DPDK  24.11.0-rc0
examples/bbdev_app/main.c
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Intel Corporation
*/
#include <stdalign.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/queue.h>
#include <stdarg.h>
#include <ctype.h>
#include <errno.h>
#include <math.h>
#include <assert.h>
#include <getopt.h>
#include <signal.h>
#include <rte_common.h>
#include <rte_eal.h>
#include <rte_cycles.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_ip.h>
#include <rte_lcore.h>
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_mbuf_dyn.h>
#include <rte_memory.h>
#include <rte_mempool.h>
#include <rte_log.h>
#include <rte_bbdev.h>
#include <rte_bbdev_op.h>
/* LLR values - negative value for '1' bit */
#define LLR_1_BIT 0x81
#define LLR_0_BIT 0x7F
#define MAX_PKT_BURST 32
#define NB_MBUF 8191
#define MEMPOOL_CACHE_SIZE 256
/* Hardcoded K value */
#define K 40
#define NCB (3 * RTE_ALIGN_CEIL(K + 4, 32))
#define CRC_24B_LEN 3
/* Configurable number of RX/TX ring descriptors */
#define RX_DESC_DEFAULT 128
#define TX_DESC_DEFAULT 512
#define BBDEV_ASSERT(a) do { \
if (!(a)) { \
usage(prgname); \
return -1; \
} \
} while (0)
static int input_dynfield_offset = -1;
static inline struct rte_mbuf **
mbuf_input(struct rte_mbuf *mbuf)
{
return RTE_MBUF_DYNFIELD(mbuf,
input_dynfield_offset, struct rte_mbuf **);
}
static const struct rte_eth_conf port_conf = {
.rxmode = {
},
.txmode = {
.mq_mode = RTE_ETH_MQ_TX_NONE,
},
};
struct rte_bbdev_op_turbo_enc def_op_enc = {
/* These values are arbitrarily put, and does not map to the real
* values for the data received from ethdev ports
*/
.rv_index = 0,
.code_block_mode = 1,
.cb_params = {
.k = K,
},
};
struct rte_bbdev_op_turbo_dec def_op_dec = {
/* These values are arbitrarily put, and does not map to the real
* values for the data received from ethdev ports
*/
.cb_params = {
.k = K,
},
.rv_index = 0,
.iter_max = 8,
.iter_min = 4,
.ext_scale = 15,
.num_maps = 0,
};
struct app_config_params {
/* Placeholders for app params */
uint16_t port_id;
uint16_t bbdev_id;
uint64_t enc_core_mask;
uint64_t dec_core_mask;
/* Values filled during init time */
uint16_t enc_queue_ids[RTE_MAX_LCORE];
uint16_t dec_queue_ids[RTE_MAX_LCORE];
uint16_t num_enc_cores;
uint16_t num_dec_cores;
};
struct __rte_cache_aligned lcore_statistics {
unsigned int enqueued;
unsigned int dequeued;
unsigned int rx_lost_packets;
unsigned int enc_to_dec_lost_packets;
unsigned int tx_lost_packets;
};
struct __rte_cache_aligned lcore_conf {
uint64_t core_type;
unsigned int port_id;
unsigned int rx_queue_id;
unsigned int tx_queue_id;
unsigned int bbdev_id;
unsigned int enc_queue_id;
unsigned int dec_queue_id;
uint8_t llr_temp_buf[NCB];
struct rte_mempool *bbdev_dec_op_pool;
struct rte_mempool *bbdev_enc_op_pool;
struct rte_mempool *enc_out_pool;
struct rte_ring *enc_to_dec_ring;
struct lcore_statistics *lcore_stats;
};
struct stats_lcore_params {
struct lcore_conf *lconf;
struct app_config_params *app_params;
};
static const struct app_config_params def_app_config = {
.port_id = 0,
.bbdev_id = 0,
.enc_core_mask = 0x2,
.dec_core_mask = 0x4,
.num_enc_cores = 1,
.num_dec_cores = 1,
};
static RTE_ATOMIC(uint16_t) global_exit_flag;
/* display usage */
static inline void
usage(const char *prgname)
{
printf("%s [EAL options] "
" --\n"
" --enc_cores - number of encoding cores (default = 0x2)\n"
" --dec_cores - number of decoding cores (default = 0x4)\n"
" --port_id - Ethernet port ID (default = 0)\n"
" --bbdev_id - BBDev ID (default = 0)\n"
"\n", prgname);
}
/* parse core mask */
static inline
uint16_t bbdev_parse_mask(const char *mask)
{
char *end = NULL;
unsigned long pm;
/* parse hexadecimal string */
pm = strtoul(mask, &end, 16);
if ((mask[0] == '\0') || (end == NULL) || (*end != '\0'))
return 0;
return pm;
}
/* parse core mask */
static inline
uint16_t bbdev_parse_number(const char *mask)
{
char *end = NULL;
unsigned long pm;
/* parse hexadecimal string */
pm = strtoul(mask, &end, 10);
if ((mask[0] == '\0') || (end == NULL) || (*end != '\0'))
return 0;
return pm;
}
static int
bbdev_parse_args(int argc, char **argv,
struct app_config_params *app_params)
{
int optind = 0;
int opt;
int opt_indx = 0;
char *prgname = argv[0];
static struct option lgopts[] = {
{ "enc_core_mask", required_argument, 0, 'e' },
{ "dec_core_mask", required_argument, 0, 'd' },
{ "port_id", required_argument, 0, 'p' },
{ "bbdev_id", required_argument, 0, 'b' },
{ NULL, 0, 0, 0 }
};
BBDEV_ASSERT(argc != 0);
BBDEV_ASSERT(argv != NULL);
BBDEV_ASSERT(app_params != NULL);
while ((opt = getopt_long(argc, argv, "e:d:p:b:", lgopts, &opt_indx)) !=
EOF) {
switch (opt) {
case 'e':
app_params->enc_core_mask =
bbdev_parse_mask(optarg);
if (app_params->enc_core_mask == 0) {
usage(prgname);
return -1;
}
app_params->num_enc_cores =
rte_popcount32(app_params->enc_core_mask);
break;
case 'd':
app_params->dec_core_mask =
bbdev_parse_mask(optarg);
if (app_params->dec_core_mask == 0) {
usage(prgname);
return -1;
}
app_params->num_dec_cores =
rte_popcount32(app_params->dec_core_mask);
break;
case 'p':
app_params->port_id = bbdev_parse_number(optarg);
break;
case 'b':
app_params->bbdev_id = bbdev_parse_number(optarg);
break;
default:
usage(prgname);
return -1;
}
}
optind = 0;
return optind;
}
static void
signal_handler(int signum)
{
printf("\nSignal %d received\n", signum);
rte_atomic_store_explicit(&global_exit_flag, 1, rte_memory_order_relaxed);
}
static void
print_mac(unsigned int portid, struct rte_ether_addr *bbdev_ports_eth_address)
{
printf("Port %u, MAC address: " RTE_ETHER_ADDR_PRT_FMT "\n\n",
(unsigned int) portid,
RTE_ETHER_ADDR_BYTES(bbdev_ports_eth_address));
}
static inline void
pktmbuf_free_bulk(struct rte_mbuf **mbufs, unsigned int nb_to_free)
{
unsigned int i;
for (i = 0; i < nb_to_free; ++i)
rte_pktmbuf_free(mbufs[i]);
}
static inline void
pktmbuf_input_free_bulk(struct rte_mbuf **mbufs, unsigned int nb_to_free)
{
unsigned int i;
for (i = 0; i < nb_to_free; ++i) {
struct rte_mbuf *rx_pkt = *mbuf_input(mbufs[i]);
rte_pktmbuf_free(mbufs[i]);
}
}
/* Check the link status of all ports in up to 9s, and print them finally */
static int
check_port_link_status(uint16_t port_id)
{
#define CHECK_INTERVAL 100 /* 100ms */
#define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
uint8_t count;
struct rte_eth_link link;
int link_get_err = -EINVAL;
printf("\nChecking link status.");
fflush(stdout);
for (count = 0; count <= MAX_CHECK_TIME &&
!rte_atomic_load_explicit(&global_exit_flag,
rte_memory_order_relaxed); count++) {
memset(&link, 0, sizeof(link));
link_get_err = rte_eth_link_get_nowait(port_id, &link);
if (link_get_err >= 0 && link.link_status) {
const char *dp = (link.link_duplex ==
"full-duplex" : "half-duplex";
printf("\nPort %u Link Up - speed %s - %s\n",
port_id,
dp);
return 0;
}
printf(".");
fflush(stdout);
rte_delay_ms(CHECK_INTERVAL);
}
if (link_get_err >= 0)
printf("\nPort %d Link Down\n", port_id);
else
printf("\nGet link failed (port %d): %s\n", port_id,
rte_strerror(-link_get_err));
return 0;
}
static inline void
add_ether_hdr(struct rte_mbuf *pkt_src, struct rte_mbuf *pkt_dst)
{
struct rte_ether_hdr *eth_from;
struct rte_ether_hdr *eth_to;
eth_from = rte_pktmbuf_mtod(pkt_src, struct rte_ether_hdr *);
eth_to = rte_pktmbuf_mtod(pkt_dst, struct rte_ether_hdr *);
/* copy header */
rte_memcpy(eth_to, eth_from, sizeof(struct rte_ether_hdr));
}
static inline void
add_awgn(struct rte_mbuf **mbufs, uint16_t num_pkts)
{
RTE_SET_USED(mbufs);
RTE_SET_USED(num_pkts);
}
/* Encoder output to Decoder input adapter. The Decoder accepts only soft input
* so each bit of the encoder output must be translated into one byte of LLR. If
* Sub-block Deinterleaver is bypassed, which is the case, the padding bytes
* must additionally be inserted at the end of each sub-block.
*/
static inline void
transform_enc_out_dec_in(struct rte_mbuf **mbufs, uint8_t *temp_buf,
uint16_t num_pkts, uint16_t k)
{
uint16_t i, l, j;
uint16_t start_bit_idx;
uint16_t out_idx;
uint16_t d = k + 4;
uint16_t kpi = RTE_ALIGN_CEIL(d, 32);
uint16_t nd = kpi - d;
uint16_t ncb = 3 * kpi;
for (i = 0; i < num_pkts; ++i) {
uint16_t pkt_data_len = rte_pktmbuf_data_len(mbufs[i]) -
sizeof(struct rte_ether_hdr);
/* Resize the packet if needed */
if (pkt_data_len < ncb) {
char *data = rte_pktmbuf_append(mbufs[i],
ncb - pkt_data_len);
if (data == NULL)
printf(
"Not enough space in decoder input packet");
}
/* Translate each bit into 1 LLR byte. */
start_bit_idx = 0;
out_idx = 0;
for (j = 0; j < 3; ++j) {
for (l = start_bit_idx; l < start_bit_idx + d; ++l) {
uint8_t *data = rte_pktmbuf_mtod_offset(
mbufs[i], uint8_t *,
sizeof(struct rte_ether_hdr) +
(l >> 3));
if (*data & (0x80 >> (l & 7)))
temp_buf[out_idx] = LLR_1_BIT;
else
temp_buf[out_idx] = LLR_0_BIT;
++out_idx;
}
/* Padding bytes should be at the end of the sub-block.
*/
memset(&temp_buf[out_idx], 0, nd);
out_idx += nd;
start_bit_idx += d;
}
rte_memcpy(rte_pktmbuf_mtod_offset(mbufs[i], uint8_t *,
sizeof(struct rte_ether_hdr)), temp_buf, ncb);
}
}
static inline void
verify_data(struct rte_mbuf **mbufs, uint16_t num_pkts)
{
uint16_t i;
for (i = 0; i < num_pkts; ++i) {
struct rte_mbuf *out = mbufs[i];
struct rte_mbuf *in = *mbuf_input(out);
if (memcmp(rte_pktmbuf_mtod_offset(in, uint8_t *,
sizeof(struct rte_ether_hdr)),
rte_pktmbuf_mtod_offset(out, uint8_t *,
sizeof(struct rte_ether_hdr)),
K / 8 - CRC_24B_LEN))
printf("Input and output buffers are not equal!\n");
}
}
static int
initialize_ports(struct app_config_params *app_params,
struct rte_mempool *ethdev_mbuf_mempool)
{
int ret;
uint16_t port_id = app_params->port_id;
uint16_t q;
/* ethernet addresses of ports */
struct rte_ether_addr bbdev_port_eth_addr;
/* initialize ports */
printf("\nInitializing port %u...\n", app_params->port_id);
ret = rte_eth_dev_configure(port_id, app_params->num_enc_cores,
app_params->num_dec_cores, &port_conf);
if (ret < 0) {
printf("Cannot configure device: err=%d, port=%u\n",
ret, port_id);
return -1;
}
/* initialize RX queues for encoder */
for (q = 0; q < app_params->num_enc_cores; q++) {
ret = rte_eth_rx_queue_setup(port_id, q,
RX_DESC_DEFAULT,
NULL, ethdev_mbuf_mempool);
if (ret < 0) {
printf("rte_eth_rx_queue_setup: err=%d, queue=%u\n",
ret, q);
return -1;
}
}
/* initialize TX queues for decoder */
for (q = 0; q < app_params->num_dec_cores; q++) {
ret = rte_eth_tx_queue_setup(port_id, q,
TX_DESC_DEFAULT,
rte_eth_dev_socket_id(port_id), NULL);
if (ret < 0) {
printf("rte_eth_tx_queue_setup: err=%d, queue=%u\n",
ret, q);
return -1;
}
}
if (ret != 0) {
printf("Cannot enable promiscuous mode: err=%s, port=%u\n",
rte_strerror(-ret), port_id);
return ret;
}
ret = rte_eth_macaddr_get(port_id, &bbdev_port_eth_addr);
if (ret < 0) {
printf("rte_eth_macaddr_get: err=%d, queue=%u\n",
ret, q);
return -1;
}
print_mac(port_id, &bbdev_port_eth_addr);
return 0;
}
static void
lcore_conf_init(struct app_config_params *app_params,
struct lcore_conf *lcore_conf,
struct rte_mempool **bbdev_op_pools,
struct rte_mempool *bbdev_mbuf_mempool,
struct rte_ring *enc_to_dec_ring,
struct lcore_statistics *lcore_stats)
{
unsigned int lcore_id;
struct lcore_conf *lconf;
uint16_t rx_queue_id = 0;
uint16_t tx_queue_id = 0;
uint16_t enc_q_id = 0;
uint16_t dec_q_id = 0;
/* Configure lcores */
for (lcore_id = 0; lcore_id < 8 * sizeof(uint64_t); ++lcore_id) {
lconf = &lcore_conf[lcore_id];
lconf->core_type = 0;
if ((1ULL << lcore_id) & app_params->enc_core_mask) {
lconf->core_type |= (1 << RTE_BBDEV_OP_TURBO_ENC);
lconf->rx_queue_id = rx_queue_id++;
lconf->enc_queue_id =
app_params->enc_queue_ids[enc_q_id++];
}
if ((1ULL << lcore_id) & app_params->dec_core_mask) {
lconf->core_type |= (1 << RTE_BBDEV_OP_TURBO_DEC);
lconf->tx_queue_id = tx_queue_id++;
lconf->dec_queue_id =
app_params->dec_queue_ids[dec_q_id++];
}
lconf->bbdev_enc_op_pool =
bbdev_op_pools[RTE_BBDEV_OP_TURBO_ENC];
lconf->bbdev_dec_op_pool =
bbdev_op_pools[RTE_BBDEV_OP_TURBO_DEC];
lconf->bbdev_id = app_params->bbdev_id;
lconf->port_id = app_params->port_id;
lconf->enc_out_pool = bbdev_mbuf_mempool;
lconf->enc_to_dec_ring = enc_to_dec_ring;
lconf->lcore_stats = &lcore_stats[lcore_id];
}
}
static void
print_lcore_stats(struct lcore_statistics *lstats, unsigned int lcore_id)
{
static const char *stats_border = "_______";
printf("\nLcore %d: %s enqueued count:\t\t%u\n",
lcore_id, stats_border, lstats->enqueued);
printf("Lcore %d: %s dequeued count:\t\t%u\n",
lcore_id, stats_border, lstats->dequeued);
printf("Lcore %d: %s RX lost packets count:\t\t%u\n",
lcore_id, stats_border, lstats->rx_lost_packets);
printf("Lcore %d: %s encoder-to-decoder lost count:\t%u\n",
lcore_id, stats_border,
lstats->enc_to_dec_lost_packets);
printf("Lcore %d: %s TX lost packets count:\t\t%u\n",
lcore_id, stats_border, lstats->tx_lost_packets);
}
static void
print_stats(struct stats_lcore_params *stats_lcore)
{
unsigned int l_id;
unsigned int bbdev_id = stats_lcore->app_params->bbdev_id;
unsigned int port_id = stats_lcore->app_params->port_id;
int len, ret, i;
struct rte_eth_xstat *xstats;
struct rte_eth_xstat_name *xstats_names;
struct rte_bbdev_stats bbstats;
static const char *stats_border = "_______";
const char clr[] = { 27, '[', '2', 'J', '\0' };
const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' };
/* Clear screen and move to top left */
printf("%s%s", clr, topLeft);
printf("PORT STATISTICS:\n================\n");
len = rte_eth_xstats_get(port_id, NULL, 0);
if (len < 0)
rte_exit(EXIT_FAILURE,
"rte_eth_xstats_get(%u) failed: %d", port_id,
len);
xstats = calloc(len, sizeof(*xstats));
if (xstats == NULL)
rte_exit(EXIT_FAILURE,
"Failed to calloc memory for xstats");
ret = rte_eth_xstats_get(port_id, xstats, len);
if (ret < 0 || ret > len) {
free(xstats);
rte_exit(EXIT_FAILURE,
"rte_eth_xstats_get(%u) len%i failed: %d",
port_id, len, ret);
}
xstats_names = calloc(len, sizeof(*xstats_names));
if (xstats_names == NULL) {
free(xstats);
rte_exit(EXIT_FAILURE,
"Failed to calloc memory for xstats_names");
}
ret = rte_eth_xstats_get_names(port_id, xstats_names, len);
if (ret < 0 || ret > len) {
free(xstats);
free(xstats_names);
rte_exit(EXIT_FAILURE,
"rte_eth_xstats_get_names(%u) len%i failed: %d",
port_id, len, ret);
}
for (i = 0; i < len; i++) {
if (xstats[i].value > 0)
printf("Port %u: %s %s:\t\t%"PRIu64"\n",
port_id, stats_border,
xstats_names[i].name,
xstats[i].value);
}
ret = rte_bbdev_stats_get(bbdev_id, &bbstats);
if (ret < 0) {
free(xstats);
free(xstats_names);
rte_exit(EXIT_FAILURE,
"ERROR(%d): Failure to get BBDEV %u statistics\n",
ret, bbdev_id);
}
printf("\nBBDEV STATISTICS:\n=================\n");
printf("BBDEV %u: %s enqueue count:\t\t%"PRIu64"\n",
bbdev_id, stats_border,
bbstats.enqueued_count);
printf("BBDEV %u: %s dequeue count:\t\t%"PRIu64"\n",
bbdev_id, stats_border,
bbstats.dequeued_count);
printf("BBDEV %u: %s enqueue error count:\t\t%"PRIu64"\n",
bbdev_id, stats_border,
printf("BBDEV %u: %s dequeue error count:\t\t%"PRIu64"\n\n",
bbdev_id, stats_border,
printf("LCORE STATISTICS:\n=================\n");
for (l_id = 0; l_id < RTE_MAX_LCORE; ++l_id) {
if (stats_lcore->lconf[l_id].core_type == 0)
continue;
print_lcore_stats(stats_lcore->lconf[l_id].lcore_stats, l_id);
}
fflush(stdout);
free(xstats);
free(xstats_names);
}
static int
stats_loop(void *arg)
{
struct stats_lcore_params *stats_lcore = arg;
while (!rte_atomic_load_explicit(&global_exit_flag, rte_memory_order_relaxed)) {
print_stats(stats_lcore);
}
return 0;
}
static inline void
run_encoding(struct lcore_conf *lcore_conf)
{
uint16_t i;
uint16_t port_id, rx_queue_id;
uint16_t bbdev_id, enc_queue_id;
uint16_t nb_rx, nb_enq, nb_deq, nb_sent;
struct rte_mbuf *rx_pkts_burst[MAX_PKT_BURST];
struct rte_mbuf *enc_out_pkts[MAX_PKT_BURST];
struct rte_bbdev_enc_op *bbdev_ops_burst[MAX_PKT_BURST];
struct lcore_statistics *lcore_stats;
struct rte_mempool *bbdev_op_pool, *enc_out_pool;
struct rte_ring *enc_to_dec_ring;
const int in_data_len = (def_op_enc.cb_params.k / 8) - CRC_24B_LEN;
lcore_stats = lcore_conf->lcore_stats;
port_id = lcore_conf->port_id;
rx_queue_id = lcore_conf->rx_queue_id;
bbdev_id = lcore_conf->bbdev_id;
enc_queue_id = lcore_conf->enc_queue_id;
bbdev_op_pool = lcore_conf->bbdev_enc_op_pool;
enc_out_pool = lcore_conf->enc_out_pool;
enc_to_dec_ring = lcore_conf->enc_to_dec_ring;
/* Read packet from RX queues*/
nb_rx = rte_eth_rx_burst(port_id, rx_queue_id, rx_pkts_burst,
MAX_PKT_BURST);
if (!nb_rx)
return;
if (unlikely(rte_mempool_get_bulk(enc_out_pool, (void **)enc_out_pkts,
nb_rx) != 0)) {
pktmbuf_free_bulk(rx_pkts_burst, nb_rx);
lcore_stats->rx_lost_packets += nb_rx;
return;
}
if (unlikely(rte_bbdev_enc_op_alloc_bulk(bbdev_op_pool, bbdev_ops_burst,
nb_rx) != 0)) {
pktmbuf_free_bulk(enc_out_pkts, nb_rx);
pktmbuf_free_bulk(rx_pkts_burst, nb_rx);
lcore_stats->rx_lost_packets += nb_rx;
return;
}
for (i = 0; i < nb_rx; i++) {
char *data;
const uint16_t pkt_data_len =
rte_pktmbuf_data_len(rx_pkts_burst[i]) -
sizeof(struct rte_ether_hdr);
/* save input mbuf pointer for later comparison */
*mbuf_input(enc_out_pkts[i]) = rx_pkts_burst[i];
/* copy ethernet header */
rte_pktmbuf_reset(enc_out_pkts[i]);
data = rte_pktmbuf_append(enc_out_pkts[i],
sizeof(struct rte_ether_hdr));
if (data == NULL) {
printf(
"Not enough space for ethernet header in encoder output mbuf\n");
continue;
}
add_ether_hdr(rx_pkts_burst[i], enc_out_pkts[i]);
/* set op */
bbdev_ops_burst[i]->turbo_enc = def_op_enc;
bbdev_ops_burst[i]->turbo_enc.input.data =
rx_pkts_burst[i];
bbdev_ops_burst[i]->turbo_enc.input.offset =
sizeof(struct rte_ether_hdr);
/* Encoder will attach the CRC24B, adjust the length */
bbdev_ops_burst[i]->turbo_enc.input.length = in_data_len;
if (in_data_len < pkt_data_len)
rte_pktmbuf_trim(rx_pkts_burst[i], pkt_data_len -
in_data_len);
else if (in_data_len > pkt_data_len) {
data = rte_pktmbuf_append(rx_pkts_burst[i],
in_data_len - pkt_data_len);
if (data == NULL)
printf(
"Not enough storage in mbuf to perform the encoding\n");
}
bbdev_ops_burst[i]->turbo_enc.output.data =
enc_out_pkts[i];
bbdev_ops_burst[i]->turbo_enc.output.offset =
sizeof(struct rte_ether_hdr);
}
/* Enqueue packets on BBDevice */
nb_enq = rte_bbdev_enqueue_enc_ops(bbdev_id, enc_queue_id,
bbdev_ops_burst, nb_rx);
if (unlikely(nb_enq < nb_rx)) {
pktmbuf_input_free_bulk(&enc_out_pkts[nb_enq],
nb_rx - nb_enq);
rte_bbdev_enc_op_free_bulk(&bbdev_ops_burst[nb_enq],
nb_rx - nb_enq);
lcore_stats->rx_lost_packets += nb_rx - nb_enq;
if (!nb_enq)
return;
}
lcore_stats->enqueued += nb_enq;
/* Dequeue packets from bbdev device*/
nb_deq = 0;
do {
nb_deq += rte_bbdev_dequeue_enc_ops(bbdev_id, enc_queue_id,
&bbdev_ops_burst[nb_deq], nb_enq - nb_deq);
} while (unlikely(nb_deq < nb_enq));
lcore_stats->dequeued += nb_deq;
/* Generate and add AWGN */
add_awgn(enc_out_pkts, nb_deq);
rte_bbdev_enc_op_free_bulk(bbdev_ops_burst, nb_deq);
/* Enqueue packets to encoder-to-decoder ring */
nb_sent = rte_ring_enqueue_burst(enc_to_dec_ring, (void **)enc_out_pkts,
nb_deq, NULL);
if (unlikely(nb_sent < nb_deq)) {
pktmbuf_input_free_bulk(&enc_out_pkts[nb_sent],
nb_deq - nb_sent);
lcore_stats->enc_to_dec_lost_packets += nb_deq - nb_sent;
}
}
static void
run_decoding(struct lcore_conf *lcore_conf)
{
uint16_t i;
uint16_t port_id, tx_queue_id;
uint16_t bbdev_id, bbdev_queue_id;
uint16_t nb_recv, nb_enq, nb_deq, nb_tx;
uint8_t *llr_temp_buf;
struct rte_mbuf *recv_pkts_burst[MAX_PKT_BURST];
struct rte_bbdev_dec_op *bbdev_ops_burst[MAX_PKT_BURST];
struct lcore_statistics *lcore_stats;
struct rte_mempool *bbdev_op_pool;
struct rte_ring *enc_to_dec_ring;
lcore_stats = lcore_conf->lcore_stats;
port_id = lcore_conf->port_id;
tx_queue_id = lcore_conf->tx_queue_id;
bbdev_id = lcore_conf->bbdev_id;
bbdev_queue_id = lcore_conf->dec_queue_id;
bbdev_op_pool = lcore_conf->bbdev_dec_op_pool;
enc_to_dec_ring = lcore_conf->enc_to_dec_ring;
llr_temp_buf = lcore_conf->llr_temp_buf;
/* Dequeue packets from the ring */
nb_recv = rte_ring_dequeue_burst(enc_to_dec_ring,
(void **)recv_pkts_burst, MAX_PKT_BURST, NULL);
if (!nb_recv)
return;
if (unlikely(rte_bbdev_dec_op_alloc_bulk(bbdev_op_pool, bbdev_ops_burst,
nb_recv) != 0)) {
pktmbuf_input_free_bulk(recv_pkts_burst, nb_recv);
lcore_stats->rx_lost_packets += nb_recv;
return;
}
transform_enc_out_dec_in(recv_pkts_burst, llr_temp_buf, nb_recv,
def_op_dec.cb_params.k);
for (i = 0; i < nb_recv; i++) {
/* set op */
bbdev_ops_burst[i]->turbo_dec = def_op_dec;
bbdev_ops_burst[i]->turbo_dec.input.data = recv_pkts_burst[i];
bbdev_ops_burst[i]->turbo_dec.input.offset =
sizeof(struct rte_ether_hdr);
bbdev_ops_burst[i]->turbo_dec.input.length =
rte_pktmbuf_data_len(recv_pkts_burst[i])
- sizeof(struct rte_ether_hdr);
bbdev_ops_burst[i]->turbo_dec.hard_output.data =
recv_pkts_burst[i];
bbdev_ops_burst[i]->turbo_dec.hard_output.offset =
sizeof(struct rte_ether_hdr);
}
/* Enqueue packets on BBDevice */
nb_enq = rte_bbdev_enqueue_dec_ops(bbdev_id, bbdev_queue_id,
bbdev_ops_burst, nb_recv);
if (unlikely(nb_enq < nb_recv)) {
pktmbuf_input_free_bulk(&recv_pkts_burst[nb_enq],
nb_recv - nb_enq);
rte_bbdev_dec_op_free_bulk(&bbdev_ops_burst[nb_enq],
nb_recv - nb_enq);
lcore_stats->rx_lost_packets += nb_recv - nb_enq;
if (!nb_enq)
return;
}
lcore_stats->enqueued += nb_enq;
/* Dequeue packets from BBDevice */
nb_deq = 0;
do {
nb_deq += rte_bbdev_dequeue_dec_ops(bbdev_id, bbdev_queue_id,
&bbdev_ops_burst[nb_deq], nb_enq - nb_deq);
} while (unlikely(nb_deq < nb_enq));
lcore_stats->dequeued += nb_deq;
rte_bbdev_dec_op_free_bulk(bbdev_ops_burst, nb_deq);
verify_data(recv_pkts_burst, nb_deq);
/* Free the RX mbufs after verification */
for (i = 0; i < nb_deq; ++i)
rte_pktmbuf_free(*mbuf_input(recv_pkts_burst[i]));
/* Transmit the packets */
nb_tx = rte_eth_tx_burst(port_id, tx_queue_id, recv_pkts_burst, nb_deq);
if (unlikely(nb_tx < nb_deq)) {
pktmbuf_input_free_bulk(&recv_pkts_burst[nb_tx],
nb_deq - nb_tx);
lcore_stats->tx_lost_packets += nb_deq - nb_tx;
}
}
static int
processing_loop(void *arg)
{
struct lcore_conf *lcore_conf = arg;
const bool run_encoder = (lcore_conf->core_type &
const bool run_decoder = (lcore_conf->core_type &
while (!rte_atomic_load_explicit(&global_exit_flag, rte_memory_order_relaxed)) {
if (run_encoder)
run_encoding(lcore_conf);
if (run_decoder)
run_decoding(lcore_conf);
}
return 0;
}
static int
prepare_bbdev_device(unsigned int dev_id, struct rte_bbdev_info *info,
struct app_config_params *app_params)
{
int ret;
unsigned int q_id, dec_q_id, enc_q_id;
struct rte_bbdev_queue_conf qconf = {0};
uint16_t dec_qs_nb = app_params->num_dec_cores;
uint16_t enc_qs_nb = app_params->num_enc_cores;
uint16_t tot_qs = dec_qs_nb + enc_qs_nb;
ret = rte_bbdev_setup_queues(dev_id, tot_qs, info->socket_id);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"ERROR(%d): BBDEV %u not configured properly\n",
ret, dev_id);
/* setup device DEC queues */
qconf.socket = info->socket_id;
qconf.queue_size = info->drv.queue_size_lim;
for (q_id = 0, dec_q_id = 0; q_id < dec_qs_nb; q_id++) {
ret = rte_bbdev_queue_configure(dev_id, q_id, &qconf);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"ERROR(%d): BBDEV %u DEC queue %u not configured properly\n",
ret, dev_id, q_id);
app_params->dec_queue_ids[dec_q_id++] = q_id;
}
/* setup device ENC queues */
for (q_id = dec_qs_nb, enc_q_id = 0; q_id < tot_qs; q_id++) {
ret = rte_bbdev_queue_configure(dev_id, q_id, &qconf);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"ERROR(%d): BBDEV %u ENC queue %u not configured properly\n",
ret, dev_id, q_id);
app_params->enc_queue_ids[enc_q_id++] = q_id;
}
ret = rte_bbdev_start(dev_id);
if (ret != 0)
rte_exit(EXIT_FAILURE, "ERROR(%d): BBDEV %u not started\n",
ret, dev_id);
printf("BBdev %u started\n", dev_id);
return 0;
}
static inline bool
check_matching_capabilities(uint64_t mask, uint64_t required_mask)
{
return (mask & required_mask) == required_mask;
}
static void
enable_bbdev(struct app_config_params *app_params)
{
struct rte_bbdev_info dev_info;
const struct rte_bbdev_op_cap *op_cap;
uint16_t bbdev_id = app_params->bbdev_id;
bool encoder_capable = false;
bool decoder_capable = false;
rte_bbdev_info_get(bbdev_id, &dev_info);
op_cap = dev_info.drv.capabilities;
while (op_cap->type != RTE_BBDEV_OP_NONE) {
if (op_cap->type == RTE_BBDEV_OP_TURBO_ENC) {
if (check_matching_capabilities(
op_cap->cap.turbo_enc.capability_flags,
def_op_enc.op_flags))
encoder_capable = true;
}
if (op_cap->type == RTE_BBDEV_OP_TURBO_DEC) {
if (check_matching_capabilities(
op_cap->cap.turbo_dec.capability_flags,
def_op_dec.op_flags))
decoder_capable = true;
}
op_cap++;
}
if (encoder_capable == false)
rte_exit(EXIT_FAILURE,
"The specified BBDev %u doesn't have required encoder capabilities!\n",
bbdev_id);
if (decoder_capable == false)
rte_exit(EXIT_FAILURE,
"The specified BBDev %u doesn't have required decoder capabilities!\n",
bbdev_id);
prepare_bbdev_device(bbdev_id, &dev_info, app_params);
}
int
main(int argc, char **argv)
{
int ret;
unsigned int nb_bbdevs, flags, lcore_id;
void *sigret;
struct app_config_params app_params = def_app_config;
struct rte_mempool *ethdev_mbuf_mempool, *bbdev_mbuf_mempool;
struct rte_mempool *bbdev_op_pools[RTE_BBDEV_OP_TYPE_SIZE_MAX];
struct lcore_conf lcore_conf[RTE_MAX_LCORE] = { {0} };
struct lcore_statistics lcore_stats[RTE_MAX_LCORE] = { {0} };
struct stats_lcore_params stats_lcore;
struct rte_ring *enc_to_dec_ring;
bool stats_thread_started = false;
unsigned int main_lcore_id = rte_get_main_lcore();
static const struct rte_mbuf_dynfield input_dynfield_desc = {
.name = "example_bbdev_dynfield_input",
.size = sizeof(struct rte_mbuf *),
.align = alignof(struct rte_mbuf *),
};
rte_atomic_store_explicit(&global_exit_flag, 0, rte_memory_order_relaxed);
sigret = signal(SIGTERM, signal_handler);
if (sigret == SIG_ERR)
rte_exit(EXIT_FAILURE, "signal(%d, ...) failed", SIGTERM);
sigret = signal(SIGINT, signal_handler);
if (sigret == SIG_ERR)
rte_exit(EXIT_FAILURE, "signal(%d, ...) failed", SIGINT);
ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");
argc -= ret;
argv += ret;
/* parse application arguments (after the EAL ones) */
ret = bbdev_parse_args(argc, argv, &app_params);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid BBDEV arguments\n");
/*create bbdev op pools*/
bbdev_op_pools[RTE_BBDEV_OP_TURBO_DEC] =
rte_bbdev_op_pool_create("bbdev_op_pool_dec",
bbdev_op_pools[RTE_BBDEV_OP_TURBO_ENC] =
rte_bbdev_op_pool_create("bbdev_op_pool_enc",
if ((bbdev_op_pools[RTE_BBDEV_OP_TURBO_DEC] == NULL) ||
(bbdev_op_pools[RTE_BBDEV_OP_TURBO_ENC] == NULL))
rte_exit(EXIT_FAILURE, "Cannot create bbdev op pools\n");
/* Create encoder to decoder ring */
flags = (app_params.num_enc_cores == 1) ? RING_F_SP_ENQ : 0;
if (app_params.num_dec_cores == 1)
flags |= RING_F_SC_DEQ;
enc_to_dec_ring = rte_ring_create("enc_to_dec_ring",
rte_align32pow2(NB_MBUF), rte_socket_id(), flags);
/* Get the number of available bbdev devices */
nb_bbdevs = rte_bbdev_count();
if (nb_bbdevs <= app_params.bbdev_id)
rte_exit(EXIT_FAILURE,
"%u BBDevs detected, cannot use BBDev with ID %u!\n",
nb_bbdevs, app_params.bbdev_id);
printf("Number of bbdevs detected: %d\n", nb_bbdevs);
if (!rte_eth_dev_is_valid_port(app_params.port_id))
rte_exit(EXIT_FAILURE,
"cannot use port with ID %u!\n",
app_params.port_id);
/* create the mbuf mempool for ethdev pkts */
ethdev_mbuf_mempool = rte_pktmbuf_pool_create("ethdev_mbuf_pool",
NB_MBUF, MEMPOOL_CACHE_SIZE, 0,
RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
if (ethdev_mbuf_mempool == NULL)
rte_exit(EXIT_FAILURE, "Cannot create ethdev mbuf mempool\n");
/* create the mbuf mempool for encoder output */
bbdev_mbuf_mempool = rte_pktmbuf_pool_create("bbdev_mbuf_pool",
NB_MBUF, MEMPOOL_CACHE_SIZE, 0,
RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
if (bbdev_mbuf_mempool == NULL)
rte_exit(EXIT_FAILURE, "Cannot create ethdev mbuf mempool\n");
/* register mbuf field to store input pointer */
input_dynfield_offset =
rte_mbuf_dynfield_register(&input_dynfield_desc);
if (input_dynfield_offset < 0)
rte_exit(EXIT_FAILURE, "Cannot register mbuf field\n");
/* initialize ports */
ret = initialize_ports(&app_params, ethdev_mbuf_mempool);
/* Check if all requested lcores are available */
for (lcore_id = 0; lcore_id < 8 * sizeof(uint64_t); ++lcore_id)
if (((1ULL << lcore_id) & app_params.enc_core_mask) ||
((1ULL << lcore_id) & app_params.dec_core_mask))
if (!rte_lcore_is_enabled(lcore_id))
rte_exit(EXIT_FAILURE,
"Requested lcore_id %u is not enabled!\n",
lcore_id);
/* Start ethernet port */
ret = rte_eth_dev_start(app_params.port_id);
if (ret < 0)
rte_exit(EXIT_FAILURE, "rte_eth_dev_start:err=%d, port=%u\n",
ret, app_params.port_id);
ret = check_port_link_status(app_params.port_id);
if (ret < 0)
exit(EXIT_FAILURE);
/* start BBDevice and save BBDev queue IDs */
enable_bbdev(&app_params);
/* Initialize the port/queue configuration of each logical core */
lcore_conf_init(&app_params, lcore_conf, bbdev_op_pools,
bbdev_mbuf_mempool, enc_to_dec_ring, lcore_stats);
stats_lcore.app_params = &app_params;
stats_lcore.lconf = lcore_conf;
if (lcore_conf[lcore_id].core_type != 0)
/* launch per-lcore processing loop on worker lcores */
rte_eal_remote_launch(processing_loop,
&lcore_conf[lcore_id], lcore_id);
else if (!stats_thread_started) {
/* launch statistics printing loop */
rte_eal_remote_launch(stats_loop, &stats_lcore,
lcore_id);
stats_thread_started = true;
}
}
if (!stats_thread_started &&
lcore_conf[main_lcore_id].core_type != 0)
rte_exit(EXIT_FAILURE,
"Not enough lcores to run the statistics printing loop!");
else if (lcore_conf[main_lcore_id].core_type != 0)
processing_loop(&lcore_conf[main_lcore_id]);
else if (!stats_thread_started)
stats_loop(&stats_lcore);
ret |= rte_eal_wait_lcore(lcore_id);
}
/* clean up the EAL */
return ret;
}