14. Cavium OCTEON TX Crypto Poll Mode Driver

The OCTEON TX crypto poll mode driver provides support for offloading cryptographic operations to cryptographic accelerator units on OCTEON TX ® family of processors (CN8XXX). The OCTEON TX crypto poll mode driver enqueues the crypto request to this accelerator and dequeues the response once the operation is completed.

14.1. Supported Symmetric Crypto Algorithms

14.1.1. Cipher Algorithms

  • RTE_CRYPTO_CIPHER_NULL

  • RTE_CRYPTO_CIPHER_3DES_CBC

  • RTE_CRYPTO_CIPHER_3DES_ECB

  • RTE_CRYPTO_CIPHER_AES_CBC

  • RTE_CRYPTO_CIPHER_AES_CTR

  • RTE_CRYPTO_CIPHER_AES_XTS

  • RTE_CRYPTO_CIPHER_DES_CBC

  • RTE_CRYPTO_CIPHER_KASUMI_F8

  • RTE_CRYPTO_CIPHER_SNOW3G_UEA2

  • RTE_CRYPTO_CIPHER_ZUC_EEA3

14.1.2. Hash Algorithms

  • RTE_CRYPTO_AUTH_NULL

  • RTE_CRYPTO_AUTH_AES_GMAC

  • RTE_CRYPTO_AUTH_KASUMI_F9

  • RTE_CRYPTO_AUTH_MD5

  • RTE_CRYPTO_AUTH_MD5_HMAC

  • RTE_CRYPTO_AUTH_SHA1

  • RTE_CRYPTO_AUTH_SHA1_HMAC

  • RTE_CRYPTO_AUTH_SHA224

  • RTE_CRYPTO_AUTH_SHA224_HMAC

  • RTE_CRYPTO_AUTH_SHA256

  • RTE_CRYPTO_AUTH_SHA256_HMAC

  • RTE_CRYPTO_AUTH_SHA384

  • RTE_CRYPTO_AUTH_SHA384_HMAC

  • RTE_CRYPTO_AUTH_SHA512

  • RTE_CRYPTO_AUTH_SHA512_HMAC

  • RTE_CRYPTO_AUTH_SNOW3G_UIA2

  • RTE_CRYPTO_AUTH_ZUC_EIA3

14.1.3. AEAD Algorithms

  • RTE_CRYPTO_AEAD_AES_GCM

14.2. Supported Asymmetric Crypto Algorithms

  • RTE_CRYPTO_ASYM_XFORM_RSA

  • RTE_CRYPTO_ASYM_XFORM_MODEX

14.3. Compilation

The OCTEON TX crypto poll mode driver can be compiled either natively on OCTEON TX ® board or cross-compiled on an x86 based platform.

Refer OCTEON TX Board Support Package for details about setting up the platform and building DPDK applications.

Note

OCTEON TX crypto PF driver needs microcode to be available at /lib/firmware/ directory. Refer SDK documents for further information.

SDK and related information can be obtained from: Cavium support site.

14.4. Execution

The number of crypto VFs to be enabled can be controlled by setting sysfs entry, sriov_numvfs, for the corresponding PF driver.

echo <num_vfs> > /sys/bus/pci/devices/<dev_bus_id>/sriov_numvfs

The device bus ID, dev_bus_id, to be used in the above step can be found out by using dpdk-devbind.py script. The OCTEON TX crypto PF device need to be identified and the corresponding device number can be used to tune various PF properties.

Once the required VFs are enabled, dpdk-devbind.py script can be used to identify the VFs. To be accessible from DPDK, VFs need to be bound to vfio-pci driver:

cd <dpdk directory>
./usertools/dpdk-devbind.py -u <vf device no>
./usertools/dpdk-devbind.py -b vfio-pci <vf device no>

Appropriate huge page need to be setup in order to run the DPDK example applications.

dpdk-hugepages.py --setup 4G --pagesize 512M

Example applications can now be executed with crypto operations offloaded to OCTEON TX crypto PMD.

./build/ipsec-secgw --log-level=8 -c 0xff -- -P -p 0x3 -u 0x2 --config
"(1,0,0),(0,0,0)" -f ep1.cfg

14.5. Testing

The symmetric crypto operations on OCTEON TX crypto PMD may be verified by running the test application:

./dpdk-test
RTE>>cryptodev_octeontx_autotest

The asymmetric crypto operations on OCTEON TX crypto PMD may be verified by running the test application:

./dpdk-test
RTE>>cryptodev_octeontx_asym_autotest