.2. baseband turbo_sw device

./test-bbdev.py -p ../../x86_64-native-linux-icc/app/testbbdev
-e="--vdev=baseband_turbo_sw" -t 120 -c validation
-v ./test_vectors/turbo_* -n 64 -b 8 32

It runs validation test for each vector file that matches the given pattern. Number of operations to process on device is set to 64 and operations timeout is set to 120s and enqueue/dequeue burst size is set to 8 and to 32. Moreover a bbdev (baseband_turbo_sw) device will be created.

5.3.3. bbdev null device

Executing bbdev null device with bbdev_null.data helps in measuring the overhead introduced by the bbdev framework.

./test-bbdev.py -e="--vdev=baseband_null0"
-v ./test_vectors/bbdev_null.data

Note:

baseband_null device does not have to be defined explicitly as it is created by default.

5.4. Test Vector files

Test Vector files contain the data which is used to set turbo decoder/encoder parameters and buffers for validation purpose. New test vector files should be stored in app/test-bbdev/test_vectors/ directory. Detailed description of the syntax of the test vector files is in the following section.

5.4.1. Basic principles for test vector files

Line started with # is treated as a comment and is ignored.

If variable is a chain of values, values should be separated by a comma. If assignment is split into several lines, each line (except the last one) has to be ended with a comma. There is no comma after last value in last line. Correct assignment should look like the following:

variable =
value, value, value, value,
value, value

In case where variable is a single value correct assignment looks like the following:

variable =
value

Length of chain variable is calculated by parser. Can not be defined explicitly.

Variable op_type has to be defined as a first variable in file. It specifies what type of operations will be executed. For decoder op_type has to be set to RTE_BBDEV_OP_TURBO_DEC and for encoder to RTE_BBDEV_OP_TURBO_ENC.

Full details of the meaning and valid values for the below fields are documented in rte_bbdev_op.h

5.4.2. Turbo decoder test vectors template

For turbo decoder it has to be always set to RTE_BBDEV_OP_TURBO_DEC

op_type =
RTE_BBDEV_OP_TURBO_DEC

Chain of uint32_t values. Note that it is possible to define more than one input/output entries which will result in chaining two or more data structures for segmented Transport Blocks

input0 =
0x00000000, 0x7f817f00, 0x7f7f8100, 0x817f8100, 0x81008100, 0x7f818100, 0x81817f00, 0x7f818100,
0x81007f00, 0x7f818100, 0x817f8100, 0x81817f00, 0x81008100, 0x817f7f00, 0x7f7f8100, 0x81817f00

Chain of uint32_t values

input1 =
0x7f7f0000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000

Chain of uint32_t values

input2 =
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000

Chain of uint32_t values

hard_output0 =
0xa7d6732e

Chain of uint32_t values

hard_output1 =
0xa61

Chain of uint32_t values

soft_output0 =
0x817f817f, 0x7f817f7f, 0x81818181, 0x817f7f81, 0x7f818181, 0x8181817f, 0x817f817f, 0x8181817f

Chain of uint32_t values

soft_output1 =
0x817f7f81, 0x7f7f7f81, 0x7f7f8181

uint32_t value

e =
44

uint16_t value

k =
40

uint8_t value

rv_index =
0

uint8_t value

iter_max =
8

uint8_t value

iter_min =
4

uint8_t value

expected_iter_count =
8

uint8_t value

ext_scale =
15

uint8_t value

num_maps =
0

Chain of flags for turbo decoder operation. Following flags can be used:

  • RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE
  • RTE_BBDEV_TURBO_CRC_TYPE_24B
  • RTE_BBDEV_TURBO_EQUALIZER
  • RTE_BBDEV_TURBO_SOFT_OUT_SATURATE
  • RTE_BBDEV_TURBO_HALF_ITERATION_EVEN
  • RTE_BBDEV_TURBO_CONTINUE_CRC_MATCH
  • RTE_BBDEV_TURBO_SOFT_OUTPUT
  • RTE_BBDEV_TURBO_EARLY_TERMINATION
  • RTE_BBDEV_TURBO_DEC_INTERRUPTS
  • RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN
  • RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN
  • RTE_BBDEV_TURBO_POS_LLR_1_BIT_SOFT_OUT
  • RTE_BBDEV_TURBO_NEG_LLR_1_BIT_SOFT_OUT
  • RTE_BBDEV_TURBO_MAP_DEC

Example:

op_flags =
RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE, RTE_BBDEV_TURBO_EQUALIZER,
RTE_BBDEV_TURBO_SOFT_OUTPUT

Chain of operation statuses that are expected after operation is performed. Following statuses can be used:

  • DMA
  • FCW
  • CRC
  • OK

OK means no errors are expected. Cannot be used with other values.

expected_status =
FCW, CRC

5.4.3. Turbo encoder test vectors template

For turbo encoder it has to be always set to RTE_BBDEV_OP_TURBO_ENC

op_type =
RTE_BBDEV_OP_TURBO_ENC

Chain of uint32_t values

input0 =
0x11d2bcac, 0x4d

Chain of uint32_t values

output0 =
0xd2399179, 0x640eb999, 0x2cbaf577, 0xaf224ae2, 0x9d139927, 0xe6909b29,
0xa25b7f47, 0x2aa224ce, 0x79f2

uint32_t value

e =
272

uint16_t value

k =
40

uint16_t value

ncb =
192

uint8_t value

rv_index =
0

Chain of flags for turbo encoder operation. Following flags can be used:

  • RTE_BBDEV_TURBO_RV_INDEX_BYPASS
  • RTE_BBDEV_TURBO_RATE_MATCH
  • RTE_BBDEV_TURBO_CRC_24B_ATTACH
  • RTE_BBDEV_TURBO_CRC_24A_ATTACH
  • RTE_BBDEV_TURBO_ENC_SCATTER_GATHER

RTE_BBDEV_TURBO_ENC_SCATTER_GATHER is used to indicate the parser to force the input data to be memory split and formed as a segmented mbuf.

op_flags =
RTE_BBDEV_TURBO_RATE_MATCH

Chain of operation statuses that are expected after operation is performed. Following statuses can be used:

  • DMA
  • FCW
  • OK

OK means no errors are expected. Cannot be used with other values.

expected_status =
OK