4. Testpmd Runtime Functions
Where the testpmd application is started in interactive mode, (-i|--interactive
),
it displays a prompt that can be used to start and stop forwarding,
configure the application, display statistics (including the extended NIC
statistics aka xstats) , set the Flow Director and other tasks:
testpmd>
The testpmd prompt has some, limited, readline support.
Common bash command-line functions such as Ctrl+a
and Ctrl+e
to go to the start and end of the prompt line are supported
as well as access to the command history via the up-arrow.
There is also support for tab completion.
If you type a partial command and hit <TAB>
you get a list of the available completions:
testpmd> show port <TAB>
info [Mul-choice STRING]: show|clear port info|stats|xstats|fdir|dcb_tc|cap X
info [Mul-choice STRING]: show|clear port info|stats|xstats|fdir|dcb_tc|cap all
stats [Mul-choice STRING]: show|clear port info|stats|xstats|fdir|dcb_tc|cap X
stats [Mul-choice STRING]: show|clear port info|stats|xstats|fdir|dcb_tc|cap all
...
Note
Some examples in this document are too long to fit on one line are shown wrapped at “" for display purposes:
testpmd> set flow_ctrl rx (on|off) tx (on|off) (high_water) (low_water) \
(pause_time) (send_xon) (port_id)
In the real testpmd>
prompt these commands should be on a single line.
4.1. Help Functions
The testpmd has on-line help for the functions that are available at runtime. These are divided into sections and can be accessed using help, help section or help all:
testpmd> help
Help is available for the following sections:
help control : Start and stop forwarding.
help display : Displaying port, stats and config information.
help config : Configuration information.
help ports : Configuring ports.
help filters : Filters configuration help.
help traffic_management : Traffic Management commands.
help devices : Device related commands.
help drivers : Driver specific commands.
help all : All of the above sections.
4.2. Command File Functions
To facilitate loading large number of commands or to avoid cutting and pasting where not practical or possible testpmd supports alternative methods for executing commands.
- If started with the
--cmdline-file=FILENAME
command line argument testpmd will execute all CLI commands contained within the file immediately before starting packet forwarding or entering interactive mode.
./dpdk-testpmd -n4 -r2 ... -- -i --cmdline-file=/home/ubuntu/flow-create-commands.txt
Interactive-mode selected
CLI commands to be read from /home/ubuntu/flow-create-commands.txt
Configuring Port 0 (socket 0)
Port 0: 7C:FE:90:CB:74:CE
Configuring Port 1 (socket 0)
Port 1: 7C:FE:90:CB:74:CA
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
Flow rule #0 created
Flow rule #1 created
...
...
Flow rule #498 created
Flow rule #499 created
Read all CLI commands from /home/ubuntu/flow-create-commands.txt
testpmd>
- At run-time additional commands can be loaded in bulk by invoking the
load FILENAME
command.
testpmd> load /home/ubuntu/flow-create-commands.txt
Flow rule #0 created
Flow rule #1 created
...
...
Flow rule #498 created
Flow rule #499 created
Read all CLI commands from /home/ubuntu/flow-create-commands.txt
testpmd>
In all cases output from any included command will be displayed as standard output. Execution will continue until the end of the file is reached regardless of whether any errors occur. The end user must examine the output to determine if any failures occurred.
4.3. Control Functions
4.3.1. start
Start packet forwarding with current configuration:
testpmd> start
4.3.2. start tx_first
Start packet forwarding with current configuration after sending specified number of bursts of packets:
testpmd> start tx_first (""|burst_num)
The default burst number is 1 when burst_num
not presented.
4.3.3. stop
Stop packet forwarding, and display accumulated statistics:
testpmd> stop
4.3.4. quit
Quit to prompt:
testpmd> quit
4.4. Display Functions
The functions in the following sections are used to display information about the testpmd configuration or the NIC status.
4.4.1. show port
Display information for a given port or all ports:
testpmd> show port (info|summary|stats|xstats|fdir|dcb_tc|cap) (port_id|all)
The available information categories are:
info
: General port information such as MAC address.summary
: Brief port summary such as Device Name, Driver Name etc.stats
: RX/TX statistics.xstats
: RX/TX extended NIC statistics.fdir
: Flow Director information and statistics.dcb_tc
: DCB information such as TC mapping.
For example:
testpmd> show port info 0
********************* Infos for port 0 *********************
MAC address: XX:XX:XX:XX:XX:XX
Connect to socket: 0
memory allocation on the socket: 0
Link status: up
Link speed: 40000 Mbps
Link duplex: full-duplex
Promiscuous mode: enabled
Allmulticast mode: disabled
Maximum number of MAC addresses: 64
Maximum number of MAC addresses of hash filtering: 0
VLAN offload:
strip on, filter on, extend off, qinq strip off
Redirection table size: 512
Supported flow types:
ipv4-frag
ipv4-tcp
ipv4-udp
ipv4-sctp
ipv4-other
ipv6-frag
ipv6-tcp
ipv6-udp
ipv6-sctp
ipv6-other
l2_payload
port
vxlan
geneve
nvgre
vxlan-gpe
4.4.2. show port (module_eeprom|eeprom)
Display the EEPROM information of a port:
testpmd> show port (port_id) (module_eeprom|eeprom)
4.4.3. show port rss reta
Display the rss redirection table entry indicated by masks on port X:
testpmd> show port (port_id) rss reta (size) (mask0, mask1...)
size is used to indicate the hardware supported reta size
4.4.4. show port rss-hash
Display the RSS hash functions and RSS hash key of a port:
testpmd> show port (port_id) rss-hash [key]
4.4.5. clear port
Clear the port statistics and forward engine statistics for a given port or for all ports:
testpmd> clear port (info|stats|xstats|fdir) (port_id|all)
For example:
testpmd> clear port stats all
4.4.6. show (rxq|txq)
Display information for a given port’s RX/TX queue:
testpmd> show (rxq|txq) info (port_id) (queue_id)
4.4.7. show desc status(rxq|txq)
Display information for a given port’s RX/TX descriptor status:
testpmd> show port (port_id) (rxq|txq) (queue_id) desc (desc_id) status
4.4.8. show rxq desc used count
Display the number of receive packet descriptors currently filled by hardware and ready to be processed by the driver on a given RX queue:
testpmd> show port (port_id) rxq (queue_id) desc used count
4.4.9. show config
Displays the configuration of the application. The configuration comes from the command-line, the runtime or the application defaults:
testpmd> show config (rxtx|cores|fwd|rxoffs|rxpkts|rxhdrs|txpkts|txtimes)
The available information categories are:
rxtx
: RX/TX configuration items.cores
: List of forwarding cores.fwd
: Packet forwarding configuration.rxoffs
: Packet offsets for RX split.rxpkts
: Packets to RX length-based split configuration.rxhdrs
: Packets to RX proto-based split configuration.txpkts
: Packets to TX configuration.txtimes
: Burst time pattern for Tx only mode.
For example:
testpmd> show config rxtx
io packet forwarding - CRC stripping disabled - packets/burst=16
nb forwarding cores=2 - nb forwarding ports=1
RX queues=1 - RX desc=128 - RX free threshold=0
RX threshold registers: pthresh=8 hthresh=8 wthresh=4
TX queues=1 - TX desc=512 - TX free threshold=0
TX threshold registers: pthresh=36 hthresh=0 wthresh=0
TX RS bit threshold=0 - TXQ flags=0x0
4.4.10. set fwd
Set the packet forwarding mode:
testpmd> set fwd (io|mac|macswap|flowgen| \
rxonly|txonly|csum|icmpecho|noisy|5tswap|shared-rxq) (""|retry)
retry
can be specified for forwarding engines except rx_only
.
The available information categories are:
io
: Forwards packets “as-is” in I/O mode. This is the fastest possible forwarding operation as it does not access packets data. This is the default mode.mac
: Changes the source and the destination Ethernet addresses of packets before forwarding them. Default application behavior is to set source Ethernet address to that of the transmitting interface, and destination address to a dummy value (set during init). The user may specify a target destination Ethernet address via the ‘eth-peer’ or ‘eth-peers-configfile’ command-line options. It is not currently possible to specify a specific source Ethernet address.macswap
: MAC swap forwarding mode. Swaps the source and the destination Ethernet addresses of packets before forwarding them.flowgen
: Multi-flow generation mode. Originates a number of flows (with varying destination IP addresses), and terminate receive traffic.rxonly
: Receives packets but doesn’t transmit them.txonly
: Generates and transmits packets without receiving any.csum
: Changes the checksum field with hardware or software methods depending on the offload flags on the packet.icmpecho
: Receives a burst of packets, lookup for ICMP echo requests and, if any, send back ICMP echo replies.ieee1588
: Demonstrate L2 IEEE1588 V2 PTP timestamping for RX and TX.noisy
: Noisy neighbor simulation. Simulate more realistic behavior of a guest machine engaged in receiving and sending packets performing Virtual Network Function (VNF).5tswap
: Swap the source and destination of L2,L3,L4 if they exist.L2 swaps the source address and destination address of Ethernet, as same as
macswap
.L3 swaps the source address and destination address of IP (v4 and v6).
L4 swaps the source port and destination port of transport layer (TCP and UDP).
shared-rxq
: Receive only for shared Rx queue. Resolve packet source port from mbuf and update stream statistics accordingly.
Example:
testpmd> set fwd rxonly
Set rxonly packet forwarding mode
4.4.11. show fwd
When running, forwarding engines maintain statistics from the time they have been started. Example for the io forwarding engine, with some packet drops on the tx side:
testpmd> show fwd stats all
------- Forward Stats for RX Port= 0/Queue= 0 -> TX Port= 1/Queue= 0 -------
RX-packets: 274293770 TX-packets: 274293642 TX-dropped: 128
------- Forward Stats for RX Port= 1/Queue= 0 -> TX Port= 0/Queue= 0 -------
RX-packets: 274301850 TX-packets: 274301850 TX-dropped: 0
---------------------- Forward statistics for port 0 ----------------------
RX-packets: 274293802 RX-dropped: 0 RX-total: 274293802
TX-packets: 274301862 TX-dropped: 0 TX-total: 274301862
----------------------------------------------------------------------------
---------------------- Forward statistics for port 1 ----------------------
RX-packets: 274301894 RX-dropped: 0 RX-total: 274301894
TX-packets: 274293706 TX-dropped: 128 TX-total: 274293834
----------------------------------------------------------------------------
+++++++++++++++ Accumulated forward statistics for all ports+++++++++++++++
RX-packets: 548595696 RX-dropped: 0 RX-total: 548595696
TX-packets: 548595568 TX-dropped: 128 TX-total: 548595696
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
4.4.12. clear fwd
Clear the forwarding engines statistics:
testpmd> clear fwd stats all
4.4.13. read rxd
Display an RX descriptor for a port RX queue:
testpmd> read rxd (port_id) (queue_id) (rxd_id)
For example:
testpmd> read rxd 0 0 4
0x0000000B - 0x001D0180 / 0x0000000B - 0x001D0180
4.4.14. read txd
Display a TX descriptor for a port TX queue:
testpmd> read txd (port_id) (queue_id) (txd_id)
For example:
testpmd> read txd 0 0 4
0x00000001 - 0x24C3C440 / 0x000F0000 - 0x2330003C
4.4.15. show vf stats
Display VF statistics:
testpmd> show vf stats (port_id) (vf_id)
4.4.16. clear vf stats
Reset VF statistics:
testpmd> clear vf stats (port_id) (vf_id)
4.4.17. show rx offloading capabilities
List all per queue and per port Rx offloading capabilities of a port:
testpmd> show port (port_id) rx_offload capabilities
4.4.18. show rx offloading configuration
List port level and all queue level Rx offloading configuration:
testpmd> show port (port_id) rx_offload configuration
4.4.19. show tx offloading capabilities
List all per queue and per port Tx offloading capabilities of a port:
testpmd> show port (port_id) tx_offload capabilities
4.4.20. show tx offloading configuration
List port level and all queue level Tx offloading configuration:
testpmd> show port (port_id) tx_offload configuration
4.4.21. show tx metadata setting
Show Tx metadata value set for a specific port:
testpmd> show port (port_id) tx_metadata
4.4.22. show port supported ptypes
Show ptypes supported for a specific port:
testpmd> show port (port_id) ptypes
4.4.23. set port supported ptypes
set packet types classification for a specific port:
testpmd> set port (port_id) ptypes_mask (mask)
4.4.24. show port mac addresses info
Show mac addresses added for a specific port:
testpmd> show port (port_id) macs
4.4.25. show port multicast mac addresses info
Show multicast mac addresses added for a specific port:
testpmd> show port (port_id) mcast_macs
4.4.26. show flow transfer proxy port ID for the given port
Show proxy port ID to use as the 1st argument in commands to
manage transfer
flows and their indirect components.
testpmd> show port (port_id) flow transfer proxy
4.4.27. show device info
Show general information about devices probed:
testpmd> show device info (<identifier>|all)
For example:
testpmd> show device info net_pcap0
********************* Infos for device net_pcap0 *********************
Bus name: vdev
Driver name: net_pcap
Devargs: iface=enP2p6s0,phy_mac=1
Connect to socket: -1
Port id: 2
MAC address: 1E:37:93:28:04:B8
Device name: net_pcap0
4.4.28. dump physmem
Dumps all physical memory segment layouts:
testpmd> dump_physmem
4.4.29. dump memzone
Dumps the layout of all memory zones:
testpmd> dump_memzone
4.4.30. dump socket memory
Dumps the memory usage of all sockets:
testpmd> dump_socket_mem
4.4.31. dump struct size
Dumps the size of all memory structures:
testpmd> dump_struct_sizes
4.4.32. dump ring
Dumps the status of all or specific element in DPDK rings:
testpmd> dump_ring [ring_name]
4.4.33. dump mempool
Dumps the statistics of all or specific memory pool:
testpmd> dump_mempool [mempool_name]
4.4.34. dump devargs
Dumps the user device list:
testpmd> dump_devargs
4.4.35. dump log types
Dumps the log level for all the dpdk modules:
testpmd> dump_log_types
4.4.36. show (raw_encap|raw_decap)
Display content of raw_encap/raw_decap buffers in hex:
testpmd> show <raw_encap|raw_decap> <index>
testpmd> show <raw_encap|raw_decap> all
For example:
testpmd> show raw_encap 6
index: 6 at [0x1c565b0], len=50
00000000: 00 00 00 00 00 00 16 26 36 46 56 66 08 00 45 00 | .......&6FVf..E.
00000010: 00 00 00 00 00 00 00 11 00 00 C0 A8 01 06 C0 A8 | ................
00000020: 03 06 00 00 00 FA 00 00 00 00 08 00 00 00 00 00 | ................
00000030: 06 00 | ..
4.4.37. show fec capabilities
Show fec capabilities of a port:
testpmd> show port (port_id) fec capabilities
4.4.38. show fec mode
Show fec mode of a port:
testpmd> show port (port_id) fec_mode
4.5. Configuration Functions
The testpmd application can be configured from the runtime as well as from the command-line.
This section details the available configuration functions that are available.
Note
Configuration changes only become active when forwarding is started/restarted.
4.5.1. set default
Reset forwarding to the default configuration:
testpmd> set default
4.5.2. set verbose
Set the debug verbosity level:
testpmd> set verbose (level)
Available levels are as following:
0
silent except for error.1
fully verbose except for Tx packets.2
fully verbose except for Rx packets.> 2
fully verbose.
4.5.3. set log
Set the log level for a log type:
testpmd> set log global|(type) (level)
Where:
type
is the log name.level
is the log level.
For example, to change the global log level:
testpmd> set log global (level)
Regexes can also be used for type. To change log level of user1, user2 and user3:
testpmd> set log user[1-3] (level)
4.5.4. set nbport
Set the number of ports used by the application:
set nbport (num)
This is equivalent to the --nb-ports
command-line option.
4.5.5. set nbcore
Set the number of cores used by the application:
testpmd> set nbcore (num)
This is equivalent to the --nb-cores
command-line option.
Note
The number of cores used must not be greater than number of ports used multiplied by the number of queues per port.
4.5.6. set coremask
Set the forwarding cores hexadecimal mask:
testpmd> set coremask (mask)
This is equivalent to the --coremask
command-line option.
Note
The main lcore is reserved for command line parsing only and cannot be masked on for packet forwarding.
4.5.7. set portmask
Set the forwarding ports hexadecimal mask:
testpmd> set portmask (mask)
This is equivalent to the --portmask
command-line option.
4.5.8. set record-core-cycles
Set the recording of CPU cycles:
testpmd> set record-core-cycles (on|off)
Where:
on
enables measurement of CPU cycles per packet.off
disables measurement of CPU cycles per packet.
This is equivalent to the --record-core-cycles command-line
option.
4.5.9. set record-burst-stats
Set the displaying of RX and TX bursts:
testpmd> set record-burst-stats (on|off)
Where:
on
enables display of RX and TX bursts.off
disables display of RX and TX bursts.
This is equivalent to the --record-burst-stats command-line
option.
4.5.10. set burst
Set number of packets per burst:
testpmd> set burst (num)
This is equivalent to the --burst command-line
option.
When retry is enabled, the transmit delay time and number of retries can also be set:
testpmd> set burst tx delay (microseconds) retry (num)
4.5.11. set rxoffs
Set the offsets of segments relating to the data buffer beginning on receiving if split feature is engaged. Affects only the queues configured with split offloads (currently BUFFER_SPLIT is supported only).
testpmd> set rxoffs (x[,y]*)
Where x[,y]* represents a CSV list of values, without white space. If the list of offsets is shorter than the list of segments the zero offsets will be used for the remaining segments.
4.5.12. set rxpkts
Set the length of segments to scatter packets on receiving if split feature is engaged. Affects only the queues configured with split offloads (currently BUFFER_SPLIT is supported only). Optionally the multiple memory pools can be specified with –mbuf-size command line parameter and the mbufs to receive will be allocated sequentially from these extra memory pools (the mbuf for the first segment is allocated from the first pool, the second one from the second pool, and so on, if segment number is greater then pool’s the mbuf for remaining segments will be allocated from the last valid pool).
testpmd> set rxpkts (x[,y]*)
Where x[,y]* represents a CSV list of values, without white space. Zero value means to use the corresponding memory pool data buffer size.
4.5.13. set rxhdrs
Set the protocol headers of segments to scatter packets on receiving if split feature is engaged. Affects only the queues configured with split offloads (currently BUFFER_SPLIT is supported only).
testpmd> set rxhdrs (eth[,ipv4]*)
Where eth[,ipv4]* represents a CSV list of values, without white space. If the list of offsets is shorter than the list of segments, zero offsets will be used for the remaining segments.
4.5.14. set txpkts
Set the length of each segment of the TX-ONLY packets or length of packet for FLOWGEN mode:
testpmd> set txpkts (x[,y]*)
Where x[,y]* represents a CSV list of values, without white space.
4.5.15. set txtimes
Configure the timing burst pattern for Tx only mode. This command enables the packet send scheduling on dynamic timestamp mbuf field and configures timing pattern in Tx only mode. In this mode, if scheduling is enabled application provides timestamps in the packets being sent. It is possible to configure delay (in unspecified device clock units) between bursts and between the packets within the burst:
testpmd> set txtimes (inter),(intra)
where:
inter
is the delay between the bursts in the device clock units. Ifintra
is zero, this is the time between the beginnings of the first packets in the neighbour bursts, ifintra
is not zero,inter
specifies the time between the beginning of the first packet of the current burst and the beginning of the last packet of the previous burst. Ifinter
parameter is zero the send scheduling on timestamps is disabled (default).intra
is the delay between the packets within the burst specified in the device clock units. The number of packets in the burst is defined by regular burst setting. Ifintra
parameter is zero no timestamps provided in the packets excepting the first one in the burst.
As the result the bursts of packet will be transmitted with specific delays between the packets within the burst and specific delay between the bursts. The rte_eth_read_clock() must be supported by the device(s) and is supposed to be engaged to get the current device clock value and provide the reference for the timestamps. If there is no supported rte_eth_read_clock() there will be no send scheduling provided on the port.
4.5.16. set txsplit
Set the split policy for the TX packets, applicable for TX-ONLY and CSUM forwarding modes:
testpmd> set txsplit (off|on|rand)
Where:
off
disable packet copy & split for CSUM mode.on
split outgoing packet into multiple segments. Size of each segment and number of segments per packet is determined byset txpkts
command (see above).rand
same as ‘on’, but number of segments per each packet is a random value between 1 and total number of segments.
4.5.17. set corelist
Set the list of forwarding cores:
testpmd> set corelist (x[,y]*)
For example, to change the forwarding cores:
testpmd> set corelist 3,1
testpmd> show config fwd
io packet forwarding - ports=2 - cores=2 - streams=2 - NUMA support disabled
Logical Core 3 (socket 0) forwards packets on 1 streams:
RX P=0/Q=0 (socket 0) -> TX P=1/Q=0 (socket 0) peer=02:00:00:00:00:01
Logical Core 1 (socket 0) forwards packets on 1 streams:
RX P=1/Q=0 (socket 0) -> TX P=0/Q=0 (socket 0) peer=02:00:00:00:00:00
Note
The cores are used in the same order as specified on the command line.
4.5.18. set portlist
Set the list of forwarding ports:
testpmd> set portlist (x[,y]*)
For example, to change the port forwarding:
testpmd> set portlist 0,2,1,3
testpmd> show config fwd
io packet forwarding - ports=4 - cores=1 - streams=4
Logical Core 3 (socket 0) forwards packets on 4 streams:
RX P=0/Q=0 (socket 0) -> TX P=2/Q=0 (socket 0) peer=02:00:00:00:00:01
RX P=2/Q=0 (socket 0) -> TX P=0/Q=0 (socket 0) peer=02:00:00:00:00:00
RX P=1/Q=0 (socket 0) -> TX P=3/Q=0 (socket 0) peer=02:00:00:00:00:03
RX P=3/Q=0 (socket 0) -> TX P=1/Q=0 (socket 0) peer=02:00:00:00:00:02
4.5.19. set port setup on
Select how to retrieve new ports created after “port attach” command:
testpmd> set port setup on (iterator|event)
For each new port, a setup is done. It will find the probed ports via RTE_ETH_FOREACH_MATCHING_DEV loop in iterator mode, or via RTE_ETH_EVENT_NEW in event mode.
4.5.20. set tx loopback
Enable/disable tx loopback:
testpmd> set tx loopback (port_id) (on|off)
4.5.21. set drop enable
set drop enable bit for all queues:
testpmd> set all queues drop (port_id) (on|off)
4.5.22. set mac antispoof (for VF)
Set mac antispoof for a VF from the PF:
testpmd> set vf mac antispoof (port_id) (vf_id) (on|off)
4.5.23. vlan set stripq
Set the VLAN strip for a queue on a port:
testpmd> vlan set stripq (on|off) (port_id,queue_id)
4.5.24. vlan set stripq (for VF)
Set VLAN strip for all queues in a pool for a VF from the PF:
testpmd> set vf vlan stripq (port_id) (vf_id) (on|off)
4.5.25. vlan set insert (for VF)
Set VLAN insert for a VF from the PF:
testpmd> set vf vlan insert (port_id) (vf_id) (vlan_id)
4.5.26. vlan set antispoof (for VF)
Set VLAN antispoof for a VF from the PF:
testpmd> set vf vlan antispoof (port_id) (vf_id) (on|off)
4.5.27. vlan set (strip|filter|qinq_strip|extend)
Set the VLAN strip/filter/QinQ strip/extend on for a port:
testpmd> vlan set (strip|filter|qinq_strip|extend) (on|off) (port_id)
4.5.28. vlan set tpid
Set the inner or outer VLAN TPID for packet filtering on a port:
testpmd> vlan set (inner|outer) tpid (value) (port_id)
Note
TPID value must be a 16-bit number (value <= 65536).
4.5.29. rx_vlan add
Add a VLAN ID, or all identifiers, to the set of VLAN identifiers filtered by port ID:
testpmd> rx_vlan add (vlan_id|all) (port_id)
Note
VLAN filter must be set on that port. VLAN ID < 4096. Depending on the NIC used, number of vlan_ids may be limited to the maximum entries in VFTA table. This is important if enabling all vlan_ids.
4.5.30. rx_vlan rm
Remove a VLAN ID, or all identifiers, from the set of VLAN identifiers filtered by port ID:
testpmd> rx_vlan rm (vlan_id|all) (port_id)
4.5.31. rx_vlan add (for VF)
Add a VLAN ID, to the set of VLAN identifiers filtered for VF(s) for port ID:
testpmd> rx_vlan add (vlan_id) port (port_id) vf (vf_mask)
4.5.32. rx_vlan rm (for VF)
Remove a VLAN ID, from the set of VLAN identifiers filtered for VF(s) for port ID:
testpmd> rx_vlan rm (vlan_id) port (port_id) vf (vf_mask)
4.5.33. rx_vxlan_port add
Add an UDP port for VXLAN packet filter on a port:
testpmd> rx_vxlan_port add (udp_port) (port_id)
4.5.34. rx_vxlan_port remove
Remove an UDP port for VXLAN packet filter on a port:
testpmd> rx_vxlan_port rm (udp_port) (port_id)
4.5.35. tx_vlan set
Set hardware insertion of VLAN IDs in packets sent on a port:
testpmd> tx_vlan set (port_id) vlan_id[, vlan_id_outer]
For example, set a single VLAN ID (5) insertion on port 0:
tx_vlan set 0 5
Or, set double VLAN ID (inner: 2, outer: 3) insertion on port 1:
tx_vlan set 1 2 3
4.5.36. tx_vlan set pvid
Set port based hardware insertion of VLAN ID in packets sent on a port:
testpmd> tx_vlan set pvid (port_id) (vlan_id) (on|off)
4.5.37. tx_vlan reset
Disable hardware insertion of a VLAN header in packets sent on a port:
testpmd> tx_vlan reset (port_id)
4.5.38. csum set
Select hardware or software calculation of the checksum when
transmitting a packet using the csum
forwarding engine:
testpmd> csum set (ip|udp|tcp|sctp|outer-ip|outer-udp) (hw|sw) (port_id)
Where:
ip|udp|tcp|sctp
always relate to the inner layer.outer-ip
relates to the outer IP layer (only for IPv4) in the case where the packet is recognized as a tunnel packet by the forwarding engine (geneve, gre, gtp, ipip, vxlan and vxlan-gpe are supported). See also thecsum parse-tunnel
command.outer-udp
relates to the outer UDP layer in the case where the packet is recognized as a tunnel packet by the forwarding engine (geneve, gtp, vxlan and vxlan-gpe are supported). See also thecsum parse-tunnel
command.
Note
Check the NIC Datasheet for hardware limits.
4.5.39. csum parse-tunnel
Define how tunneled packets should be handled by the csum forward engine:
testpmd> csum parse-tunnel (on|off) (tx_port_id)
If enabled, the csum forward engine will try to recognize supported tunnel headers (geneve, gtp, gre, ipip, vxlan, vxlan-gpe).
If disabled, treat tunnel packets as non-tunneled packets (a inner header is handled as a packet payload).
Note
The port argument is the TX port like in the csum set
command.
Example:
Consider a packet in packet like the following:
eth_out/ipv4_out/udp_out/vxlan/eth_in/ipv4_in/tcp_in
- If parse-tunnel is enabled, the
ip|udp|tcp|sctp
parameters ofcsum set
command relate to the inner headers (hereipv4_in
andtcp_in
), and theouter-ip|outer-udp
parameter relates to the outer headers (hereipv4_out
andudp_out
). - If parse-tunnel is disabled, the
ip|udp|tcp|sctp
parameters ofcsum set
- command relate to the outer headers, here
ipv4_out
andudp_out
.
- If parse-tunnel is disabled, the
4.5.40. csum show
Display tx checksum offload configuration:
testpmd> csum show (port_id)
4.5.41. tso set
Enable TCP Segmentation Offload (TSO) in the csum
forwarding engine:
testpmd> tso set (segsize) (port_id)
Note
Check the NIC datasheet for hardware limits.
4.5.42. tso show
Display the status of TCP Segmentation Offload:
testpmd> tso show (port_id)
4.5.43. tunnel tso set
Set tso segment size of tunneled packets for a port in csum engine:
testpmd> tunnel_tso set (tso_segsz) (port_id)
4.5.44. tunnel tso show
Display the status of tunneled TCP Segmentation Offload for a port:
testpmd> tunnel_tso show (port_id)
4.5.45. set port - gro
Enable or disable GRO in csum
forwarding engine:
testpmd> set port <port_id> gro on|off
If enabled, the csum forwarding engine will perform GRO on the TCP/IPv4 packets received from the given port.
If disabled, packets received from the given port won’t be performed GRO. By default, GRO is disabled for all ports.
Note
When enable GRO for a port, TCP/IPv4 packets received from the port will be performed GRO. After GRO, all merged packets have bad checksums, since the GRO library doesn’t re-calculate checksums for the merged packets. Therefore, if users want the merged packets to have correct checksums, please select HW IP checksum calculation and HW TCP checksum calculation for the port which the merged packets are transmitted to.
4.5.46. show port - gro
Display GRO configuration for a given port:
testpmd> show port <port_id> gro
4.5.47. set gro flush
Set the cycle to flush the GROed packets from reassembly tables:
testpmd> set gro flush <cycles>
When enable GRO, the csum forwarding engine performs GRO on received packets, and the GROed packets are stored in reassembly tables. Users can use this command to determine when the GROed packets are flushed from the reassembly tables.
The cycles
is measured in GRO operation times. The csum forwarding
engine flushes the GROed packets from the tables every cycles
GRO
operations.
By default, the value of cycles
is 1, which means flush GROed packets
from the reassembly tables as soon as one GRO operation finishes. The value
of cycles
should be in the range of 1 to GRO_MAX_FLUSH_CYCLES
.
Please note that the large value of cycles
may cause the poor TCP/IP
stack performance. Because the GROed packets are delayed to arrive the
stack, thus causing more duplicated ACKs and TCP retransmissions.
4.5.48. set port - gso
Toggle per-port GSO support in csum
forwarding engine:
testpmd> set port <port_id> gso on|off
If enabled, the csum forwarding engine will perform GSO on supported IPv4 packets, transmitted on the given port.
If disabled, packets transmitted on the given port will not undergo GSO. By default, GSO is disabled for all ports.
Note
When GSO is enabled on a port, supported IPv4 packets transmitted on that port undergo GSO. Afterwards, the segmented packets are represented by multi-segment mbufs; however, the csum forwarding engine doesn’t calculation of checksums for GSO’d segments in SW. As a result, if users want correct checksums in GSO segments, they should enable HW checksum calculation for GSO-enabled ports.
For example, HW checksum calculation for VxLAN GSO’d packets may be enabled by setting the following options in the csum forwarding engine:
testpmd> csum set outer_ip hw <port_id>
testpmd> csum set ip hw <port_id>
testpmd> csum set tcp hw <port_id>
UDP GSO is the same as IP fragmentation, which treats the UDP header as the payload and does not modify it during segmentation. That is, after UDP GSO, only the first output fragment has the original UDP header. Therefore, users need to enable HW IP checksum calculation and SW UDP checksum calculation for GSO-enabled ports, if they want correct checksums for UDP/IPv4 packets.
4.5.49. set gso segsz
Set the maximum GSO segment size (measured in bytes), which includes the packet header and the packet payload for GSO-enabled ports (global):
testpmd> set gso segsz <length>
4.5.50. show port - gso
Display the status of Generic Segmentation Offload for a given port:
testpmd> show port <port_id> gso
4.5.51. mac_addr add
Add an alternative MAC address to a port:
testpmd> mac_addr add (port_id) (XX:XX:XX:XX:XX:XX)
4.5.52. mac_addr remove
Remove a MAC address from a port:
testpmd> mac_addr remove (port_id) (XX:XX:XX:XX:XX:XX)
4.5.53. mcast_addr add
To add the multicast MAC address to/from the set of multicast addresses filtered by port:
testpmd> mcast_addr add (port_id) (mcast_addr)
4.5.54. mcast_addr remove
To remove the multicast MAC address to/from the set of multicast addresses filtered by port:
testpmd> mcast_addr remove (port_id) (mcast_addr)
4.5.55. mac_addr add (for VF)
Add an alternative MAC address for a VF to a port:
testpmd> mac_add add port (port_id) vf (vf_id) (XX:XX:XX:XX:XX:XX)
4.5.56. mac_addr set
Set the default MAC address for a port:
testpmd> mac_addr set (port_id) (XX:XX:XX:XX:XX:XX)
4.5.57. mac_addr set (for VF)
Set the MAC address for a VF from the PF:
testpmd> set vf mac addr (port_id) (vf_id) (XX:XX:XX:XX:XX:XX)
4.5.58. set eth-peer
Set the forwarding peer address for certain port:
testpmd> set eth-peer (port_id) (peer_addr)
This is equivalent to the --eth-peer
command-line option.
4.5.59. set port-uta
Set the unicast hash filter(s) on/off for a port:
testpmd> set port (port_id) uta (XX:XX:XX:XX:XX:XX|all) (on|off)
4.5.60. set promisc
Set the promiscuous mode on for a port or for all ports. In promiscuous mode packets are not dropped if they aren’t for the specified MAC address:
testpmd> set promisc (port_id|all) (on|off)
4.5.61. set allmulti
Set the allmulti mode for a port or for all ports:
testpmd> set allmulti (port_id|all) (on|off)
Same as the ifconfig (8) option. Controls how multicast packets are handled.
4.5.62. set flow_ctrl rx
Set the link flow control parameter on a port:
testpmd> set flow_ctrl rx (on|off) tx (on|off) (high_water) (low_water) \
(pause_time) (send_xon) mac_ctrl_frame_fwd (on|off) \
autoneg (on|off) (port_id)
Where:
high_water
(integer): High threshold value to trigger XOFF.low_water
(integer): Low threshold value to trigger XON.pause_time
(integer): Pause quota in the Pause frame.send_xon
(0/1): Send XON frame.mac_ctrl_frame_fwd
: Enable receiving MAC control frames.autoneg
: Change the auto-negotiation parameter.
4.5.63. show flow control
show the link flow control parameter on a port:
testpmd> show port <port_id> flow_ctrl
4.5.64. set pfc_ctrl rx
Set the priority flow control parameter on a port:
testpmd> set pfc_ctrl rx (on|off) tx (on|off) (high_water) (low_water) \
(pause_time) (priority) (port_id)
Where:
high_water
(integer): High threshold value.low_water
(integer): Low threshold value.pause_time
(integer): Pause quota in the Pause frame.priority
(0-7): VLAN User Priority.
4.5.65. set pfc_queue_ctrl
Set the priority flow control parameter on a given Rx and Tx queue of a port:
testpmd> set pfc_queue_ctrl <port_id> rx (on|off) <tx_qid> <tx_tc> \
tx (on|off) <rx_qid> <rx_tc> <pause_time>
Where:
tx_qid
(integer): Tx qid for whichtx_tc
will be applied and traffic will be paused when PFC frame is received withtx_tc
enabled.tx_tc
(0-15): TC for which traffic is to be paused for xmit.rx_qid
(integer): Rx qid for which threshold will be applied and PFC frame will be generated withtx_tc
when exceeds the threshold.rx_tc
(0-15): TC filled in PFC frame for which remote Tx is to be paused.pause_time
(integer): Pause quanta filled in the PFC frame for which interval, remote Tx will be paused. Valid only if Tx pause is on.
4.5.66. Set Rx queue available descriptors threshold
Set available descriptors threshold for a specific Rx queue of port:
testpmd> set port (port_id) rxq (queue_id) avail_thresh (0..99)
Use 0 value to disable the threshold and corresponding event.
4.5.67. set stat_qmap
Set statistics mapping (qmapping 0..15) for RX/TX queue on port:
testpmd> set stat_qmap (tx|rx) (port_id) (queue_id) (qmapping)
For example, to set rx queue 2 on port 0 to mapping 5:
testpmd>set stat_qmap rx 0 2 5
4.5.68. set xstats-hide-zero
Set the option to hide zero values for xstats display:
testpmd> set xstats-hide-zero on|off
Note
By default, the zero values are displayed for xstats.
4.5.69. set port - rx/tx (for VF)
Set VF receive/transmit from a port:
testpmd> set port (port_id) vf (vf_id) (rx|tx) (on|off)
4.5.70. set port - rx mode(for VF)
Set the VF receive mode of a port:
testpmd> set port (port_id) vf (vf_id) \
rxmode (AUPE|ROPE|BAM|MPE) (on|off)
The available receive modes are:
AUPE
: Accepts untagged VLAN.ROPE
: Accepts unicast hash.BAM
: Accepts broadcast packets.MPE
: Accepts all multicast packets.
4.5.71. set port - tx_rate (for Queue)
Set TX rate limitation for a queue on a port:
testpmd> set port (port_id) queue (queue_id) rate (rate_value)
4.5.72. set port - tx_rate (for VF)
Set TX rate limitation for queues in VF on a port:
testpmd> set port (port_id) vf (vf_id) rate (rate_value) queue_mask (queue_mask)
4.5.73. set flush_rx
Set the flush on RX streams before forwarding.
The default is flush on
.
Mainly used with PCAP drivers to turn off the default behavior of flushing the first 512 packets on RX streams:
testpmd> set flush_rx off
4.5.74. set link up
Set link up for a port:
testpmd> set link-up port (port id)
4.5.75. set link down
Set link down for a port:
testpmd> set link-down port (port id)
4.5.76. E-tag set
Enable E-tag insertion for a VF on a port:
testpmd> E-tag set insertion on port-tag-id (value) port (port_id) vf (vf_id)
Disable E-tag insertion for a VF on a port:
testpmd> E-tag set insertion off port (port_id) vf (vf_id)
Enable/disable E-tag stripping on a port:
testpmd> E-tag set stripping (on|off) port (port_id)
Enable/disable E-tag based forwarding on a port:
testpmd> E-tag set forwarding (on|off) port (port_id)
4.5.77. config per port Rx offloading
Enable or disable a per port Rx offloading on all Rx queues of a port:
testpmd> port config (port_id) rx_offload (offloading) on|off
offloading
: can be any of these offloading capability:- vlan_strip, ipv4_cksum, udp_cksum, tcp_cksum, tcp_lro, qinq_strip, outer_ipv4_cksum, macsec_strip, vlan_filter, vlan_extend, scatter, timestamp, security, keep_crc, rss_hash
This command should be run when the port is stopped, or else it will fail.
4.5.78. config per queue Rx offloading
Enable or disable a per queue Rx offloading only on a specific Rx queue:
testpmd> port (port_id) rxq (queue_id) rx_offload (offloading) on|off
offloading
: can be any of these offloading capability:- vlan_strip, ipv4_cksum, udp_cksum, tcp_cksum, tcp_lro, qinq_strip, outer_ipv4_cksum, macsec_strip, vlan_filter, vlan_extend, scatter, timestamp, security, keep_crc
This command should be run when the port is stopped, or else it will fail.
4.5.79. config per port Tx offloading
Enable or disable a per port Tx offloading on all Tx queues of a port:
testpmd> port config (port_id) tx_offload (offloading) on|off
offloading
: can be any of these offloading capability:- vlan_insert, ipv4_cksum, udp_cksum, tcp_cksum, sctp_cksum, tcp_tso, udp_tso, outer_ipv4_cksum, qinq_insert, vxlan_tnl_tso, gre_tnl_tso, ipip_tnl_tso, geneve_tnl_tso, macsec_insert, mt_lockfree, multi_segs, mbuf_fast_free, security
This command should be run when the port is stopped, or else it will fail.
4.5.80. config per queue Tx offloading
Enable or disable a per queue Tx offloading only on a specific Tx queue:
testpmd> port (port_id) txq (queue_id) tx_offload (offloading) on|off
offloading
: can be any of these offloading capability:- vlan_insert, ipv4_cksum, udp_cksum, tcp_cksum, sctp_cksum, tcp_tso, udp_tso, outer_ipv4_cksum, qinq_insert, vxlan_tnl_tso, gre_tnl_tso, ipip_tnl_tso, geneve_tnl_tso, macsec_insert, mt_lockfree, multi_segs, mbuf_fast_free, security
This command should be run when the port is stopped, or else it will fail.
4.5.81. Config VXLAN Encap outer layers
Configure the outer layer to encapsulate a packet inside a VXLAN tunnel:
set vxlan ip-version (ipv4|ipv6) vni (vni) udp-src (udp-src) \
udp-dst (udp-dst) ip-src (ip-src) ip-dst (ip-dst) eth-src (eth-src) \
eth-dst (eth-dst)
set vxlan-with-vlan ip-version (ipv4|ipv6) vni (vni) udp-src (udp-src) \
udp-dst (udp-dst) ip-src (ip-src) ip-dst (ip-dst) vlan-tci (vlan-tci) \
eth-src (eth-src) eth-dst (eth-dst)
set vxlan-tos-ttl ip-version (ipv4|ipv6) vni (vni) udp-src (udp-src) \
udp-dst (udp-dst) ip-tos (ip-tos) ip-ttl (ip-ttl) ip-src (ip-src) \
ip-dst (ip-dst) eth-src (eth-src) eth-dst (eth-dst)
These commands will set an internal configuration inside testpmd, any following flow rule using the action vxlan_encap will use the last configuration set. To have a different encapsulation header, one of those commands must be called before the flow rule creation.
4.5.82. Config NVGRE Encap outer layers
Configure the outer layer to encapsulate a packet inside a NVGRE tunnel:
set nvgre ip-version (ipv4|ipv6) tni (tni) ip-src (ip-src) ip-dst (ip-dst) \
eth-src (eth-src) eth-dst (eth-dst)
set nvgre-with-vlan ip-version (ipv4|ipv6) tni (tni) ip-src (ip-src) \
ip-dst (ip-dst) vlan-tci (vlan-tci) eth-src (eth-src) eth-dst (eth-dst)
These commands will set an internal configuration inside testpmd, any following flow rule using the action nvgre_encap will use the last configuration set. To have a different encapsulation header, one of those commands must be called before the flow rule creation.
4.5.83. Config L2 Encap
Configure the l2 to be used when encapsulating a packet with L2:
set l2_encap ip-version (ipv4|ipv6) eth-src (eth-src) eth-dst (eth-dst)
set l2_encap-with-vlan ip-version (ipv4|ipv6) vlan-tci (vlan-tci) \
eth-src (eth-src) eth-dst (eth-dst)
Those commands will set an internal configuration inside testpmd, any following flow rule using the action l2_encap will use the last configuration set. To have a different encapsulation header, one of those commands must be called before the flow rule creation.
4.5.84. Config L2 Decap
Configure the l2 to be removed when decapsulating a packet with L2:
set l2_decap ip-version (ipv4|ipv6)
set l2_decap-with-vlan ip-version (ipv4|ipv6)
Those commands will set an internal configuration inside testpmd, any following flow rule using the action l2_decap will use the last configuration set. To have a different encapsulation header, one of those commands must be called before the flow rule creation.
4.5.85. Config MPLSoGRE Encap outer layers
Configure the outer layer to encapsulate a packet inside a MPLSoGRE tunnel:
set mplsogre_encap ip-version (ipv4|ipv6) label (label) \
ip-src (ip-src) ip-dst (ip-dst) eth-src (eth-src) eth-dst (eth-dst)
set mplsogre_encap-with-vlan ip-version (ipv4|ipv6) label (label) \
ip-src (ip-src) ip-dst (ip-dst) vlan-tci (vlan-tci) \
eth-src (eth-src) eth-dst (eth-dst)
These commands will set an internal configuration inside testpmd, any following flow rule using the action mplsogre_encap will use the last configuration set. To have a different encapsulation header, one of those commands must be called before the flow rule creation.
4.5.86. Config MPLSoGRE Decap outer layers
Configure the outer layer to decapsulate MPLSoGRE packet:
set mplsogre_decap ip-version (ipv4|ipv6)
set mplsogre_decap-with-vlan ip-version (ipv4|ipv6)
These commands will set an internal configuration inside testpmd, any following flow rule using the action mplsogre_decap will use the last configuration set. To have a different decapsulation header, one of those commands must be called before the flow rule creation.
4.5.87. Config MPLSoUDP Encap outer layers
Configure the outer layer to encapsulate a packet inside a MPLSoUDP tunnel:
set mplsoudp_encap ip-version (ipv4|ipv6) label (label) udp-src (udp-src) \
udp-dst (udp-dst) ip-src (ip-src) ip-dst (ip-dst) \
eth-src (eth-src) eth-dst (eth-dst)
set mplsoudp_encap-with-vlan ip-version (ipv4|ipv6) label (label) \
udp-src (udp-src) udp-dst (udp-dst) ip-src (ip-src) ip-dst (ip-dst) \
vlan-tci (vlan-tci) eth-src (eth-src) eth-dst (eth-dst)
These commands will set an internal configuration inside testpmd, any following flow rule using the action mplsoudp_encap will use the last configuration set. To have a different encapsulation header, one of those commands must be called before the flow rule creation.
4.5.88. Config MPLSoUDP Decap outer layers
Configure the outer layer to decapsulate MPLSoUDP packet:
set mplsoudp_decap ip-version (ipv4|ipv6)
set mplsoudp_decap-with-vlan ip-version (ipv4|ipv6)
These commands will set an internal configuration inside testpmd, any following flow rule using the action mplsoudp_decap will use the last configuration set. To have a different decapsulation header, one of those commands must be called before the flow rule creation.
4.5.89. Config Raw Encapsulation
Configure the raw data to be used when encapsulating a packet by rte_flow_action_raw_encap:
set raw_encap {index} {item} [/ {item} [...]] / end_set
There are multiple global buffers for raw_encap
, this command will set one
internal buffer index by {index}
.
If there is no {index}
specified:
set raw_encap {item} [/ {item} [...]] / end_set
the default index 0
is used.
In order to use different encapsulating header, index
must be specified
during the flow rule creation:
testpmd> flow create 0 egress pattern eth / ipv4 / end actions
raw_encap index 2 / end
Otherwise the default index 0
is used.
4.5.90. Config Raw Decapsulation
Configure the raw data to be used when decapsulating a packet by rte_flow_action_raw_decap:
set raw_decap {index} {item} [/ {item} [...]] / end_set
There are multiple global buffers for raw_decap
, this command will set
one internal buffer index by {index}
.
If there is no {index}
specified:
set raw_decap {item} [/ {item} [...]] / end_set
the default index 0
is used.
In order to use different decapsulating header, index
must be specified
during the flow rule creation:
testpmd> flow create 0 egress pattern eth / ipv4 / end actions
raw_encap index 3 / end
Otherwise the default index 0
is used.
4.5.91. Set fec mode
Set fec mode for a specific port:
testpmd> set port (port_id) fec_mode auto|off|rs|baser
4.5.92. Config Sample actions list
Configure the sample actions list to be used when sampling a packet by rte_flow_action_sample:
set sample_actions {index} {action} [/ {action} [...]] / end
There are multiple global buffers for sample_actions
, this command will set
one internal buffer index by {index}
.
In order to use different sample actions list, index
must be specified
during the flow rule creation:
testpmd> flow create 0 ingress pattern eth / ipv4 / end actions
sample ratio 2 index 2 / end
Otherwise the default index 0
is used.
4.6. Port Functions
The following sections show functions for configuring ports.
Note
Port configuration changes only become active when forwarding is started/restarted.
4.6.1. port attach
Attach a port specified by pci address or virtual device args:
testpmd> port attach (identifier)
To attach a new pci device, the device should be recognized by kernel first. Then it should be moved under DPDK management. Finally the port can be attached to testpmd.
For example, to move a pci device using ixgbe under DPDK management:
# Check the status of the available devices.
./usertools/dpdk-devbind.py --status
Network devices using DPDK-compatible driver
============================================
<none>
Network devices using kernel driver
===================================
0000:0a:00.0 '82599ES 10-Gigabit' if=eth2 drv=ixgbe unused=
# Bind the device to igb_uio.
sudo ./usertools/dpdk-devbind.py -b igb_uio 0000:0a:00.0
# Recheck the status of the devices.
./usertools/dpdk-devbind.py --status
Network devices using DPDK-compatible driver
============================================
0000:0a:00.0 '82599ES 10-Gigabit' drv=igb_uio unused=
To attach a port created by virtual device, above steps are not needed.
For example, to attach a port whose pci address is 0000:0a:00.0.
testpmd> port attach 0000:0a:00.0
Attaching a new port...
EAL: PCI device 0000:0a:00.0 on NUMA socket -1
EAL: probe driver: 8086:10fb rte_ixgbe_pmd
EAL: PCI memory mapped at 0x7f83bfa00000
EAL: PCI memory mapped at 0x7f83bfa80000
PMD: eth_ixgbe_dev_init(): MAC: 2, PHY: 18, SFP+: 5
PMD: eth_ixgbe_dev_init(): port 0 vendorID=0x8086 deviceID=0x10fb
Port 0 is attached. Now total ports is 1
Done
For example, to attach a port created by pcap PMD.
testpmd> port attach net_pcap0
Attaching a new port...
PMD: Initializing pmd_pcap for net_pcap0
PMD: Creating pcap-backed ethdev on numa socket 0
Port 0 is attached. Now total ports is 1
Done
In this case, identifier is net_pcap0
.
This identifier format is the same as --vdev
format of DPDK applications.
For example, to re-attach a bonded port which has been previously detached, the mode and slave parameters must be given.
testpmd> port attach net_bond_0,mode=0,slave=1
Attaching a new port...
EAL: Initializing pmd_bond for net_bond_0
EAL: Create bonded device net_bond_0 on port 0 in mode 0 on socket 0.
Port 0 is attached. Now total ports is 1
Done
4.6.2. port detach
Detach a specific port:
testpmd> port detach (port_id)
Before detaching a port, the port should be stopped and closed.
For example, to detach a pci device port 0.
testpmd> port stop 0
Stopping ports...
Done
testpmd> port close 0
Closing ports...
Done
testpmd> port detach 0
Detaching a port...
EAL: PCI device 0000:0a:00.0 on NUMA socket -1
EAL: remove driver: 8086:10fb rte_ixgbe_pmd
EAL: PCI memory unmapped at 0x7f83bfa00000
EAL: PCI memory unmapped at 0x7f83bfa80000
Done
For example, to detach a virtual device port 0.
testpmd> port stop 0
Stopping ports...
Done
testpmd> port close 0
Closing ports...
Done
testpmd> port detach 0
Detaching a port...
PMD: Closing pcap ethdev on numa socket 0
Port 'net_pcap0' is detached. Now total ports is 0
Done
To remove a pci device completely from the system, first detach the port from testpmd. Then the device should be moved under kernel management. Finally the device can be removed using kernel pci hotplug functionality.
For example, to move a pci device under kernel management:
sudo ./usertools/dpdk-devbind.py -b ixgbe 0000:0a:00.0
./usertools/dpdk-devbind.py --status
Network devices using DPDK-compatible driver
============================================
<none>
Network devices using kernel driver
===================================
0000:0a:00.0 '82599ES 10-Gigabit' if=eth2 drv=ixgbe unused=igb_uio
To remove a port created by a virtual device, above steps are not needed.
4.6.3. port start
Start all ports or a specific port:
testpmd> port start (port_id|all)
4.6.4. port stop
Stop all ports or a specific port:
testpmd> port stop (port_id|all)
4.6.5. port close
Close all ports or a specific port:
testpmd> port close (port_id|all)
4.6.6. port reset
Reset all ports or a specific port:
testpmd> port reset (port_id|all)
User should stop port(s) before resetting and (re-)start after reset.
4.6.7. port config - queue ring size
Configure a rx/tx queue ring size:
testpmd> port config (port_id) (rxq|txq) (queue_id) ring_size (value)
Only take effect after command that (re-)start the port or command that setup specific queue.
4.6.8. port start/stop queue
Start/stop a rx/tx queue on a specific port:
testpmd> port (port_id) (rxq|txq) (queue_id) (start|stop)
4.6.9. port config - queue deferred start
Switch on/off deferred start of a specific port queue:
testpmd> port (port_id) (rxq|txq) (queue_id) deferred_start (on|off)
4.6.10. port setup queue
Setup a rx/tx queue on a specific port:
testpmd> port (port_id) (rxq|txq) (queue_id) setup
Only take effect when port is started.
4.6.11. port config - speed
Set the speed and duplex mode for all ports or a specific port:
testpmd> port config (port_id|all) speed (10|100|1000|10000|25000|40000|50000|100000|200000|auto) \
duplex (half|full|auto)
4.6.12. port config - queues/descriptors
Set number of queues/descriptors for rxq, txq, rxd and txd:
testpmd> port config all (rxq|txq|rxd|txd) (value)
This is equivalent to the --rxq
, --txq
, --rxd
and --txd
command-line options.
4.6.13. port config - max-pkt-len
Set the maximum packet length:
testpmd> port config all max-pkt-len (value)
This is equivalent to the --max-pkt-len
command-line option.
4.6.14. port config - max-lro-pkt-size
Set the maximum LRO aggregated packet size:
testpmd> port config all max-lro-pkt-size (value)
This is equivalent to the --max-lro-pkt-size
command-line option.
4.6.15. port config - Drop Packets
Enable or disable packet drop on all RX queues of all ports when no receive buffers available:
testpmd> port config all drop-en (on|off)
Packet dropping when no receive buffers available is off by default.
The on
option is equivalent to the --enable-drop-en
command-line option.
4.6.16. port config - RSS
- Set the RSS (Receive Side Scaling) mode on or off::
- testpmd> port config all rss (all|default|level-default|level-outer|level-inner|
- ip|tcp|udp|sctp|tunnel|vlan|none| ipv4|ipv4-frag|ipv4-tcp|ipv4-udp|ipv4-sctp|ipv4-other| ipv6|ipv6-frag|ipv6-tcp|ipv6-udp|ipv6-sctp| ipv6-other|ipv6-ex|ipv6-tcp-ex|ipv6-udp-ex| l2-payload|port|vxlan|geneve|nvgre|gtpu|eth|s-vlan|c-vlan| esp|ah|l2tpv3|pfcp|pppoe|ecpri|mpls|ipv4-chksum|l4-chksum| l2tpv2|l3-pre96|l3-pre64|l3-pre56|l3-pre48|l3-pre40|l3-pre32| l2-dst-only|l2-src-only|l4-dst-only|l4-src-only|l3-dst-only|l3-src-only|<rsstype_id>)
RSS is on by default.
The all
option is equivalent to eth|vlan|ip|tcp|udp|sctp|ether|l2tpv3|esp|ah|pfcp|l2tpv2.
The default
option enables all supported RSS types reported by device info.
The none
option is equivalent to the --disable-rss
command-line option.
4.6.17. port config - RSS Reta
Set the RSS (Receive Side Scaling) redirection table:
testpmd> port config all rss reta (hash,queue)[,(hash,queue)]
4.6.18. port config - DCB
Set the DCB mode for an individual port:
testpmd> port config (port_id) dcb vt (on|off) (traffic_class) pfc (on|off)
The traffic class should be 4 or 8.
4.6.19. port config - Burst
Set the number of packets per burst:
testpmd> port config all burst (value)
This is equivalent to the --burst
command-line option.
4.6.20. port config - Threshold
Set thresholds for TX/RX queues:
testpmd> port config all (threshold) (value)
Where the threshold type can be:
txpt:
Set the prefetch threshold register of the TX rings, 0 <= value <= 255.txht:
Set the host threshold register of the TX rings, 0 <= value <= 255.txwt:
Set the write-back threshold register of the TX rings, 0 <= value <= 255.rxpt:
Set the prefetch threshold register of the RX rings, 0 <= value <= 255.rxht:
Set the host threshold register of the RX rings, 0 <= value <= 255.rxwt:
Set the write-back threshold register of the RX rings, 0 <= value <= 255.txfreet:
Set the transmit free threshold of the TX rings, 0 <= value <= txd.rxfreet:
Set the transmit free threshold of the RX rings, 0 <= value <= rxd.txrst:
Set the transmit RS bit threshold of TX rings, 0 <= value <= txd.
These threshold options are also available from the command-line.
4.6.21. port config pctype mapping
Reset pctype mapping table:
testpmd> port config (port_id) pctype mapping reset
Update hardware defined pctype to software defined flow type mapping table:
testpmd> port config (port_id) pctype mapping update (pctype_id_0[,pctype_id_1]*) (flow_type_id)
where:
pctype_id_x
: hardware pctype id as index of bit in bitmask value of the pctype mapping table.flow_type_id
: software flow type id as the index of the pctype mapping table.
4.6.22. port config input set
Config RSS/FDIR/FDIR flexible payload input set for some pctype:
testpmd> port config (port_id) pctype (pctype_id) \
(hash_inset|fdir_inset|fdir_flx_inset) \
(get|set|clear) field (field_idx)
Clear RSS/FDIR/FDIR flexible payload input set for some pctype:
testpmd> port config (port_id) pctype (pctype_id) \
(hash_inset|fdir_inset|fdir_flx_inset) clear all
where:
pctype_id
: hardware packet classification types.field_idx
: hardware field index.
4.6.23. port config udp_tunnel_port
Add/remove UDP tunnel port for VXLAN/GENEVE tunneling protocols:
testpmd> port config (port_id) udp_tunnel_port add|rm vxlan|geneve|vxlan-gpe|ecpri (udp_port)
4.6.24. port config tx_metadata
Set Tx metadata value per port. testpmd will add this value to any Tx packet sent from this port:
testpmd> port config (port_id) tx_metadata (value)
4.6.25. port config dynf
Set/clear dynamic flag per port. testpmd will register this flag in the mbuf (same registration for both Tx and Rx). Then set/clear this flag for each Tx packet sent from this port. The set bit only works for Tx packet:
testpmd> port config (port_id) dynf (name) (set|clear)
4.6.26. port config mtu
To configure MTU(Maximum Transmission Unit) on devices using testpmd:
testpmd> port config mtu (port_id) (value)
4.6.27. port config rss hash key
To configure the RSS hash key used to compute the RSS hash of input [IP] packets received on port:
testpmd> port config <port_id> rss-hash-key (ipv4|ipv4-frag|\
ipv4-tcp|ipv4-udp|ipv4-sctp|ipv4-other|\
ipv6|ipv6-frag|ipv6-tcp|ipv6-udp|ipv6-sctp|\
ipv6-other|l2-payload|ipv6-ex|ipv6-tcp-ex|\
ipv6-udp-ex <string of hex digits \
(variable length, NIC dependent)>)
4.6.28. port cleanup txq mbufs
To cleanup txq mbufs currently cached by driver:
testpmd> port cleanup (port_id) txq (queue_id) (free_cnt)
If the value of free_cnt
is 0, driver should free all cached mbufs.
4.7. Device Functions
The following sections show functions for device operations.
4.7.1. device detach
Detach a device specified by pci address or virtual device args:
testpmd> device detach (identifier)
Before detaching a device associated with ports, the ports should be stopped and closed.
For example, to detach a pci device whose address is 0002:03:00.0.
testpmd> device detach 0002:03:00.0
Removing a device...
Port 1 is now closed
EAL: Releasing pci mapped resource for 0002:03:00.0
EAL: Calling pci_unmap_resource for 0002:03:00.0 at 0x218a050000
EAL: Calling pci_unmap_resource for 0002:03:00.0 at 0x218c050000
Device 0002:03:00.0 is detached
Now total ports is 1
For example, to detach a port created by pcap PMD.
testpmd> device detach net_pcap0
Removing a device...
Port 0 is now closed
Device net_pcap0 is detached
Now total ports is 0
Done
In this case, identifier is net_pcap0
.
This identifier format is the same as --vdev
format of DPDK applications.
4.8. Link Bonding Functions
The Link Bonding functions make it possible to dynamically create and manage link bonding devices from within testpmd interactive prompt.
See Link Bonding Poll Mode Driver Library for more information.
4.9. Traffic Metering and Policing
The following section shows functions for configuring traffic metering and policing on the ethernet device through the use of generic ethdev API.
4.9.1. show port traffic management capability
Show traffic metering and policing capability of the port:
testpmd> show port meter cap (port_id)
4.9.2. add port meter profile (srTCM rfc2967)
Add meter profile (srTCM rfc2697) to the ethernet device:
testpmd> add port meter profile srtcm_rfc2697 (port_id) (profile_id) \
(cir) (cbs) (ebs) (packet_mode)
where:
profile_id
: ID for the meter profile.cir
: Committed Information Rate (CIR) (bytes per second or packets per second).cbs
: Committed Burst Size (CBS) (bytes or packets).ebs
: Excess Burst Size (EBS) (bytes or packets).packet_mode
: Packets mode for meter profile.
4.9.3. add port meter profile (trTCM rfc2968)
Add meter profile (srTCM rfc2698) to the ethernet device:
testpmd> add port meter profile trtcm_rfc2698 (port_id) (profile_id) \
(cir) (pir) (cbs) (pbs) (packet_mode)
where:
profile_id
: ID for the meter profile.cir
: Committed information rate (bytes per second or packets per second).pir
: Peak information rate (bytes per second or packets per second).cbs
: Committed burst size (bytes or packets).pbs
: Peak burst size (bytes or packets).packet_mode
: Packets mode for meter profile.
4.9.4. add port meter profile (trTCM rfc4115)
Add meter profile (trTCM rfc4115) to the ethernet device:
testpmd> add port meter profile trtcm_rfc4115 (port_id) (profile_id) \
(cir) (eir) (cbs) (ebs) (packet_mode)
where:
profile_id
: ID for the meter profile.cir
: Committed information rate (bytes per second or packets per second).eir
: Excess information rate (bytes per second or packets per second).cbs
: Committed burst size (bytes or packets).ebs
: Excess burst size (bytes or packets).packet_mode
: Packets mode for meter profile.
4.9.5. delete port meter profile
Delete meter profile from the ethernet device:
testpmd> del port meter profile (port_id) (profile_id)
4.9.6. create port policy
Create new policy object for the ethernet device:
testpmd> add port meter policy (port_id) (policy_id) g_actions \
{action} y_actions {action} r_actions {action}
where:
policy_id
: policy ID.action
: action lists for green/yellow/red colors.
4.9.7. delete port policy
Delete policy object for the ethernet device:
testpmd> del port meter policy (port_id) (policy_id)
where:
policy_id
: policy ID.
4.9.8. create port meter
Create new meter object for the ethernet device:
testpmd> create port meter (port_id) (mtr_id) (profile_id) \
(policy_id) (meter_enable) (stats_mask) (shared) (default_input_color) \
(use_pre_meter_color) [(dscp_tbl_entry0) (dscp_tbl_entry1)...\
(dscp_tbl_entry63)] [(vlan_tbl_entry0) (vlan_tbl_entry1) ... \
(vlan_tbl_entry15)]
where:
mtr_id
: meter object ID.profile_id
: ID for the meter profile.policy_id
: ID for the policy.meter_enable
: When this parameter has a non-zero value, the meter object gets enabled at the time of creation, otherwise remains disabled.stats_mask
: Mask of statistics counter types to be enabled for the meter object.shared
: When this parameter has a non-zero value, the meter object is shared by multiple flows. Otherwise, meter object is used by single flow.default_input_color
: Default input color for incoming packets. If incoming packet misses DSCP or VLAN input color table then it will be used as input color.use_pre_meter_color
: When this parameter has a non-zero value, the input color for the current meter object is determined by the latest meter object in the same flow. Otherwise, the current meter object uses the dscp_table to determine the input color.dscp_tbl_entryx
: DSCP table entry x providing meter providing input color, 0 <= x <= 63.vlan_tbl_entryx
: VLAN table entry x providing meter input color, 0 <= x <= 15.
4.9.9. enable port meter
Enable meter for the ethernet device:
testpmd> enable port meter (port_id) (mtr_id)
4.9.10. disable port meter
Disable meter for the ethernet device:
testpmd> disable port meter (port_id) (mtr_id)
4.9.11. delete port meter
Delete meter for the ethernet device:
testpmd> del port meter (port_id) (mtr_id)
4.9.12. Set port meter profile
Set meter profile for the ethernet device:
testpmd> set port meter profile (port_id) (mtr_id) (profile_id)
4.9.13. set port meter dscp table
Set meter dscp table for the ethernet device:
testpmd> set port meter dscp table (port_id) (mtr_id) (proto) \
[(dscp_tbl_entry0) (dscp_tbl_entry1)...(dscp_tbl_entry63)]
4.9.14. set port meter vlan table
Set meter VLAN table for the Ethernet device:
testpmd> set port meter vlan table (port_id) (mtr_id) (proto) \
[(vlan_tbl_entry0) (vlan_tbl_entry1)...(vlan_tbl_entry15)]
4.9.15. set port meter protocol
Set meter protocol and corresponding priority:
testpmd> set port meter proto (port_id) (mtr_id) (proto) (prio)
4.9.16. get port meter protocol
Get meter protocol:
testpmd> get port meter proto (port_id) (mtr_id)
4.9.17. get port meter protocol priority
Get priority associated to meter protocol:
testpmd> get port meter proto_prio (port_id) (mtr_id) (proto)
4.9.18. set port meter stats mask
Set meter stats mask for the ethernet device:
testpmd> set port meter stats mask (port_id) (mtr_id) (stats_mask)
where:
stats_mask
: Bit mask indicating statistics counter types to be enabled.
4.9.19. show port meter stats
Show meter stats of the ethernet device:
testpmd> show port meter stats (port_id) (mtr_id) (clear)
where:
clear
: Flag that indicates whether the statistics counters should be cleared (i.e. set to zero) immediately after they have been read or not.
4.10. Traffic Management
The following section shows functions for configuring traffic management on the ethernet device through the use of generic TM API.
4.10.1. show port traffic management capability
Show traffic management capability of the port:
testpmd> show port tm cap (port_id)
4.10.2. show port traffic management capability (hierarchy level)
Show traffic management hierarchy level capability of the port:
testpmd> show port tm level cap (port_id) (level_id)
4.10.3. show port traffic management capability (hierarchy node level)
Show the traffic management hierarchy node capability of the port:
testpmd> show port tm node cap (port_id) (node_id)
4.10.4. show port traffic management hierarchy node type
Show the port traffic management hierarchy node type:
testpmd> show port tm node type (port_id) (node_id)
4.10.5. show port traffic management hierarchy node stats
Show the port traffic management hierarchy node statistics:
testpmd> show port tm node stats (port_id) (node_id) (clear)
where:
clear
: When this parameter has a non-zero value, the statistics counters are cleared (i.e. set to zero) immediately after they have been read, otherwise the statistics counters are left untouched.
4.10.6. Add port traffic management private shaper profile
Add the port traffic management private shaper profile:
testpmd> add port tm node shaper profile (port_id) (shaper_profile_id) \
(cmit_tb_rate) (cmit_tb_size) (peak_tb_rate) (peak_tb_size) \
(packet_length_adjust) (packet_mode)
where:
shaper_profile id
: Shaper profile ID for the new profile.cmit_tb_rate
: Committed token bucket rate (bytes per second or packets per second).cmit_tb_size
: Committed token bucket size (bytes or packets).peak_tb_rate
: Peak token bucket rate (bytes per second or packets per second).peak_tb_size
: Peak token bucket size (bytes or packets).packet_length_adjust
: The value (bytes) to be added to the length of each packet for the purpose of shaping. This parameter value can be used to correct the packet length with the framing overhead bytes that are consumed on the wire.packet_mode
: Shaper configured in packet mode. This parameter value if zero, configures shaper in byte mode and if non-zero configures it in packet mode.
4.10.7. Delete port traffic management private shaper profile
Delete the port traffic management private shaper:
testpmd> del port tm node shaper profile (port_id) (shaper_profile_id)
where:
shaper_profile id
: Shaper profile ID that needs to be deleted.
4.10.11. Set port traffic management hierarchy node private shaper
set the port traffic management hierarchy node private shaper:
testpmd> set port tm node shaper profile (port_id) (node_id) \
(shaper_profile_id)
where:
shaper_profile id
: Private shaper profile ID to be enabled on the hierarchy node.
4.10.12. Add port traffic management WRED profile
Create a new WRED profile:
testpmd> add port tm node wred profile (port_id) (wred_profile_id) \
(color_g) (min_th_g) (max_th_g) (maxp_inv_g) (wq_log2_g) \
(color_y) (min_th_y) (max_th_y) (maxp_inv_y) (wq_log2_y) \
(color_r) (min_th_r) (max_th_r) (maxp_inv_r) (wq_log2_r)
where:
wred_profile id
: Identifier for the newly create WRED profilecolor_g
: Packet color (green)min_th_g
: Minimum queue threshold for packet with green colormax_th_g
: Minimum queue threshold for packet with green colormaxp_inv_g
: Inverse of packet marking probability maximum value (maxp)wq_log2_g
: Negated log2 of queue weight (wq)color_y
: Packet color (yellow)min_th_y
: Minimum queue threshold for packet with yellow colormax_th_y
: Minimum queue threshold for packet with yellow colormaxp_inv_y
: Inverse of packet marking probability maximum value (maxp)wq_log2_y
: Negated log2 of queue weight (wq)color_r
: Packet color (red)min_th_r
: Minimum queue threshold for packet with yellow colormax_th_r
: Minimum queue threshold for packet with yellow colormaxp_inv_r
: Inverse of packet marking probability maximum value (maxp)wq_log2_r
: Negated log2 of queue weight (wq)
4.10.13. Delete port traffic management WRED profile
Delete the WRED profile:
testpmd> del port tm node wred profile (port_id) (wred_profile_id)
4.10.14. Add port traffic management hierarchy nonleaf node
Add nonleaf node to port traffic management hierarchy:
testpmd> add port tm nonleaf node (port_id) (node_id) (parent_node_id) \
(priority) (weight) (level_id) (shaper_profile_id) \
(n_sp_priorities) (stats_mask) (n_shared_shapers) \
[(shared_shaper_0) (shared_shaper_1) ...] \
where:
parent_node_id
: Node ID of the parent.priority
: Node priority (highest node priority is zero). This is used by the SP algorithm running on the parent node for scheduling this node.weight
: Node weight (lowest weight is one). The node weight is relative to the weight sum of all siblings that have the same priority. It is used by the WFQ algorithm running on the parent node for scheduling this node.level_id
: Hierarchy level of the node.shaper_profile_id
: Shaper profile ID of the private shaper to be used by the node.n_sp_priorities
: Number of strict priorities.stats_mask
: Mask of statistics counter types to be enabled for this node.n_shared_shapers
: Number of shared shapers.shared_shaper_id
: Shared shaper id.
4.10.15. Add port traffic management hierarchy nonleaf node with packet mode
Add nonleaf node with packet mode to port traffic management hierarchy:
testpmd> add port tm nonleaf node pktmode (port_id) (node_id) (parent_node_id) \
(priority) (weight) (level_id) (shaper_profile_id) \
(n_sp_priorities) (stats_mask) (n_shared_shapers) \
[(shared_shaper_0) (shared_shaper_1) ...] \
where:
parent_node_id
: Node ID of the parent.priority
: Node priority (highest node priority is zero). This is used by the SP algorithm running on the parent node for scheduling this node.weight
: Node weight (lowest weight is one). The node weight is relative to the weight sum of all siblings that have the same priority. It is used by the WFQ algorithm running on the parent node for scheduling this node.level_id
: Hierarchy level of the node.shaper_profile_id
: Shaper profile ID of the private shaper to be used by the node.n_sp_priorities
: Number of strict priorities. Packet mode is enabled on all of them.stats_mask
: Mask of statistics counter types to be enabled for this node.n_shared_shapers
: Number of shared shapers.shared_shaper_id
: Shared shaper id.
4.10.16. Add port traffic management hierarchy leaf node
Add leaf node to port traffic management hierarchy:
testpmd> add port tm leaf node (port_id) (node_id) (parent_node_id) \
(priority) (weight) (level_id) (shaper_profile_id) \
(cman_mode) (wred_profile_id) (stats_mask) (n_shared_shapers) \
[(shared_shaper_id) (shared_shaper_id) ...] \
where:
parent_node_id
: Node ID of the parent.priority
: Node priority (highest node priority is zero). This is used by the SP algorithm running on the parent node for scheduling this node.weight
: Node weight (lowest weight is one). The node weight is relative to the weight sum of all siblings that have the same priority. It is used by the WFQ algorithm running on the parent node for scheduling this node.level_id
: Hierarchy level of the node.shaper_profile_id
: Shaper profile ID of the private shaper to be used by the node.cman_mode
: Congestion management mode to be enabled for this node.wred_profile_id
: WRED profile id to be enabled for this node.stats_mask
: Mask of statistics counter types to be enabled for this node.n_shared_shapers
: Number of shared shapers.shared_shaper_id
: Shared shaper id.
4.10.17. Delete port traffic management hierarchy node
Delete node from port traffic management hierarchy:
testpmd> del port tm node (port_id) (node_id)
4.10.18. Update port traffic management hierarchy parent node
Update port traffic management hierarchy parent node:
testpmd> set port tm node parent (port_id) (node_id) (parent_node_id) \
(priority) (weight)
This function can only be called after the hierarchy commit invocation. Its success depends on the port support for this operation, as advertised through the port capability set. This function is valid for all nodes of the traffic management hierarchy except root node.
4.10.19. Suspend port traffic management hierarchy node
testpmd> suspend port tm node (port_id) (node_id)
4.10.20. Resume port traffic management hierarchy node
testpmd> resume port tm node (port_id) (node_id)
4.10.21. Commit port traffic management hierarchy
Commit the traffic management hierarchy on the port:
testpmd> port tm hierarchy commit (port_id) (clean_on_fail)
where:
clean_on_fail
: When set to non-zero, hierarchy is cleared on function call failure. On the other hand, hierarchy is preserved when this parameter is equal to zero.
4.10.22. Set port traffic management mark VLAN dei
Enables/Disables the traffic management marking on the port for VLAN packets:
testpmd> set port tm mark vlan_dei <port_id> <green> <yellow> <red>
where:
port_id
: The port which on which VLAN packets marked asgreen
oryellow
orred
will have dei bit enabledgreen
enable 1, disable 0 marking for dei bit of VLAN packets marked as greenyellow
enable 1, disable 0 marking for dei bit of VLAN packets marked as yellowred
enable 1, disable 0 marking for dei bit of VLAN packets marked as red
4.10.23. Set port traffic management mark IP dscp
Enables/Disables the traffic management marking on the port for IP dscp packets:
testpmd> set port tm mark ip_dscp <port_id> <green> <yellow> <red>
where:
port_id
: The port which on which IP packets marked asgreen
oryellow
orred
will have IP dscp bits updatedgreen
enable 1, disable 0 marking IP dscp to low drop precedence for green packetsyellow
enable 1, disable 0 marking IP dscp to medium drop precedence for yellow packetsred
enable 1, disable 0 marking IP dscp to high drop precedence for red packets
4.10.24. Set port traffic management mark IP ecn
Enables/Disables the traffic management marking on the port for IP ecn packets:
testpmd> set port tm mark ip_ecn <port_id> <green> <yellow> <red>
where:
port_id
: The port which on which IP packets marked asgreen
oryellow
orred
will have IP ecn bits updatedgreen
enable 1, disable 0 marking IP ecn for green marked packets with ecn of 2’b01 or 2’b10 to ecn of 2’b11 when IP is caring TCP or SCTPyellow
enable 1, disable 0 marking IP ecn for yellow marked packets with ecn of 2’b01 or 2’b10 to ecn of 2’b11 when IP is caring TCP or SCTPred
enable 1, disable 0 marking IP ecn for yellow marked packets with ecn of 2’b01 or 2’b10 to ecn of 2’b11 when IP is caring TCP or SCTP
4.11. Flow rules management
Control of the generic flow API (rte_flow) is fully exposed through the
flow
command (configuration, validation, creation, destruction, queries
and operation modes).
4.11.1. flow
syntax
Because the flow
command uses dynamic tokens to handle the large number
of possible flow rules combinations, its behavior differs slightly from
other commands, in particular:
- Pressing ? or the <tab> key displays contextual help for the current token, not that of the entire command.
- Optional and repeated parameters are supported (provided they are listed in the contextual help).
The first parameter stands for the operation mode. Possible operations and their general syntax are described below. They are covered in detail in the following sections.
Get info about flow engine:
flow info {port_id}
Configure flow engine:
flow configure {port_id} [queues_number {number}] [queues_size {size}] [counters_number {number}] [aging_counters_number {number}] [meters_number {number}] [flags {number}]
Create a pattern template:
flow pattern_template {port_id} create [pattern_template_id {id}] [relaxed {boolean}] [ingress] [egress] [transfer] template {item} [/ {item} [...]] / end
Destroy a pattern template:
flow pattern_template {port_id} destroy pattern_template {id} [...]
Create an actions template:
flow actions_template {port_id} create [actions_template_id {id}] [ingress] [egress] [transfer] template {action} [/ {action} [...]] / end mask {action} [/ {action} [...]] / end
Destroy an actions template:
flow actions_template {port_id} destroy actions_template {id} [...]
Create a table:
flow table {port_id} create [table_id {id}] [group {group_id}] [priority {level}] [ingress] [egress] [transfer] rules_number {number} pattern_template {pattern_template_id} actions_template {actions_template_id}
Destroy a table:
flow table {port_id} destroy table {id} [...]
Check whether a flow rule can be created:
flow validate {port_id} [group {group_id}] [priority {level}] [ingress] [egress] [transfer] pattern {item} [/ {item} [...]] / end actions {action} [/ {action} [...]] / end
Enqueue creation of a flow rule:
flow queue {port_id} create {queue_id} [postpone {boolean}] template_table {table_id} pattern_template {pattern_template_index} actions_template {actions_template_index} pattern {item} [/ {item} [...]] / end actions {action} [/ {action} [...]] / end
Enqueue destruction of specific flow rules:
flow queue {port_id} destroy {queue_id} [postpone {boolean}] rule {rule_id} [...]
Push enqueued operations:
flow push {port_id} queue {queue_id}
Pull all operations results from a queue:
flow pull {port_id} queue {queue_id}
Create a flow rule:
flow create {port_id} [group {group_id}] [priority {level}] [ingress] [egress] [transfer] pattern {item} [/ {item} [...]] / end actions {action} [/ {action} [...]] / end
Destroy specific flow rules:
flow destroy {port_id} rule {rule_id} [...]
Destroy all flow rules:
flow flush {port_id}
Query an existing flow rule:
flow query {port_id} {rule_id} {action}
List existing flow rules sorted by priority, filtered by group identifiers:
flow list {port_id} [group {group_id}] [...]
Restrict ingress traffic to the defined flow rules:
flow isolate {port_id} {boolean}
Dump internal representation information of all flows in hardware:
flow dump {port_id} all {output_file}
for one flow:
flow dump {port_id} rule {rule_id} {output_file}
List and destroy aged flow rules:
flow aged {port_id} [destroy]
Enqueue list and destroy aged flow rules:
flow queue {port_id} aged {queue_id} [destroy]
Tunnel offload - create a tunnel stub:
flow tunnel create {port_id} type {tunnel_type}
Tunnel offload - destroy a tunnel stub:
flow tunnel destroy {port_id} id {tunnel_id}
Tunnel offload - list port tunnel stubs:
flow tunnel list {port_id}
4.11.2. Retrieving info about flow management engine
flow info
retrieves info on pre-configurable resources in the underlying
device to give a hint of possible values for flow engine configuration.
rte_flow_info_get()
:
flow info {port_id}
If successful, it will show:
Flow engine resources on port #[...]:
Number of queues: #[...]
Size of queues: #[...]
Number of counters: #[...]
Number of aging objects: #[...]
Number of meters: #[...]
Otherwise it will show an error message of the form:
Caught error type [...] ([...]): [...]
4.11.3. Configuring flow management engine
flow configure
pre-allocates all the needed resources in the underlying
device to be used later at the flow creation. Flow queues are allocated as well
for asynchronous flow creation/destruction operations. It is bound to
rte_flow_configure()
:
flow configure {port_id}
[queues_number {number}] [queues_size {size}]
[counters_number {number}]
[aging_counters_number {number}]
[meters_number {number}] [flags {number}]
If successful, it will show:
Configure flows on port #[...]: number of queues #[...] with #[...] elements
Otherwise it will show an error message of the form:
Caught error type [...] ([...]): [...]
4.11.4. Creating pattern templates
flow pattern_template create
creates the specified pattern template.
It is bound to rte_flow_pattern_template_create()
:
flow pattern_template {port_id} create [pattern_template_id {id}]
[relaxed {boolean}] [ingress] [egress] [transfer]
template {item} [/ {item} [...]] / end
If successful, it will show:
Pattern template #[...] created
Otherwise it will show an error message of the form:
Caught error type [...] ([...]): [...]
This command uses the same pattern items as flow create
,
their format is described in Creating flow rules.
4.11.5. Destroying pattern templates
flow pattern_template destroy
destroys one or more pattern templates
from their template ID (as returned by flow pattern_template create
),
this command calls rte_flow_pattern_template_destroy()
as many
times as necessary:
flow pattern_template {port_id} destroy pattern_template {id} [...]
If successful, it will show:
Pattern template #[...] destroyed
It does not report anything for pattern template IDs that do not exist. The usual error message is shown when a pattern template cannot be destroyed:
Caught error type [...] ([...]): [...]
4.11.6. Creating actions templates
flow actions_template create
creates the specified actions template.
It is bound to rte_flow_actions_template_create()
:
flow actions_template {port_id} create [actions_template_id {id}]
[ingress] [egress] [transfer]
template {action} [/ {action} [...]] / end
mask {action} [/ {action} [...]] / end
If successful, it will show:
Actions template #[...] created
Otherwise it will show an error message of the form:
Caught error type [...] ([...]): [...]
This command uses the same actions as flow create
,
their format is described in Creating flow rules.
4.11.7. Destroying actions templates
flow actions_template destroy
destroys one or more actions templates
from their template ID (as returned by flow actions_template create
),
this command calls rte_flow_actions_template_destroy()
as many
times as necessary:
flow actions_template {port_id} destroy actions_template {id} [...]
If successful, it will show:
Actions template #[...] destroyed
It does not report anything for actions template IDs that do not exist. The usual error message is shown when an actions template cannot be destroyed:
Caught error type [...] ([...]): [...]
4.11.8. Creating template table
flow template_table create
creates the specified template table.
It is bound to rte_flow_template_table_create()
:
flow template_table {port_id} create
[table_id {id}] [group {group_id}]
[priority {level}] [ingress] [egress] [transfer]
rules_number {number}
pattern_template {pattern_template_id}
actions_template {actions_template_id}
If successful, it will show:
Template table #[...] created
Otherwise it will show an error message of the form:
Caught error type [...] ([...]): [...]
4.11.9. Destroying flow table
flow template_table destroy
destroys one or more template tables
from their table ID (as returned by flow template_table create
),
this command calls rte_flow_template_table_destroy()
as many
times as necessary:
flow template_table {port_id} destroy table {id} [...]
If successful, it will show:
Template table #[...] destroyed
It does not report anything for table IDs that do not exist. The usual error message is shown when a table cannot be destroyed:
Caught error type [...] ([...]): [...]
4.11.10. Pushing enqueued operations
flow push
pushes all the outstanding enqueued operations
to the underlying device immediately.
It is bound to rte_flow_push()
:
flow push {port_id} queue {queue_id}
If successful, it will show:
Queue #[...] operations pushed
The usual error message is shown when operations cannot be pushed:
Caught error type [...] ([...]): [...]
4.11.11. Pulling flow operations results
flow pull
asks the underlying device about flow queue operations
results and return all the processed (successfully or not) operations.
It is bound to rte_flow_pull()
:
flow pull {port_id} queue {queue_id}
If successful, it will show:
Queue #[...] pulled #[...] operations (#[...] failed, #[...] succeeded)
The usual error message is shown when operations results cannot be pulled:
Caught error type [...] ([...]): [...]
4.11.12. Creating a tunnel stub for offload
flow tunnel create
setup a tunnel stub for tunnel offload flow rules:
flow tunnel create {port_id} type {tunnel_type}
If successful, it will return a tunnel stub ID usable with other commands:
port [...]: flow tunnel #[...] type [...]
Tunnel stub ID is relative to a port.
4.11.13. Destroying tunnel offload stub
flow tunnel destroy
destroy port tunnel stub:
flow tunnel destroy {port_id} id {tunnel_id}
4.11.14. Listing tunnel offload stubs
flow tunnel list
list port tunnel offload stubs:
flow tunnel list {port_id}
4.11.15. Validating flow rules
flow validate
reports whether a flow rule would be accepted by the
underlying device in its current state but stops short of creating it. It is
bound to rte_flow_validate()
:
flow validate {port_id}
[group {group_id}] [priority {level}] [ingress] [egress] [transfer]
pattern {item} [/ {item} [...]] / end
actions {action} [/ {action} [...]] / end
If successful, it will show:
Flow rule validated
Otherwise it will show an error message of the form:
Caught error type [...] ([...]): [...]
This command uses the same parameters as flow create
, their format is
described in Creating flow rules.
Check whether redirecting any Ethernet packet received on port 0 to RX queue index 6 is supported:
testpmd> flow validate 0 ingress pattern eth / end
actions queue index 6 / end
Flow rule validated
testpmd>
Port 0 does not support TCPv6 rules:
testpmd> flow validate 0 ingress pattern eth / ipv6 / tcp / end
actions drop / end
Caught error type 9 (specific pattern item): Invalid argument
testpmd>
4.11.16. Creating flow rules
flow create
validates and creates the specified flow rule. It is bound
to rte_flow_create()
:
flow create {port_id}
[group {group_id}] [priority {level}] [ingress] [egress] [transfer]
[tunnel_set {tunnel_id}] [tunnel_match {tunnel_id}]
pattern {item} [/ {item} [...]] / end
actions {action} [/ {action} [...]] / end
If successful, it will return a flow rule ID usable with other commands:
Flow rule #[...] created
Otherwise it will show an error message of the form:
Caught error type [...] ([...]): [...]
Parameters describe in the following order:
- Attributes (group, priority, ingress, egress, transfer tokens).
- Tunnel offload specification (tunnel_set, tunnel_match)
- A matching pattern, starting with the pattern token and terminated by an end pattern item.
- Actions, starting with the actions token and terminated by an end action.
These translate directly to rte_flow objects provided as-is to the underlying functions.
The shortest valid definition only comprises mandatory tokens:
testpmd> flow create 0 pattern end actions end
Note that PMDs may refuse rules that essentially do nothing such as this one.
All unspecified object values are automatically initialized to 0.
4.11.17. Enqueueing creation of flow rules
flow queue create
adds creation operation of a flow rule to a queue.
It is bound to rte_flow_async_create()
:
flow queue {port_id} create {queue_id}
[postpone {boolean}] template_table {table_id}
pattern_template {pattern_template_index}
actions_template {actions_template_index}
pattern {item} [/ {item} [...]] / end
actions {action} [/ {action} [...]] / end
If successful, it will return a flow rule ID usable with other commands:
Flow rule #[...] creaion enqueued
Otherwise it will show an error message of the form:
Caught error type [...] ([...]): [...]
This command uses the same pattern items and actions as flow create
,
their format is described in Creating flow rules.
flow queue pull
must be called to retrieve the operation status.
4.11.17.1. Attributes
These tokens affect flow rule attributes (struct rte_flow_attr
) and are
specified before the pattern
token.
group {group id}
: priority group.priority {level}
: priority level within group.ingress
: rule applies to ingress traffic.egress
: rule applies to egress traffic.transfer
: apply rule directly to endpoints found in pattern.
Please note that use of transfer
attribute requires that the flow and
its indirect components be managed via so-called transfer
proxy port.
See show flow transfer proxy port ID for the given port for details.
Each instance of an attribute specified several times overrides the previous value as shown below (group 4 is used):
testpmd> flow create 0 group 42 group 24 group 4 [...]
Note that once enabled, ingress
and egress
cannot be disabled.
While not specifying a direction is an error, some rules may allow both simultaneously.
Most rules affect RX therefore contain the ingress
token:
testpmd> flow create 0 ingress pattern [...]
4.11.17.2. Tunnel offload
Indicate tunnel offload rule type
tunnel_set {tunnel_id}
: mark rule as tunnel offload decap_set type.tunnel_match {tunnel_id}
: mark rule as tunnel offload match type.
4.11.17.3. Matching pattern
A matching pattern starts after the pattern
token. It is made of pattern
items and is terminated by a mandatory end
item.
Items are named after their type (RTE_FLOW_ITEM_TYPE_ from enum
rte_flow_item_type
).
The /
token is used as a separator between pattern items as shown
below:
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / end [...]
Note that protocol items like these must be stacked from lowest to highest layer to make sense. For instance, the following rule is either invalid or unlikely to match any packet:
testpmd> flow create 0 ingress pattern eth / udp / ipv4 / end [...]
More information on these restrictions can be found in the rte_flow documentation.
Several items support additional specification structures, for example
ipv4
allows specifying source and destination addresses as follows:
testpmd> flow create 0 ingress pattern eth / ipv4 src is 10.1.1.1
dst is 10.2.0.0 / end [...]
This rule matches all IPv4 traffic with the specified properties.
In this example, src
and dst
are field names of the underlying
struct rte_flow_item_ipv4
object. All item properties can be specified
in a similar fashion.
The is
token means that the subsequent value must be matched exactly,
and assigns spec
and mask
fields in struct rte_flow_item
accordingly. Possible assignment tokens are:
is
: match value perfectly (with full bit-mask).spec
: match value according to configured bit-mask.last
: specify upper bound to establish a range.mask
: specify bit-mask with relevant bits set to one.prefix
: generate bit-mask with <prefix-length> most-significant bits set to one.
These yield identical results:
ipv4 src is 10.1.1.1
ipv4 src spec 10.1.1.1 src mask 255.255.255.255
ipv4 src spec 10.1.1.1 src prefix 32
ipv4 src is 10.1.1.1 src last 10.1.1.1 # range with a single value
ipv4 src is 10.1.1.1 src last 0 # 0 disables range
Inclusive ranges can be defined with last
:
ipv4 src is 10.1.1.1 src last 10.2.3.4 # 10.1.1.1 to 10.2.3.4
Note that mask
affects both spec
and last
:
ipv4 src is 10.1.1.1 src last 10.2.3.4 src mask 255.255.0.0
# matches 10.1.0.0 to 10.2.255.255
Properties can be modified multiple times:
ipv4 src is 10.1.1.1 src is 10.1.2.3 src is 10.2.3.4 # matches 10.2.3.4
ipv4 src is 10.1.1.1 src prefix 24 src prefix 16 # matches 10.1.0.0/16
4.11.17.4. Pattern items
This section lists supported pattern items and their attributes, if any.
end
: end list of pattern items.void
: no-op pattern item.invert
: perform actions when pattern does not match.any
: match any protocol for the current layer.num {unsigned}
: number of layers covered.
port_id
: match traffic from/to a given DPDK port ID.id {unsigned}
: DPDK port ID.
mark
: match value set in previously matched flow rule using the mark action.id {unsigned}
: arbitrary integer value.
raw
: match an arbitrary byte string.relative {boolean}
: look for pattern after the previous item.search {boolean}
: search pattern from offset (see also limit).offset {integer}
: absolute or relative offset for pattern.limit {unsigned}
: search area limit for start of pattern.pattern {string}
: byte string to look for.pattern_hex {string}
: byte string (provided in hexadecimal) to look for.
eth
: match Ethernet header.dst {MAC-48}
: destination MAC.src {MAC-48}
: source MAC.type {unsigned}
: EtherType or TPID.
vlan
: match 802.1Q/ad VLAN tag.tci {unsigned}
: tag control information.pcp {unsigned}
: priority code point.dei {unsigned}
: drop eligible indicator.vid {unsigned}
: VLAN identifier.inner_type {unsigned}
: inner EtherType or TPID.
ipv4
: match IPv4 header.version_ihl {unsigned}
: IPv4 version and IP header length.tos {unsigned}
: type of service.ttl {unsigned}
: time to live.proto {unsigned}
: next protocol ID.src {ipv4 address}
: source address.dst {ipv4 address}
: destination address.
ipv6
: match IPv6 header.tc {unsigned}
: traffic class.flow {unsigned}
: flow label.proto {unsigned}
: protocol (next header).hop {unsigned}
: hop limit.src {ipv6 address}
: source address.dst {ipv6 address}
: destination address.
icmp
: match ICMP header.type {unsigned}
: ICMP packet type.code {unsigned}
: ICMP packet code.
udp
: match UDP header.src {unsigned}
: UDP source port.dst {unsigned}
: UDP destination port.
tcp
: match TCP header.src {unsigned}
: TCP source port.dst {unsigned}
: TCP destination port.
sctp
: match SCTP header.src {unsigned}
: SCTP source port.dst {unsigned}
: SCTP destination port.tag {unsigned}
: validation tag.cksum {unsigned}
: checksum.
vxlan
: match VXLAN header.vni {unsigned}
: VXLAN identifier.last_rsvd {unsigned}
: VXLAN last reserved 8-bits.
e_tag
: match IEEE 802.1BR E-Tag header.grp_ecid_b {unsigned}
: GRP and E-CID base.
nvgre
: match NVGRE header.tni {unsigned}
: virtual subnet ID.
mpls
: match MPLS header.label {unsigned}
: MPLS label.
gre
: match GRE header.protocol {unsigned}
: protocol type.
gre_key
: match GRE optional key field.value {unsigned}
: key value.
gre_option
: match GRE optional fields(checksum/key/sequence).checksum {unsigned}
: checksum value.key {unsigned}
: key value.sequence {unsigned}
: sequence number value.
fuzzy
: fuzzy pattern match, expect faster than default.thresh {unsigned}
: accuracy threshold.
gtp
,gtpc
,gtpu
: match GTPv1 header.teid {unsigned}
: tunnel endpoint identifier.
geneve
: match GENEVE header.vni {unsigned}
: virtual network identifier.protocol {unsigned}
: protocol type.
geneve-opt
: match GENEVE header option.class {unsigned}
: GENEVE option class.type {unsigned}
: GENEVE option type.length {unsigned}
: GENEVE option length in 32-bit words.data {hex string}
: GENEVE option data, the length is defined bylength
field.
vxlan-gpe
: match VXLAN-GPE header.vni {unsigned}
: VXLAN-GPE identifier.
arp_eth_ipv4
: match ARP header for Ethernet/IPv4.sha {MAC-48}
: sender hardware address.spa {ipv4 address}
: sender IPv4 address.tha {MAC-48}
: target hardware address.tpa {ipv4 address}
: target IPv4 address.
ipv6_ext
: match presence of any IPv6 extension header.next_hdr {unsigned}
: next header.
icmp6
: match any ICMPv6 header.type {unsigned}
: ICMPv6 type.code {unsigned}
: ICMPv6 code.
icmp6_nd_ns
: match ICMPv6 neighbor discovery solicitation.target_addr {ipv6 address}
: target address.
icmp6_nd_na
: match ICMPv6 neighbor discovery advertisement.target_addr {ipv6 address}
: target address.
icmp6_nd_opt
: match presence of any ICMPv6 neighbor discovery option.type {unsigned}
: ND option type.
icmp6_nd_opt_sla_eth
: match ICMPv6 neighbor discovery source Ethernet link-layer address option.sla {MAC-48}
: source Ethernet LLA.
icmp6_nd_opt_tla_eth
: match ICMPv6 neighbor discovery target Ethernet link-layer address option.tla {MAC-48}
: target Ethernet LLA.
meta
: match application specific metadata.data {unsigned}
: metadata value.
gtp_psc
: match GTP PDU extension header with type 0x85.pdu_type {unsigned}
: PDU type.qfi {unsigned}
: QoS flow identifier.
pppoes
,pppoed
: match PPPoE header.session_id {unsigned}
: session identifier.
pppoe_proto_id
: match PPPoE session protocol identifier.proto_id {unsigned}
: PPP protocol identifier.
l2tpv3oip
: match L2TPv3 over IP header.session_id {unsigned}
: L2TPv3 over IP session identifier.
ah
: match AH header.spi {unsigned}
: security parameters index.
pfcp
: match PFCP header.s_field {unsigned}
: S field.seid {unsigned}
: session endpoint identifier.
integrity
: match packet integrity.level {unsigned}
: Packet encapsulation level the item should apply to. See rte_flow_action_rss for details.value {unsigned}
: A bitmask that specify what packet elements must be matched for integrity.
conntrack
: match conntrack state.port_representor
: match traffic entering the embedded switch from the given ethdevport_id {unsigned}
: ethdev port ID
represented_port
: match traffic entering the embedded switch from the entity represented by the given ethdevethdev_port_id {unsigned}
: ethdev port ID
l2tpv2
: match L2TPv2 header.length {unsigned}
: L2TPv2 option length.tunnel_id {unsigned}
: L2TPv2 tunnel identifier.session_id {unsigned}
: L2TPv2 session identifier.ns {unsigned}
: L2TPv2 option ns.nr {unsigned}
: L2TPv2 option nr.offset_size {unsigned}
: L2TPv2 option offset.
ppp
: match PPP header.addr {unsigned}
: PPP address.ctrl {unsigned}
: PPP control.proto_id {unsigned}
: PPP protocol identifier.
meter
: match meter color.color {value}
: meter color value (green/yellow/red).
send_to_kernel
: send packets to kernel.
4.11.17.5. Actions list
A list of actions starts after the actions
token in the same fashion as
Matching pattern; actions are separated by /
tokens and the list is
terminated by a mandatory end
action.
Actions are named after their type (RTE_FLOW_ACTION_TYPE_ from enum
rte_flow_action_type
).
Dropping all incoming UDPv4 packets can be expressed as follows:
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / end
actions drop / end
Several actions have configurable properties which must be specified when
there is no valid default value. For example, queue
requires a target
queue index.
This rule redirects incoming UDPv4 traffic to queue index 6:
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / end
actions queue index 6 / end
While this one could be rejected by PMDs (unspecified queue index):
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / end
actions queue / end
As defined by rte_flow, the list is not ordered, all actions of a given rule are performed simultaneously. These are equivalent:
queue index 6 / void / mark id 42 / end
void / mark id 42 / queue index 6 / end
All actions in a list should have different types, otherwise only the last action of a given type is taken into account:
queue index 4 / queue index 5 / queue index 6 / end # will use queue 6
drop / drop / drop / end # drop is performed only once
mark id 42 / queue index 3 / mark id 24 / end # mark will be 24
Considering they are performed simultaneously, opposite and overlapping actions can sometimes be combined when the end result is unambiguous:
drop / queue index 6 / end # drop has no effect
queue index 6 / rss queues 6 7 8 / end # queue has no effect
drop / passthru / end # drop has no effect
Note that PMDs may still refuse such combinations.
4.11.17.6. Actions
This section lists supported actions and their attributes, if any.
end
: end list of actions.void
: no-op action.passthru
: let subsequent rule process matched packets.jump
: redirect traffic to group on device.group {unsigned}
: group to redirect to.
mark
: attach 32 bit value to packets.id {unsigned}
: 32 bit value to return with packets.
flag
: flag packets.queue
: assign packets to a given queue index.index {unsigned}
: queue index to use.
drop
: drop packets (note: passthru has priority).count
: enable counters for this rule.rss
: spread packets among several queues.func {hash function}
: RSS hash function to apply, allowed tokens aretoeplitz
,simple_xor
,symmetric_toeplitz
anddefault
.level {unsigned}
: encapsulation level fortypes
.types [{RSS hash type} [...]] end
: specific RSS hash types. Note that an empty list does not disable RSS but instead requests unspecified “best-effort” settings.key {string}
: RSS hash key, overrideskey_len
.key_len {unsigned}
: RSS hash key length in bytes, can be used in conjunction withkey
to pad or truncate it.queues [{unsigned} [...]] end
: queue indices to use.
pf
: direct traffic to physical function.vf
: direct traffic to a virtual function ID.original {boolean}
: use original VF ID if possible.id {unsigned}
: VF ID.
port_id
: direct matching traffic to a given DPDK port ID.original {boolean}
: use original DPDK port ID if possible.id {unsigned}
: DPDK port ID.
of_set_mpls_ttl
: OpenFlow’sOFPAT_SET_MPLS_TTL
.mpls_ttl
: MPLS TTL.
of_dec_mpls_ttl
: OpenFlow’sOFPAT_DEC_MPLS_TTL
.of_set_nw_ttl
: OpenFlow’sOFPAT_SET_NW_TTL
.nw_ttl
: IP TTL.
of_dec_nw_ttl
: OpenFlow’sOFPAT_DEC_NW_TTL
.of_copy_ttl_out
: OpenFlow’sOFPAT_COPY_TTL_OUT
.of_copy_ttl_in
: OpenFlow’sOFPAT_COPY_TTL_IN
.of_pop_vlan
: OpenFlow’sOFPAT_POP_VLAN
.of_push_vlan
: OpenFlow’sOFPAT_PUSH_VLAN
.ethertype
: Ethertype.
of_set_vlan_vid
: OpenFlow’sOFPAT_SET_VLAN_VID
.vlan_vid
: VLAN id.
of_set_vlan_pcp
: OpenFlow’sOFPAT_SET_VLAN_PCP
.vlan_pcp
: VLAN priority.
of_pop_mpls
: OpenFlow’sOFPAT_POP_MPLS
.ethertype
: Ethertype.
of_push_mpls
: OpenFlow’sOFPAT_PUSH_MPLS
.ethertype
: Ethertype.
vxlan_encap
: Performs a VXLAN encapsulation, outer layer configuration is done through Config VXLAN Encap outer layers.vxlan_decap
: Performs a decapsulation action by stripping all headers of the VXLAN tunnel network overlay from the matched flow.nvgre_encap
: Performs a NVGRE encapsulation, outer layer configuration is done through Config NVGRE Encap outer layers.nvgre_decap
: Performs a decapsulation action by stripping all headers of the NVGRE tunnel network overlay from the matched flow.l2_encap
: Performs a L2 encapsulation, L2 configuration is done through Config L2 Encap.l2_decap
: Performs a L2 decapsulation, L2 configuration is done through Config L2 Decap.mplsogre_encap
: Performs a MPLSoGRE encapsulation, outer layer configuration is done through Config MPLSoGRE Encap outer layers.mplsogre_decap
: Performs a MPLSoGRE decapsulation, outer layer configuration is done through Config MPLSoGRE Decap outer layers.mplsoudp_encap
: Performs a MPLSoUDP encapsulation, outer layer configuration is done through Config MPLSoUDP Encap outer layers.mplsoudp_decap
: Performs a MPLSoUDP decapsulation, outer layer configuration is done through Config MPLSoUDP Decap outer layers.set_ipv4_src
: Set a new IPv4 source address in the outermost IPv4 header.ipv4_addr
: New IPv4 source address.
set_ipv4_dst
: Set a new IPv4 destination address in the outermost IPv4 header.ipv4_addr
: New IPv4 destination address.
set_ipv6_src
: Set a new IPv6 source address in the outermost IPv6 header.ipv6_addr
: New IPv6 source address.
set_ipv6_dst
: Set a new IPv6 destination address in the outermost IPv6 header.ipv6_addr
: New IPv6 destination address.
set_tp_src
: Set a new source port number in the outermost TCP/UDP header.port
: New TCP/UDP source port number.
set_tp_dst
: Set a new destination port number in the outermost TCP/UDP header.port
: New TCP/UDP destination port number.
mac_swap
: Swap the source and destination MAC addresses in the outermost Ethernet header.dec_ttl
: Performs a decrease TTL value actionset_ttl
: Set TTL value with specified value -ttl_value {unsigned}
: The new TTL value to be setset_mac_src
: set source MAC addressmac_addr {MAC-48}
: new source MAC address
set_mac_dst
: set destination MAC addressmac_addr {MAC-48}
: new destination MAC address
inc_tcp_seq
: Increase sequence number in the outermost TCP header.value {unsigned}
: Value to increase TCP sequence number by.
dec_tcp_seq
: Decrease sequence number in the outermost TCP header.value {unsigned}
: Value to decrease TCP sequence number by.
inc_tcp_ack
: Increase acknowledgment number in the outermost TCP header.value {unsigned}
: Value to increase TCP acknowledgment number by.
dec_tcp_ack
: Decrease acknowledgment number in the outermost TCP header.value {unsigned}
: Value to decrease TCP acknowledgment number by.
set_ipv4_dscp
: Set IPv4 DSCP value with specified valuedscp_value {unsigned}
: The new DSCP value to be set
set_ipv6_dscp
: Set IPv6 DSCP value with specified valuedscp_value {unsigned}
: The new DSCP value to be set
indirect
: Use indirect action created viaflow indirect_action {port_id} create
indirect_action_id {unsigned}
: Indirect action ID to use
color
: Color the packet to reflect the meter color resulttype {value}
: Set color type with specified value(green/yellow/red)
port_representor
: at embedded switch level, send matching traffic to the given ethdevport_id {unsigned}
: ethdev port ID
represented_port
: at embedded switch level, send matching traffic to the entity represented by the given ethdevethdev_port_id {unsigned}
: ethdev port ID
meter_mark
: meter the directed packets using profile and policymtr_profile {unsigned}
: meter profile ID to usemtr_policy {unsigned}
: meter policy ID to usemtr_color_mode {unsigned}
: meter color-awareness mode (blind/aware)mtr_init_color {value}
: initial color value (green/yellow/red)mtr_state {unsigned}
: meter state (disabled/enabled)
4.11.18. Destroying flow rules
flow destroy
destroys one or more rules from their rule ID (as returned
by flow create
), this command calls rte_flow_destroy()
as many
times as necessary:
flow destroy {port_id} rule {rule_id} [...]
If successful, it will show:
Flow rule #[...] destroyed
It does not report anything for rule IDs that do not exist. The usual error message is shown when a rule cannot be destroyed:
Caught error type [...] ([...]): [...]
flow flush
destroys all rules on a device and does not take extra
arguments. It is bound to rte_flow_flush()
:
flow flush {port_id}
Any errors are reported as above.
Creating several rules and destroying them:
testpmd> flow create 0 ingress pattern eth / ipv6 / end
actions queue index 2 / end
Flow rule #0 created
testpmd> flow create 0 ingress pattern eth / ipv4 / end
actions queue index 3 / end
Flow rule #1 created
testpmd> flow destroy 0 rule 0 rule 1
Flow rule #1 destroyed
Flow rule #0 destroyed
testpmd>
The same result can be achieved using flow flush
:
testpmd> flow create 0 ingress pattern eth / ipv6 / end
actions queue index 2 / end
Flow rule #0 created
testpmd> flow create 0 ingress pattern eth / ipv4 / end
actions queue index 3 / end
Flow rule #1 created
testpmd> flow flush 0
testpmd>
Non-existent rule IDs are ignored:
testpmd> flow create 0 ingress pattern eth / ipv6 / end
actions queue index 2 / end
Flow rule #0 created
testpmd> flow create 0 ingress pattern eth / ipv4 / end
actions queue index 3 / end
Flow rule #1 created
testpmd> flow destroy 0 rule 42 rule 10 rule 2
testpmd>
testpmd> flow destroy 0 rule 0
Flow rule #0 destroyed
testpmd>
4.11.19. Enqueueing destruction of flow rules
flow queue destroy
adds destruction operations to destroy one or more rules
from their rule ID (as returned by flow queue create
) to a queue,
this command calls rte_flow_async_destroy()
as many times as necessary:
flow queue {port_id} destroy {queue_id}
[postpone {boolean}] rule {rule_id} [...]
If successful, it will show:
Flow rule #[...] destruction enqueued
It does not report anything for rule IDs that do not exist. The usual error message is shown when a rule cannot be destroyed:
Caught error type [...] ([...]): [...]
flow queue pull
must be called to retrieve the operation status.
4.11.20. Querying flow rules
flow query
queries a specific action of a flow rule having that
ability. Such actions collect information that can be reported using this
command. It is bound to rte_flow_query()
:
flow query {port_id} {rule_id} {action}
If successful, it will display either the retrieved data for known actions or the following message:
Cannot display result for action type [...] ([...])
Otherwise, it will complain either that the rule does not exist or that some error occurred:
Flow rule #[...] not found
Caught error type [...] ([...]): [...]
Currently only the count
action is supported. This action reports the
number of packets that hit the flow rule and the total number of bytes. Its
output has the following format:
count:
hits_set: [...] # whether "hits" contains a valid value
bytes_set: [...] # whether "bytes" contains a valid value
hits: [...] # number of packets
bytes: [...] # number of bytes
Querying counters for TCPv6 packets redirected to queue 6:
testpmd> flow create 0 ingress pattern eth / ipv6 / tcp / end
actions queue index 6 / count / end
Flow rule #4 created
testpmd> flow query 0 4 count
count:
hits_set: 1
bytes_set: 0
hits: 386446
bytes: 0
testpmd>
4.11.21. Listing flow rules
flow list
lists existing flow rules sorted by priority and optionally
filtered by group identifiers:
flow list {port_id} [group {group_id}] [...]
This command only fails with the following message if the device does not exist:
Invalid port [...]
Output consists of a header line followed by a short description of each flow rule, one per line. There is no output at all when no flow rules are configured on the device:
ID Group Prio Attr Rule
[...] [...] [...] [...] [...]
Attr
column flags:
i
foringress
.e
foregress
.
Creating several flow rules and listing them:
testpmd> flow create 0 ingress pattern eth / ipv4 / end
actions queue index 6 / end
Flow rule #0 created
testpmd> flow create 0 ingress pattern eth / ipv6 / end
actions queue index 2 / end
Flow rule #1 created
testpmd> flow create 0 priority 5 ingress pattern eth / ipv4 / udp / end
actions rss queues 6 7 8 end / end
Flow rule #2 created
testpmd> flow list 0
ID Group Prio Attr Rule
0 0 0 i- ETH IPV4 => QUEUE
1 0 0 i- ETH IPV6 => QUEUE
2 0 5 i- ETH IPV4 UDP => RSS
testpmd>
Rules are sorted by priority (i.e. group ID first, then priority level):
testpmd> flow list 1
ID Group Prio Attr Rule
0 0 0 i- ETH => COUNT
6 0 500 i- ETH IPV6 TCP => DROP COUNT
5 0 1000 i- ETH IPV6 ICMP => QUEUE
1 24 0 i- ETH IPV4 UDP => QUEUE
4 24 10 i- ETH IPV4 TCP => DROP
3 24 20 i- ETH IPV4 => DROP
2 24 42 i- ETH IPV4 UDP => QUEUE
7 63 0 i- ETH IPV6 UDP VXLAN => MARK QUEUE
testpmd>
Output can be limited to specific groups:
testpmd> flow list 1 group 0 group 63
ID Group Prio Attr Rule
0 0 0 i- ETH => COUNT
6 0 500 i- ETH IPV6 TCP => DROP COUNT
5 0 1000 i- ETH IPV6 ICMP => QUEUE
7 63 0 i- ETH IPV6 UDP VXLAN => MARK QUEUE
testpmd>
4.11.22. Toggling isolated mode
flow isolate
can be used to tell the underlying PMD that ingress traffic
must only be injected from the defined flow rules; that no default traffic
is expected outside those rules and the driver is free to assign more
resources to handle them. It is bound to rte_flow_isolate()
:
flow isolate {port_id} {boolean}
If successful, enabling or disabling isolated mode shows either:
Ingress traffic on port [...]
is now restricted to the defined flow rules
Or:
Ingress traffic on port [...]
is not restricted anymore to the defined flow rules
Otherwise, in case of error:
Caught error type [...] ([...]): [...]
Mainly due to its side effects, PMDs supporting this mode may not have the ability to toggle it more than once without reinitializing affected ports first (e.g. by exiting testpmd).
Enabling isolated mode:
testpmd> flow isolate 0 true
Ingress traffic on port 0 is now restricted to the defined flow rules
testpmd>
Disabling isolated mode:
testpmd> flow isolate 0 false
Ingress traffic on port 0 is not restricted anymore to the defined flow rules
testpmd>
4.11.23. Dumping HW internal information
flow dump
dumps the hardware’s internal representation information of
all flows. It is bound to rte_flow_dev_dump()
:
flow dump {port_id} {output_file}
If successful, it will show:
Flow dump finished
Otherwise, it will complain error occurred:
Caught error type [...] ([...]): [...]
4.11.24. Listing and destroying aged flow rules
flow aged
simply lists aged flow rules be get from api rte_flow_get_aged_flows
,
and destroy
parameter can be used to destroy those flow rules in PMD:
flow aged {port_id} [destroy]
Listing current aged flow rules:
testpmd> flow aged 0
Port 0 total aged flows: 0
testpmd> flow create 0 ingress pattern eth / ipv4 src is 2.2.2.14 / end
actions age timeout 5 / queue index 0 / end
Flow rule #0 created
testpmd> flow create 0 ingress pattern eth / ipv4 src is 2.2.2.15 / end
actions age timeout 4 / queue index 0 / end
Flow rule #1 created
testpmd> flow create 0 ingress pattern eth / ipv4 src is 2.2.2.16 / end
actions age timeout 2 / queue index 0 / end
Flow rule #2 created
testpmd> flow create 0 ingress pattern eth / ipv4 src is 2.2.2.17 / end
actions age timeout 3 / queue index 0 / end
Flow rule #3 created
Aged Rules are simply list as command flow list {port_id}
, but strip the detail rule
information, all the aged flows are sorted by the longest timeout time. For example, if
those rules be configured in the same time, ID 2 will be the first aged out rule, the next
will be ID 3, ID 1, ID 0:
testpmd> flow aged 0
Port 0 total aged flows: 4
ID Group Prio Attr
2 0 0 i--
3 0 0 i--
1 0 0 i--
0 0 0 i--
If attach destroy
parameter, the command will destroy all the list aged flow rules:
testpmd> flow aged 0 destroy
Port 0 total aged flows: 4
ID Group Prio Attr
2 0 0 i--
3 0 0 i--
1 0 0 i--
0 0 0 i--
Flow rule #2 destroyed
Flow rule #3 destroyed
Flow rule #1 destroyed
Flow rule #0 destroyed
4 flows be destroyed
testpmd> flow aged 0
Port 0 total aged flows: 0
4.11.25. Enqueueing listing and destroying aged flow rules
flow queue aged
simply lists aged flow rules be get from
rte_flow_get_q_aged_flows
API, and destroy
parameter can be used to
destroy those flow rules in PMD:
flow queue {port_id} aged {queue_id} [destroy]
Listing current aged flow rules:
testpmd> flow queue 0 aged 0
Port 0 queue 0 total aged flows: 0
testpmd> flow queue 0 create 0 ingress tanle 0 item_template 0 action_template 0
pattern eth / ipv4 src is 2.2.2.14 / end
actions age timeout 5 / queue index 0 / end
Flow rule #0 creation enqueued
testpmd> flow queue 0 create 0 ingress tanle 0 item_template 0 action_template 0
pattern eth / ipv4 src is 2.2.2.15 / end
actions age timeout 4 / queue index 0 / end
Flow rule #1 creation enqueued
testpmd> flow queue 0 create 0 ingress tanle 0 item_template 0 action_template 0
pattern eth / ipv4 src is 2.2.2.16 / end
actions age timeout 4 / queue index 0 / end
Flow rule #2 creation enqueued
testpmd> flow queue 0 create 0 ingress tanle 0 item_template 0 action_template 0
pattern eth / ipv4 src is 2.2.2.17 / end
actions age timeout 4 / queue index 0 / end
Flow rule #3 creation enqueued
testpmd> flow pull 0 queue 0
Queue #0 pulled 4 operations (0 failed, 4 succeeded)
Aged Rules are simply list as command flow queue {port_id} list {queue_id}
,
but strip the detail rule information, all the aged flows are sorted by the
longest timeout time. For example, if those rules is configured in the same time,
ID 2 will be the first aged out rule, the next will be ID 3, ID 1, ID 0:
testpmd> flow queue 0 aged 0
Port 0 queue 0 total aged flows: 4
ID Group Prio Attr
2 0 0 ---
3 0 0 ---
1 0 0 ---
0 0 0 ---
0 flows destroyed
If attach destroy
parameter, the command will destroy all the list aged flow rules:
testpmd> flow queue 0 aged 0 destroy
Port 0 queue 0 total aged flows: 4
ID Group Prio Attr
2 0 0 ---
3 0 0 ---
1 0 0 ---
0 0 0 ---
Flow rule #2 destruction enqueued
Flow rule #3 destruction enqueued
Flow rule #1 destruction enqueued
Flow rule #0 destruction enqueued
4 flows destroyed
testpmd> flow queue 0 aged 0
Port 0 total aged flows: 0
Note
The queue must be empty before attaching destroy
parameter.
4.11.26. Creating indirect actions
flow indirect_action {port_id} create
creates indirect action with optional
indirect action ID. It is bound to rte_flow_action_handle_create()
:
flow indirect_action {port_id} create [action_id {indirect_action_id}]
[ingress] [egress] [transfer] action {action} / end
If successful, it will show:
Indirect action #[...] created
Otherwise, it will complain either that indirect action already exists or that some error occurred:
Indirect action #[...] is already assigned, delete it first
Caught error type [...] ([...]): [...]
Create indirect rss action with id 100 to queues 1 and 2 on port 0:
testpmd> flow indirect_action 0 create action_id 100 \
ingress action rss queues 1 2 end / end
Create indirect rss action with id assigned by testpmd to queues 1 and 2 on port 0:
testpmd> flow indirect_action 0 create action_id \
ingress action rss queues 0 1 end / end
4.11.27. Enqueueing creation of indirect actions
flow queue indirect_action create
adds creation operation of an indirect
action to a queue. It is bound to rte_flow_async_action_handle_create()
:
flow queue {port_id} create {queue_id} [postpone {boolean}]
table {table_id} item_template {item_template_id}
action_template {action_template_id}
pattern {item} [/ {item} [...]] / end
actions {action} [/ {action} [...]] / end
If successful, it will show:
Indirect action #[...] creation queued
Otherwise it will show an error message of the form:
Caught error type [...] ([...]): [...]
This command uses the same parameters as flow indirect_action create
,
described in Creating indirect actions.
flow queue pull
must be called to retrieve the operation status.
4.11.28. Updating indirect actions
flow indirect_action {port_id} update
updates configuration of the indirect
action from its indirect action ID (as returned by
flow indirect_action {port_id} create
). It is bound to
rte_flow_action_handle_update()
:
flow indirect_action {port_id} update {indirect_action_id}
action {action} / end
If successful, it will show:
Indirect action #[...] updated
Otherwise, it will complain either that indirect action not found or that some error occurred:
Failed to find indirect action #[...] on port [...]
Caught error type [...] ([...]): [...]
Update indirect rss action having id 100 on port 0 with rss to queues 0 and 3 (in create example above rss queues were 1 and 2):
testpmd> flow indirect_action 0 update 100 action rss queues 0 3 end / end
4.11.29. Enqueueing update of indirect actions
flow queue indirect_action update
adds update operation for an indirect
action to a queue. It is bound to rte_flow_async_action_handle_update()
:
flow queue {port_id} indirect_action {queue_id} update
{indirect_action_id} [postpone {boolean}] action {action} / end
If successful, it will show:
Indirect action #[...] update queued
Otherwise it will show an error message of the form:
Caught error type [...] ([...]): [...]
flow queue pull
must be called to retrieve the operation status.
4.11.30. Destroying indirect actions
flow indirect_action {port_id} destroy
destroys one or more indirect actions
from their indirect action IDs (as returned by
flow indirect_action {port_id} create
). It is bound to
rte_flow_action_handle_destroy()
:
flow indirect_action {port_id} destroy action_id {indirect_action_id} [...]
If successful, it will show:
Indirect action #[...] destroyed
It does not report anything for indirect action IDs that do not exist. The usual error message is shown when a indirect action cannot be destroyed:
Caught error type [...] ([...]): [...]
Destroy indirect actions having id 100 & 101:
testpmd> flow indirect_action 0 destroy action_id 100 action_id 101
4.11.31. Enqueueing destruction of indirect actions
flow queue indirect_action destroy
adds destruction operation to destroy
one or more indirect actions from their indirect action IDs (as returned by
flow queue {port_id} indirect_action {queue_id} create
) to a queue.
It is bound to rte_flow_async_action_handle_destroy()
:
flow queue {port_id} indirect_action {queue_id} destroy
[postpone {boolean}] action_id {indirect_action_id} [...]
If successful, it will show:
Indirect action #[...] destruction queued
Otherwise it will show an error message of the form:
Caught error type [...] ([...]): [...]
flow queue pull
must be called to retrieve the operation status.
4.11.32. Query indirect actions
flow indirect_action {port_id} query
queries the indirect action from its
indirect action ID (as returned by flow indirect_action {port_id} create
).
It is bound to rte_flow_action_handle_query()
:
flow indirect_action {port_id} query {indirect_action_id}
Currently only rss indirect action supported. If successful, it will show:
Indirect RSS action:
refs:[...]
Otherwise, it will complain either that indirect action not found or that some error occurred:
Failed to find indirect action #[...] on port [...]
Caught error type [...] ([...]): [...]
Query indirect action having id 100:
testpmd> flow indirect_action 0 query 100
4.11.33. Enqueueing query of indirect actions
flow queue indirect_action query
adds query operation for an indirect
action to a queue. It is bound to rte_flow_async_action_handle_query()
:
flow queue {port_id} indirect_action {queue_id} query
{indirect_action_id} [postpone {boolean}]
If successful, it will show:
Indirect action #[...] query queued
Otherwise it will show an error message of the form:
Caught error type [...] ([...]): [...]
flow queue pull
must be called to retrieve the operation status.
4.11.34. Sample QinQ flow rules
Before creating QinQ rule(s) the following commands should be issued to enable QinQ:
testpmd> port stop 0
testpmd> vlan set extend on 0
The above command sets the inner and outer TPID’s to 0x8100.
To change the TPID’s the following commands should be used:
testpmd> vlan set outer tpid 0x88A8 0
testpmd> vlan set inner tpid 0x8100 0
testpmd> port start 0
Validate and create a QinQ rule on port 0 to steer traffic to a VF queue in a VM.
testpmd> flow validate 0 ingress pattern eth / vlan tci is 123 /
vlan tci is 456 / end actions vf id 1 / queue index 0 / end
Flow rule #0 validated
testpmd> flow create 0 ingress pattern eth / vlan tci is 4 /
vlan tci is 456 / end actions vf id 123 / queue index 0 / end
Flow rule #0 created
testpmd> flow list 0
ID Group Prio Attr Rule
0 0 0 i- ETH VLAN VLAN=>VF QUEUE
Validate and create a QinQ rule on port 0 to steer traffic to a queue on the host.
testpmd> flow validate 0 ingress pattern eth / vlan tci is 321 /
vlan tci is 654 / end actions pf / queue index 0 / end
Flow rule #1 validated
testpmd> flow create 0 ingress pattern eth / vlan tci is 321 /
vlan tci is 654 / end actions pf / queue index 1 / end
Flow rule #1 created
testpmd> flow list 0
ID Group Prio Attr Rule
0 0 0 i- ETH VLAN VLAN=>VF QUEUE
1 0 0 i- ETH VLAN VLAN=>PF QUEUE
4.11.35. Sample VXLAN flow rules
Before creating VXLAN rule(s), the UDP port should be added for VXLAN packet filter on a port:
testpmd> rx_vxlan_port add 4789 0
Create VXLAN rules on port 0 to steer traffic to PF queues.
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / vxlan /
eth dst is 00:11:22:33:44:55 / end actions pf / queue index 1 / end
Flow rule #0 created
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / vxlan vni is 3 /
eth dst is 00:11:22:33:44:55 / end actions pf / queue index 2 / end
Flow rule #1 created
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / vxlan /
eth dst is 00:11:22:33:44:55 / vlan tci is 10 / end actions pf /
queue index 3 / end
Flow rule #2 created
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / vxlan vni is 5 /
eth dst is 00:11:22:33:44:55 / vlan tci is 20 / end actions pf /
queue index 4 / end
Flow rule #3 created
testpmd> flow create 0 ingress pattern eth dst is 00:00:00:00:01:00 / ipv4 /
udp / vxlan vni is 6 / eth dst is 00:11:22:33:44:55 / end actions pf /
queue index 5 / end
Flow rule #4 created
testpmd> flow list 0
ID Group Prio Attr Rule
0 0 0 i- ETH IPV4 UDP VXLAN ETH => QUEUE
1 0 0 i- ETH IPV4 UDP VXLAN ETH => QUEUE
2 0 0 i- ETH IPV4 UDP VXLAN ETH VLAN => QUEUE
3 0 0 i- ETH IPV4 UDP VXLAN ETH VLAN => QUEUE
4 0 0 i- ETH IPV4 UDP VXLAN ETH => QUEUE
4.11.36. Sample VXLAN encapsulation rule
VXLAN encapsulation outer layer has default value pre-configured in testpmd source code, those can be changed by using the following commands
IPv4 VXLAN outer header:
testpmd> set vxlan ip-version ipv4 vni 4 udp-src 4 udp-dst 4 ip-src 127.0.0.1
ip-dst 128.0.0.1 eth-src 11:11:11:11:11:11 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 ingress pattern end actions vxlan_encap /
queue index 0 / end
testpmd> set vxlan-with-vlan ip-version ipv4 vni 4 udp-src 4 udp-dst 4 ip-src
127.0.0.1 ip-dst 128.0.0.1 vlan-tci 34 eth-src 11:11:11:11:11:11
eth-dst 22:22:22:22:22:22
testpmd> flow create 0 ingress pattern end actions vxlan_encap /
queue index 0 / end
testpmd> set vxlan-tos-ttl ip-version ipv4 vni 4 udp-src 4 udp-dst 4 ip-tos 0
ip-ttl 255 ip-src 127.0.0.1 ip-dst 128.0.0.1 eth-src 11:11:11:11:11:11
eth-dst 22:22:22:22:22:22
testpmd> flow create 0 ingress pattern end actions vxlan_encap /
queue index 0 / end
IPv6 VXLAN outer header:
testpmd> set vxlan ip-version ipv6 vni 4 udp-src 4 udp-dst 4 ip-src ::1
ip-dst ::2222 eth-src 11:11:11:11:11:11 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 ingress pattern end actions vxlan_encap /
queue index 0 / end
testpmd> set vxlan-with-vlan ip-version ipv6 vni 4 udp-src 4 udp-dst 4
ip-src ::1 ip-dst ::2222 vlan-tci 34 eth-src 11:11:11:11:11:11
eth-dst 22:22:22:22:22:22
testpmd> flow create 0 ingress pattern end actions vxlan_encap /
queue index 0 / end
testpmd> set vxlan-tos-ttl ip-version ipv6 vni 4 udp-src 4 udp-dst 4
ip-tos 0 ip-ttl 255 ::1 ip-dst ::2222 eth-src 11:11:11:11:11:11
eth-dst 22:22:22:22:22:22
testpmd> flow create 0 ingress pattern end actions vxlan_encap /
queue index 0 / end
4.11.37. Sample NVGRE encapsulation rule
NVGRE encapsulation outer layer has default value pre-configured in testpmd source code, those can be changed by using the following commands
IPv4 NVGRE outer header:
testpmd> set nvgre ip-version ipv4 tni 4 ip-src 127.0.0.1 ip-dst 128.0.0.1
eth-src 11:11:11:11:11:11 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 ingress pattern end actions nvgre_encap /
queue index 0 / end
testpmd> set nvgre-with-vlan ip-version ipv4 tni 4 ip-src 127.0.0.1
ip-dst 128.0.0.1 vlan-tci 34 eth-src 11:11:11:11:11:11
eth-dst 22:22:22:22:22:22
testpmd> flow create 0 ingress pattern end actions nvgre_encap /
queue index 0 / end
IPv6 NVGRE outer header:
testpmd> set nvgre ip-version ipv6 tni 4 ip-src ::1 ip-dst ::2222
eth-src 11:11:11:11:11:11 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 ingress pattern end actions nvgre_encap /
queue index 0 / end
testpmd> set nvgre-with-vlan ip-version ipv6 tni 4 ip-src ::1 ip-dst ::2222
vlan-tci 34 eth-src 11:11:11:11:11:11 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 ingress pattern end actions nvgre_encap /
queue index 0 / end
4.11.38. Sample L2 encapsulation rule
L2 encapsulation has default value pre-configured in testpmd source code, those can be changed by using the following commands
L2 header:
testpmd> set l2_encap ip-version ipv4
eth-src 11:11:11:11:11:11 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / mpls / end actions
mplsoudp_decap / l2_encap / end
L2 with VXLAN header:
testpmd> set l2_encap-with-vlan ip-version ipv4 vlan-tci 34
eth-src 11:11:11:11:11:11 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / mpls / end actions
mplsoudp_decap / l2_encap / end
4.11.39. Sample L2 decapsulation rule
L2 decapsulation has default value pre-configured in testpmd source code, those can be changed by using the following commands
L2 header:
testpmd> set l2_decap
testpmd> flow create 0 egress pattern eth / end actions l2_decap / mplsoudp_encap /
queue index 0 / end
L2 with VXLAN header:
testpmd> set l2_encap-with-vlan
testpmd> flow create 0 egress pattern eth / end actions l2_encap / mplsoudp_encap /
queue index 0 / end
4.11.40. Sample MPLSoGRE encapsulation rule
MPLSoGRE encapsulation outer layer has default value pre-configured in testpmd source code, those can be changed by using the following commands
IPv4 MPLSoGRE outer header:
testpmd> set mplsogre_encap ip-version ipv4 label 4
ip-src 127.0.0.1 ip-dst 128.0.0.1 eth-src 11:11:11:11:11:11
eth-dst 22:22:22:22:22:22
testpmd> flow create 0 egress pattern eth / end actions l2_decap /
mplsogre_encap / end
IPv4 MPLSoGRE with VLAN outer header:
testpmd> set mplsogre_encap-with-vlan ip-version ipv4 label 4
ip-src 127.0.0.1 ip-dst 128.0.0.1 vlan-tci 34
eth-src 11:11:11:11:11:11 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 egress pattern eth / end actions l2_decap /
mplsogre_encap / end
IPv6 MPLSoGRE outer header:
testpmd> set mplsogre_encap ip-version ipv6 mask 4
ip-src ::1 ip-dst ::2222 eth-src 11:11:11:11:11:11
eth-dst 22:22:22:22:22:22
testpmd> flow create 0 egress pattern eth / end actions l2_decap /
mplsogre_encap / end
IPv6 MPLSoGRE with VLAN outer header:
testpmd> set mplsogre_encap-with-vlan ip-version ipv6 mask 4
ip-src ::1 ip-dst ::2222 vlan-tci 34
eth-src 11:11:11:11:11:11 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 egress pattern eth / end actions l2_decap /
mplsogre_encap / end
4.11.41. Sample MPLSoGRE decapsulation rule
MPLSoGRE decapsulation outer layer has default value pre-configured in testpmd source code, those can be changed by using the following commands
IPv4 MPLSoGRE outer header:
testpmd> set mplsogre_decap ip-version ipv4
testpmd> flow create 0 ingress pattern eth / ipv4 / gre / mpls / end actions
mplsogre_decap / l2_encap / end
IPv4 MPLSoGRE with VLAN outer header:
testpmd> set mplsogre_decap-with-vlan ip-version ipv4
testpmd> flow create 0 ingress pattern eth / vlan / ipv4 / gre / mpls / end
actions mplsogre_decap / l2_encap / end
IPv6 MPLSoGRE outer header:
testpmd> set mplsogre_decap ip-version ipv6
testpmd> flow create 0 ingress pattern eth / ipv6 / gre / mpls / end
actions mplsogre_decap / l2_encap / end
IPv6 MPLSoGRE with VLAN outer header:
testpmd> set mplsogre_decap-with-vlan ip-version ipv6
testpmd> flow create 0 ingress pattern eth / vlan / ipv6 / gre / mpls / end
actions mplsogre_decap / l2_encap / end
4.11.42. Sample MPLSoUDP encapsulation rule
MPLSoUDP encapsulation outer layer has default value pre-configured in testpmd source code, those can be changed by using the following commands
IPv4 MPLSoUDP outer header:
testpmd> set mplsoudp_encap ip-version ipv4 label 4 udp-src 5 udp-dst 10
ip-src 127.0.0.1 ip-dst 128.0.0.1 eth-src 11:11:11:11:11:11
eth-dst 22:22:22:22:22:22
testpmd> flow create 0 egress pattern eth / end actions l2_decap /
mplsoudp_encap / end
IPv4 MPLSoUDP with VLAN outer header:
testpmd> set mplsoudp_encap-with-vlan ip-version ipv4 label 4 udp-src 5
udp-dst 10 ip-src 127.0.0.1 ip-dst 128.0.0.1 vlan-tci 34
eth-src 11:11:11:11:11:11 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 egress pattern eth / end actions l2_decap /
mplsoudp_encap / end
IPv6 MPLSoUDP outer header:
testpmd> set mplsoudp_encap ip-version ipv6 mask 4 udp-src 5 udp-dst 10
ip-src ::1 ip-dst ::2222 eth-src 11:11:11:11:11:11
eth-dst 22:22:22:22:22:22
testpmd> flow create 0 egress pattern eth / end actions l2_decap /
mplsoudp_encap / end
IPv6 MPLSoUDP with VLAN outer header:
testpmd> set mplsoudp_encap-with-vlan ip-version ipv6 mask 4 udp-src 5
udp-dst 10 ip-src ::1 ip-dst ::2222 vlan-tci 34
eth-src 11:11:11:11:11:11 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 egress pattern eth / end actions l2_decap /
mplsoudp_encap / end
4.11.43. Sample MPLSoUDP decapsulation rule
MPLSoUDP decapsulation outer layer has default value pre-configured in testpmd source code, those can be changed by using the following commands
IPv4 MPLSoUDP outer header:
testpmd> set mplsoudp_decap ip-version ipv4
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / mpls / end actions
mplsoudp_decap / l2_encap / end
IPv4 MPLSoUDP with VLAN outer header:
testpmd> set mplsoudp_decap-with-vlan ip-version ipv4
testpmd> flow create 0 ingress pattern eth / vlan / ipv4 / udp / mpls / end
actions mplsoudp_decap / l2_encap / end
IPv6 MPLSoUDP outer header:
testpmd> set mplsoudp_decap ip-version ipv6
testpmd> flow create 0 ingress pattern eth / ipv6 / udp / mpls / end
actions mplsoudp_decap / l2_encap / end
IPv6 MPLSoUDP with VLAN outer header:
testpmd> set mplsoudp_decap-with-vlan ip-version ipv6
testpmd> flow create 0 ingress pattern eth / vlan / ipv6 / udp / mpls / end
actions mplsoudp_decap / l2_encap / end
4.11.44. Sample Raw encapsulation rule
Raw encapsulation configuration can be set by the following commands
Encapsulating VxLAN:
testpmd> set raw_encap 4 eth src is 10:11:22:33:44:55 / vlan tci is 1
inner_type is 0x0800 / ipv4 / udp dst is 4789 / vxlan vni
is 2 / end_set
testpmd> flow create 0 egress pattern eth / ipv4 / end actions
raw_encap index 4 / end
4.11.45. Sample Raw decapsulation rule
Raw decapsulation configuration can be set by the following commands
Decapsulating VxLAN:
testpmd> set raw_decap eth / ipv4 / udp / vxlan / end_set
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / vxlan / eth / ipv4 /
end actions raw_decap / queue index 0 / end
4.11.46. Sample ESP rules
ESP rules can be created by the following commands:
testpmd> flow create 0 ingress pattern eth / ipv4 / esp spi is 1 / end actions
queue index 3 / end
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / esp spi is 1 / end
actions queue index 3 / end
testpmd> flow create 0 ingress pattern eth / ipv6 / esp spi is 1 / end actions
queue index 3 / end
testpmd> flow create 0 ingress pattern eth / ipv6 / udp / esp spi is 1 / end
actions queue index 3 / end
4.11.47. Sample AH rules
AH rules can be created by the following commands:
testpmd> flow create 0 ingress pattern eth / ipv4 / ah spi is 1 / end actions
queue index 3 / end
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / ah spi is 1 / end
actions queue index 3 / end
testpmd> flow create 0 ingress pattern eth / ipv6 / ah spi is 1 / end actions
queue index 3 / end
testpmd> flow create 0 ingress pattern eth / ipv6 / udp / ah spi is 1 / end
actions queue index 3 / end
4.11.48. Sample PFCP rules
PFCP rules can be created by the following commands(s_field need to be 1 if seid is set):
testpmd> flow create 0 ingress pattern eth / ipv4 / pfcp s_field is 0 / end
actions queue index 3 / end
testpmd> flow create 0 ingress pattern eth / ipv4 / pfcp s_field is 1
seid is 1 / end actions queue index 3 / end
testpmd> flow create 0 ingress pattern eth / ipv6 / pfcp s_field is 0 / end
actions queue index 3 / end
testpmd> flow create 0 ingress pattern eth / ipv6 / pfcp s_field is 1
seid is 1 / end actions queue index 3 / end
4.11.49. Sample Sampling/Mirroring rules
Sample/Mirroring rules can be set by the following commands
NIC-RX Sampling rule, the matched ingress packets and sent to the queue 1, and 50% packets are duplicated and marked with 0x1234 and sent to queue 0.
testpmd> set sample_actions 0 mark id 0x1234 / queue index 0 / end
testpmd> flow create 0 ingress group 1 pattern eth / end actions
sample ratio 2 index 0 / queue index 1 / end
Match packets coming from a VM which is referred to by means of its representor ethdev (port 1), mirror 50% of them to the said representor (for bookkeeping) as well as encapsulate all the packets and steer them to the physical port:
testpmd> set sample_actions 0 port_representor ethdev_port_id 1 / end
testpmd> set vxlan ip-version ipv4 vni 4 udp-src 32 udp-dst 4789 ip-src 127.0.0.1
ip-dst 127.0.0.2 eth-src 11:11:11:11:11:11 eth-dst 22:22:22:22:22:22
testpmd> flow create 0 transfer pattern represented_port ethdev_port_id is 1 / end
actions sample ratio 2 index 0 / vxlan_encap /
represented_port ethdev_port_id 0 / end
The rule is inserted via port 0 (assumed to have “transfer” privilege).
4.11.50. Sample integrity rules
Integrity rules can be created by the following commands:
Integrity rule that forwards valid TCP packets to group 1.
TCP packet integrity is matched with the l4_ok
bit 3.
testpmd> flow create 0 ingress
pattern eth / ipv4 / tcp / integrity value mask 8 value spec 8 / end
actions jump group 1 / end
Integrity rule that forwards invalid packets to application.
General packet integrity is matched with the packet_ok
bit 0.
testpmd> flow create 0 ingress pattern integrity value mask 1 value spec 0 / end actions queue index 0 / end
4.11.51. Sample conntrack rules
Conntrack rules can be set by the following commands
Need to construct the connection context with provided information. In the first table, create a flow rule by using conntrack action and jump to the next table. In the next table, create a rule to check the state.
testpmd> set conntrack com peer 1 is_orig 1 enable 1 live 1 sack 1 cack 0
last_dir 0 liberal 0 state 1 max_ack_win 7 r_lim 5 last_win 510
last_seq 2632987379 last_ack 2532480967 last_end 2632987379
last_index 0x8
testpmd> set conntrack orig scale 7 fin 0 acked 1 unack_data 0
sent_end 2632987379 reply_end 2633016339 max_win 28960
max_ack 2632987379
testpmd> set conntrack rply scale 7 fin 0 acked 1 unack_data 0
sent_end 2532480967 reply_end 2532546247 max_win 65280
max_ack 2532480967
testpmd> flow indirect_action 0 create ingress action conntrack / end
testpmd> flow create 0 group 3 ingress pattern eth / ipv4 / tcp / end actions indirect 0 / jump group 5 / end
testpmd> flow create 0 group 5 ingress pattern eth / ipv4 / tcp / conntrack is 1 / end actions queue index 5 / end
Construct the conntrack again with only “is_orig” set to 0 (other fields are ignored), then use “update” interface to update the direction. Create flow rules like above for the peer port.
testpmd> flow indirect_action 0 update 0 action conntrack_update dir / end
4.11.52. Sample meter with policy rules
Meter with policy rules can be created by the following commands:
Need to create policy first and actions are set for green/yellow/red colors. Create meter with policy id. Create flow with meter id.
Example for policy with meter color action. The purpose is to color the packet
to reflect the meter color result.
The meter policy action list: green -> green, yellow -> yellow, red -> red
.
testpmd> add port meter profile srtcm_rfc2697 0 13 21504 2688 0 0
testpmd> add port meter policy 0 1 g_actions color type green / end y_actions color type yellow / end
r_actions color type red / end
testpmd> create port meter 0 1 13 1 yes 0xffff 0 0
testpmd> flow create 0 priority 0 ingress group 1 pattern eth / end actions meter mtr_id 1 / end
4.11.53. Sample L2TPv2 RSS rules
L2TPv2 RSS rules can be created by the following commands:
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / l2tpv2 type control
/ end actions rss types l2tpv2 end queues end / end
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / l2tpv2 / end
actions rss types eth l2-src-only end queues end / end
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / l2tpv2 / ppp / end
actions rss types l2tpv2 end queues end / end
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / l2tpv2 / ppp / ipv4
/ end actions rss types ipv4 end queues end / end
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / l2tpv2 / ppp / ipv6
/ udp / end actions rss types ipv6-udp end queues end / end
testpmd> flow create 0 ingress pattern eth / ipv6 / udp / l2tpv2 / ppp / ipv4
/ tcp / end actions rss types ipv4-tcp end queues end / end
testpmd> flow create 0 ingress pattern eth / ipv6 / udp / l2tpv2 / ppp / ipv6
/ end actions rss types ipv6 end queues end / end
4.11.54. Sample L2TPv2 FDIR rules
L2TPv2 FDIR rules can be created by the following commands:
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / l2tpv2 type control
session_id is 0x1111 / end actions queue index 3 / end
testpmd> flow create 0 ingress pattern eth src is 00:00:00:00:00:01 / ipv4
/ udp / l2tpv2 type data / end actions queue index 3 / end
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / l2tpv2 type data
session_id is 0x1111 / ppp / end actions queue index 3 / end
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / l2tpv2 / ppp / ipv4
src is 10.0.0.1 / end actions queue index 3 / end
testpmd> flow create 0 ingress pattern eth / ipv6 / udp / l2tpv2 / ppp / ipv6
dst is ABAB:910B:6666:3457:8295:3333:1800:2929 / end actions queue index 3 / end
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / l2tpv2 / ppp / ipv4
/ udp src is 22 / end actions queue index 3 / end
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / l2tpv2 / ppp / ipv4
/ tcp dst is 23 / end actions queue index 3 / end
4.11.55. Sample RAW rule
A RAW rule can be created as following using pattern_hex
key and mask.
testpmd> flow create 0 group 0 priority 1 ingress pattern raw relative is 0 search is 0 offset
is 0 limit is 0 pattern_hex spec 00000000000000000000000000000000000000000000000000000a0a0a0a
pattern_hex mask 0000000000000000000000000000000000000000000000000000ffffffff / end actions
queue index 4 / end
4.12. BPF Functions
The following sections show functions to load/unload eBPF based filters.
4.12.1. bpf-load
Load an eBPF program as a callback for particular RX/TX queue:
testpmd> bpf-load rx|tx (portid) (queueid) (load-flags) (bpf-prog-filename)
The available load-flags are:
J
: use JIT generated native code, otherwise BPF interpreter will be used.M
: assume input parameter is a pointer to rte_mbuf, otherwise assume it is a pointer to first segment’s data.-
: none.
Note
You’ll need clang v3.7 or above to build bpf program you’d like to load
For example:
cd examples/bpf
clang -O2 -target bpf -c t1.c
Then to load (and JIT compile) t1.o at RX queue 0, port 1:
testpmd> bpf-load rx 1 0 J ./dpdk.org/examples/bpf/t1.o
To load (not JITed) t1.o at TX queue 0, port 0:
testpmd> bpf-load tx 0 0 - ./dpdk.org/examples/bpf/t1.o
4.12.2. bpf-unload
Unload previously loaded eBPF program for particular RX/TX queue:
testpmd> bpf-unload rx|tx (portid) (queueid)
For example to unload BPF filter from TX queue 0, port 0:
testpmd> bpf-unload tx 0 0
4.13. Flex Item Functions
The following sections show functions that configure and create flex item object, create flex pattern and use it in a flow rule. The commands will use 20 bytes IPv4 header for examples:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ver | IHL | TOS | length | +0
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| identification | flg | frag. offset | +4
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TTL | protocol | checksum | +8
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| source IP address | +12
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| destination IP address | +16
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
4.13.1. Create flex item
Flex item object is created by PMD according to a new header configuration. The
header configuration is compiled by the testpmd and stored in
rte_flow_item_flex_conf
type variable.
# flow flex_item create <port> <flex id> <configuration file>
testpmd> flow flex_item init 0 3 ipv4_flex_config.json
port-0: created flex item #3
Flex item configuration is kept in external JSON file. It describes the following header elements:
New header length.
Specify whether the new header has fixed or variable length and the basic/minimal header length value.
If header length is not fixed, header location with a value that completes header length calculation and scale/offset function must be added.
Scale function depends on port hardware.
Next protocol.
Describes location in the new header that specify following network header type.
Flow match samples.
Describes locations in the new header that will be used in flow rules.
Number of flow samples and sample maximal length depend of port hardware.
Input trigger.
Describes preceding network header configuration.
Output trigger.
Describes conditions that trigger transfer to following network header
{
"next_header": { "field_mode": "FIELD_MODE_FIXED", "field_size": 20},
"next_protocol": {"field_size": 8, "field_base": 72},
"sample_data": [
{ "field_mode": "FIELD_MODE_FIXED", "field_size": 32, "field_base": 0},
{ "field_mode": "FIELD_MODE_FIXED", "field_size": 32, "field_base": 32},
{ "field_mode": "FIELD_MODE_FIXED", "field_size": 32, "field_base": 64},
{ "field_mode": "FIELD_MODE_FIXED", "field_size": 32, "field_base": 96}
],
"input_link": [
{"item": "eth type is 0x0800"},
{"item": "vlan inner_type is 0x0800"}
],
"output_link": [
{"item": "udp", "next": 17},
{"item": "tcp", "next": 6},
{"item": "icmp", "next": 1}
]
}
4.13.2. Flex pattern and flow rules
Flex pattern describe parts of network header that will trigger flex flow item hit in a flow rule. Flex pattern directly related to flex item samples configuration. Flex pattern can be shared between ports.
Flex pattern and flow rule to match IPv4 version and 20 bytes length
# set flex_pattern <pattern_id> is <hex bytes sequence>
testpmd> flow flex_item pattern 5 is 45FF
created pattern #5
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / flex item is 3 pattern is 5 / end actions mark id 1 / queue index 0 / end
Flow rule #0 created
Flex pattern and flow rule to match packets with source address 1.2.3.4
testpmd> flow flex_item pattern 2 spec 45000000000000000000000001020304 mask FF0000000000000000000000FFFFFFFF
created pattern #2
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / flex item is 3 pattern is 2 / end actions mark id 1 / queue index 0 / end
Flow rule #0 created
4.14. Driver specific commands
Some drivers provide specific features. See: