#include <sys/types.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include "ipsec.h"
#include "esp.h"
static inline void
{
if (IS_IP4_TUNNEL(sa->flags)) {
tunnel->
ipv4.ttl = IPDEFTTL;
memcpy((uint8_t *)&tunnel->
ipv4.src_ip,
(uint8_t *)&sa->src.ip.ip4, 4);
memcpy((uint8_t *)&tunnel->
ipv4.dst_ip,
(uint8_t *)&sa->dst.ip.ip4, 4);
} else if (IS_IP6_TUNNEL(sa->flags)) {
tunnel->
ipv6.hlimit = IPDEFTTL;
memcpy((uint8_t *)&tunnel->
ipv6.src_addr,
(uint8_t *)&sa->src.ip.ip6.ip6_b, 16);
memcpy((uint8_t *)&tunnel->
ipv6.dst_addr,
(uint8_t *)&sa->dst.ip.ip6.ip6_b, 16);
}
}
if (IS_HW_REASSEMBLY_EN(sa->flags))
}
static inline int
{
int j = 0;
crypto_cap->
sym.
aead.algo == crypto_xform->
aead.algo) {
crypto_xform->
aead.key.length,
crypto_xform->
aead.digest_length,
crypto_xform->
aead.aad_length,
crypto_xform->
aead.iv.length) == 0)
return 0;
}
return 0;
}
return 0;
}
}
}
return -ENOTSUP;
}
static inline int
{
if (crypto_xform->
next != NULL)
return (verify_crypto_xform(capabilities, crypto_xform) ||
verify_crypto_xform(capabilities, crypto_xform->
next));
else
return verify_crypto_xform(capabilities, crypto_xform);
}
static inline int
{
RTE_LOG(INFO, USER1,
"ESN is not supported\n");
return -ENOTSUP;
}
sec_cap->
ipsec.options.udp_encap == 0) {
RTE_LOG(INFO, USER1,
"UDP encapsulation is not supported\n");
return -ENOTSUP;
}
sec_cap->
ipsec.options.udp_ports_verify == 0) {
"UDP encapsulation ports verification is not supported\n");
return -ENOTSUP;
}
sec_cap->
ipsec.options.copy_dscp == 0) {
RTE_LOG(DEBUG, USER1,
"Copy DSCP is not supported\n");
return -ENOTSUP;
}
sec_cap->
ipsec.options.copy_flabel == 0) {
RTE_LOG(DEBUG, USER1,
"Copy Flow Label is not supported\n");
return -ENOTSUP;
}
sec_cap->
ipsec.options.copy_df == 0) {
RTE_LOG(DEBUG, USER1,
"Copy DP bit is not supported\n");
return -ENOTSUP;
}
sec_cap->
ipsec.options.dec_ttl == 0) {
RTE_LOG(DEBUG, USER1,
"Decrement TTL is not supported\n");
return -ENOTSUP;
}
RTE_LOG(DEBUG, USER1,
"ECN is not supported\n");
return -ENOTSUP;
}
sec_cap->
ipsec.options.stats == 0) {
RTE_LOG(DEBUG, USER1,
"Stats is not supported\n");
return -ENOTSUP;
}
(sec_cap->
ipsec.options.iv_gen_disable != 1)) {
RTE_LOG(DEBUG, USER1,
"Application provided IV is not supported\n");
return -ENOTSUP;
}
sec_cap->
ipsec.options.tunnel_hdr_verify)) {
RTE_LOG(DEBUG, USER1,
"Tunnel header verify is not supported\n");
return -ENOTSUP;
}
sec_cap->
ipsec.options.ip_csum_enable == 0) {
RTE_LOG(DEBUG, USER1,
"Inner IP checksum is not supported\n");
return -ENOTSUP;
}
sec_cap->
ipsec.options.l4_csum_enable == 0) {
RTE_LOG(DEBUG, USER1,
"Inner L4 checksum is not supported\n");
return -ENOTSUP;
}
RTE_LOG(DEBUG, USER1,
"Replay window size is not supported\n");
return -ENOTSUP;
}
}
return 0;
}
static inline int
uint32_t *ol_flags)
{
sec_cap_idx.
protocol = sess_conf->
protocol;
sec_cap_idx.
ipsec.proto = sess_conf->
ipsec.
proto;
sec_cap_idx.ipsec.mode = sess_conf->ipsec.
mode;
sec_cap_idx.ipsec.direction = sess_conf->ipsec.
direction;
if (sec_cap == NULL)
return -ENOTSUP;
return -ENOTSUP;
if (verify_ipsec_capabilities(&sess_conf->ipsec, sec_cap))
return -ENOTSUP;
if (ol_flags != NULL)
return 0;
}
int
create_lookaside_session(struct ipsec_ctx *ipsec_ctx_lcore[],
struct socket_ctx *skt_ctx, const struct eventmode_conf *em_conf,
{
uint16_t cdev_id = RTE_CRYPTO_MAX_DEVS;
unsigned long cdev_id_qp = 0;
struct ipsec_ctx *ipsec_ctx;
struct cdev_key key = { 0 };
void *sess = NULL;
uint32_t lcore_id;
int32_t ret = 0;
ipsec_ctx = ipsec_ctx_lcore[lcore_id];
if (ipsec_ctx->cdev_map == NULL)
continue;
key.lcore_id = (uint8_t)lcore_id;
key.cipher_algo = (uint8_t)sa->cipher_algo;
key.auth_algo = (uint8_t)sa->auth_algo;
key.aead_algo = (uint8_t)sa->aead_algo;
(void **)&cdev_id_qp);
if (ret == -ENOENT)
continue;
if (ret < 0) {
"No cryptodev: core %u, cipher_algo %u, "
"auth_algo %u, aead_algo %u\n",
key.lcore_id,
key.cipher_algo,
key.auth_algo,
key.aead_algo);
return ret;
}
if (cdev_id == RTE_CRYPTO_MAX_DEVS)
cdev_id = ipsec_ctx->tbl[cdev_id_qp].id;
else if (cdev_id != ipsec_ctx->tbl[cdev_id_qp].id) {
"SA mapping to multiple cryptodevs is "
"not supported!");
return -EINVAL;
}
sa->cqp[lcore_id] = &ipsec_ctx->tbl[cdev_id_qp];
}
if (cdev_id == RTE_CRYPTO_MAX_DEVS) {
RTE_LOG(WARNING, IPSEC,
"No cores found to handle SA\n");
return 0;
}
RTE_LOG(DEBUG, IPSEC,
"Create session for SA spi %u on cryptodev " "%u\n", sa->spi, cdev_id);
{.ipsec = {
.spi = sa->spi,
.salt = sa->salt,
.options = { 0 },
.replay_win_sz = 0,
.direction = sa->direction,
.mode = (IS_TUNNEL(sa->flags)) ?
} },
.crypto_xform = sa->xforms,
.userdata = NULL,
};
rte_cryptodev_get_sec_ctx(
cdev_id);
set_ipsec_conf(sa, &(sess_conf.ipsec));
if (verify_security_capabilities(ctx, &sess_conf, NULL)) {
"Requested security session config not supported\n");
return -1;
}
&sess_conf, skt_ctx->session_pool);
if (ips->security.ses == NULL) {
"SEC Session init failed: err: %d\n", ret);
return -1;
}
ips->security.ctx = ctx;
sess = ips->security.ses;
} else {
RTE_LOG(ERR, IPSEC,
"Inline not supported\n");
return -1;
}
} else {
return -ENOTSUP;
}
if (verify_crypto_capabilities(info.
capabilities, sa->xforms)) {
"Requested crypto session config not supported\n");
return -1;
}
ips->
crypto.dev_id = cdev_id;
sa->xforms, skt_ctx->session_pool);
}
if (em_conf->enable_event_crypto_adapter && sess != NULL) {
const struct eventdev_params *eventdev_conf;
eventdev_conf = &(em_conf->eventdev_config[0]);
memset(&m_data, 0, sizeof(m_data));
sess_type, &m_data, sizeof(m_data));
}
return 0;
}
int
create_inline_session(struct socket_ctx *skt_ctx, struct ipsec_sa *sa,
{
int32_t ret = 0;
{.ipsec = {
.spi = sa->spi,
.salt = sa->salt,
.options = { 0 },
.replay_win_sz = 0,
.direction = sa->direction,
} },
.crypto_xform = sa->xforms,
.userdata = NULL,
};
if (IS_TRANSPORT(sa->flags)) {
if (IS_IP4(sa->flags)) {
sa->src.ip.ip4;
sa->dst.ip.ip4;
} else if (IS_IP6(sa->flags)) {
memcpy(sess_conf.ipsec.
tunnel.
ipv6.src_addr.s6_addr,
sa->src.ip.ip6.ip6_b, 16);
memcpy(sess_conf.ipsec.
tunnel.
ipv6.dst_addr.s6_addr,
sa->dst.ip.ip6.ip6_b, 16);
}
} else if (IS_TUNNEL(sa->flags)) {
if (IS_IP4(sa->flags)) {
sa->src.ip.ip4;
sa->dst.ip.ip4;
} else if (IS_IP6(sa->flags)) {
memcpy(sess_conf.ipsec.
tunnel.
ipv6.src_addr.s6_addr,
sa->src.ip.ip6.ip6_b, 16);
memcpy(sess_conf.ipsec.
tunnel.
ipv6.dst_addr.s6_addr,
sa->dst.ip.ip6.ip6_b, 16);
} else {
RTE_LOG(ERR, IPSEC,
"invalid tunnel type\n");
return -1;
}
}
if (sa->udp_encap) {
sess_conf.ipsec.
udp.sport = htons(sa->udp.sport);
sess_conf.ipsec.
udp.dport = htons(sa->udp.dport);
}
if (sa->esn > 0) {
sess_conf.ipsec.
esn.
value = sa->esn;
}
RTE_LOG_DP(DEBUG, IPSEC,
"Create session for SA spi %u on port %u\n",
sa->spi, sa->portid);
int ret = 0;
sa->portid);
if (sec_ctx == NULL) {
" rte_eth_dev_get_sec_ctx failed\n");
return -1;
}
if (verify_security_capabilities(sec_ctx, &sess_conf,
&ips->security.ol_flags)) {
"Requested security session config not supported\n");
return -1;
}
&sess_conf, skt_ctx->session_pool);
if (ips->security.ses == NULL) {
"SEC Session init failed: err: %d\n", ret);
return -1;
}
ips->security.ctx = sec_ctx;
if (IS_IP6(sa->flags)) {
sa->pattern[1].spec = &sa->ipv6_spec;
memcpy(sa->ipv6_spec.hdr.dst_addr,
sa->dst.ip.ip6.ip6_b, 16);
memcpy(sa->ipv6_spec.hdr.src_addr,
sa->src.ip.ip6.ip6_b, 16);
} else if (IS_IP4(sa->flags)) {
sa->pattern[1].spec = &sa->ipv4_spec;
sa->ipv4_spec.hdr.dst_addr = sa->dst.ip.ip4;
sa->ipv4_spec.hdr.src_addr = sa->src.ip.ip4;
}
if (sa->udp_encap) {
sa->udp_spec.hdr.dst_port =
sa->udp_spec.hdr.src_port =
sa->pattern[2].spec = &sa->udp_spec;
sa->pattern[3].spec = &sa->esp_spec;
} else {
sa->pattern[2].spec = &sa->esp_spec;
}
sa->action[0].conf = ips->security.ses;
sa->attr.egress = (sa->direction ==
sa->attr.ingress = (sa->direction ==
if (sa->attr.ingress) {
uint8_t rss_key[64];
};
uint16_t queue[RTE_MAX_QUEUES_PER_PORT];
unsigned int i;
unsigned int j;
if (flow_info_tbl[sa->portid].rx_def_flow)
return 0;
if (ret != 0) {
"Error during getting device (port %u) info: %s\n",
sa->portid, strerror(-ret));
return ret;
}
sa->action[1].conf = &action_rss;
&rss_conf);
if (ret != 0) {
"rte_eth_dev_rss_hash_conf_get:ret=%d\n",
ret);
return -1;
}
queue[j++] = i;
.queue_num = j,
.key = rss_key,
};
sa->pattern, sa->action,
&err);
if (!ret)
goto flow_create;
sa->action[1].conf =
.index = 0,
};
sa->pattern, sa->action,
&err);
sa->action[1].conf = NULL;
sa->pattern, sa->action,
&err);
if (ret)
goto flow_create_failure;
} else if (sa->attr.egress &&
(ips->security.ol_flags &
sa->action[1].type =
sa->action[2].type =
}
flow_create:
&sa->attr, sa->pattern, sa->action, &err);
if (sa->flow == NULL) {
flow_create_failure:
"Failed to create ipsec flow msg: %s\n",
return -1;
}
if (sec_ctx == NULL) {
"Ethernet device doesn't have security features registered\n");
return -1;
}
set_ipsec_conf(sa, &(sess_conf.ipsec));
if (verify_security_capabilities(sec_ctx, &sess_conf,
&ips->security.ol_flags)) {
"Requested security session config not supported\n");
return -1;
}
&sess_conf, skt_ctx->session_pool);
if (ips->security.ses == NULL) {
"SEC Session init failed: err: %d\n", ret);
return -1;
}
ips->security.ctx = sec_ctx;
}
return 0;
}
int
create_ipsec_esp_flow(struct ipsec_sa *sa)
{
int ret = 0;
"No Flow director rule for Egress traffic\n");
return -1;
}
if (sa->flags == TRANSPORT) {
"No Flow director rule for transport mode\n");
return -1;
}
.index = sa->fdir_qid,
};
sa->attr.egress = 0;
sa->attr.ingress = 1;
if (IS_IP6(sa->flags)) {
sa->pattern[1].spec = &sa->ipv6_spec;
memcpy(sa->ipv6_spec.hdr.dst_addr,
sa->dst.ip.ip6.ip6_b, sizeof(sa->dst.ip.ip6.ip6_b));
memcpy(sa->ipv6_spec.hdr.src_addr,
sa->src.ip.ip6.ip6_b, sizeof(sa->src.ip.ip6.ip6_b));
sa->pattern[2].spec = &sa->esp_spec;
} else if (IS_IP4(sa->flags)) {
sa->pattern[1].spec = &sa->ipv4_spec;
sa->ipv4_spec.hdr.dst_addr = sa->dst.ip.ip4;
sa->ipv4_spec.hdr.src_addr = sa->src.ip.ip4;
sa->pattern[2].spec = &sa->esp_spec;
}
&err);
if (ret < 0) {
return ret;
}
sa->action, &err);
if (!sa->flow) {
return -1;
}
return 0;
}
void
enqueue_cop_burst(struct cdev_qp *cqp)
{
uint32_t i, len, ret;
len = cqp->len;
if (ret < len) {
" enqueued %u crypto ops out of %u\n",
cqp->id, cqp->qp, ret, len);
for (i = ret; i < len; i++)
free_pkts(&cqp->buf[i]->sym->m_src, 1);
}
cqp->in_flight += ret;
cqp->len = 0;
}
static inline void
{
cqp->buf[cqp->len++] = cop;
if (cqp->len == MAX_PKT_BURST)
enqueue_cop_burst(cqp);
}
static inline void
ipsec_enqueue(ipsec_xform_fn xform_func, struct ipsec_ctx *ipsec_ctx,
uint16_t nb_pkts)
{
int32_t ret = 0, i;
struct ipsec_mbuf_metadata *priv;
struct ipsec_sa *sa;
for (i = 0; i < nb_pkts; i++) {
free_pkts(&pkts[i], 1);
continue;
}
priv = get_priv(pkts[i]);
sa = ipsec_mask_saptr(sas[i]);
ips = ipsec_get_primary_session(sa);
if (
unlikely(ips->security.ses == NULL)) {
free_pkts(&pkts[i], 1);
continue;
}
MBUF_PTYPE_TUNNEL_ESP_IN_UDP &&
sa->udp_encap != 1)) {
free_pkts(&pkts[i], 1);
continue;
}
sym_cop = get_sym_cop(&priv->cop);
sym_cop->
m_src = pkts[i];
ips->security.ses);
break;
RTE_LOG(ERR, IPSEC,
"CPU crypto is not supported by the" " legacy mode.");
free_pkts(&pkts[i], 1);
continue;
if (
unlikely(ips->crypto.ses == NULL)) {
free_pkts(&pkts[i], 1);
continue;
}
ips->crypto.ses);
ret = xform_func(pkts[i], sa, &priv->cop);
free_pkts(&pkts[i], 1);
continue;
}
break;
RTE_ASSERT(ips->security.ses != NULL);
ipsec_ctx->ol_pkts[ipsec_ctx->ol_pkts_cnt++] = pkts[i];
if (ips->security.ol_flags &
ips->security.ctx, ips->security.ses,
pkts[i], NULL);
continue;
RTE_ASSERT(ips->security.ses != NULL);
ips->security.ses);
ret = xform_func(pkts[i], sa, &priv->cop);
free_pkts(&pkts[i], 1);
continue;
}
ipsec_ctx->ol_pkts[ipsec_ctx->ol_pkts_cnt++] = pkts[i];
if (ips->security.ol_flags &
ips->security.ctx, ips->security.ses,
pkts[i], NULL);
continue;
}
enqueue_cop(sa->cqp[ipsec_ctx->lcore_id], &priv->cop);
}
}
static inline int32_t
ipsec_inline_dequeue(ipsec_xform_fn xform_func, struct ipsec_ctx *ipsec_ctx,
struct rte_mbuf *pkts[], uint16_t max_pkts)
{
int32_t nb_pkts, ret;
struct ipsec_mbuf_metadata *priv;
struct ipsec_sa *sa;
nb_pkts = 0;
while (ipsec_ctx->ol_pkts_cnt > 0 && nb_pkts < max_pkts) {
pkt = ipsec_ctx->ol_pkts[--ipsec_ctx->ol_pkts_cnt];
priv = get_priv(pkt);
sa = priv->sa;
ret = xform_func(pkt, sa, &priv->cop);
free_pkts(&pkt, 1);
continue;
}
pkts[nb_pkts++] = pkt;
}
return nb_pkts;
}
static inline int
ipsec_dequeue(ipsec_xform_fn xform_func, struct ipsec_ctx *ipsec_ctx,
struct rte_mbuf *pkts[], uint16_t max_pkts)
{
int32_t nb_pkts = 0, ret = 0, i, j, nb_cops;
struct ipsec_mbuf_metadata *priv;
struct ipsec_sa *sa;
for (i = 0; i < ipsec_ctx->nb_qps && nb_pkts < max_pkts; i++) {
struct cdev_qp *cqp;
cqp = &ipsec_ctx->tbl[ipsec_ctx->last_qp++];
if (ipsec_ctx->last_qp == ipsec_ctx->nb_qps)
ipsec_ctx->last_qp %= ipsec_ctx->nb_qps;
if (cqp->in_flight == 0)
continue;
cops, max_pkts - nb_pkts);
cqp->in_flight -= nb_cops;
for (j = 0; j < nb_cops; j++) {
priv = get_priv(pkt);
sa = priv->sa;
RTE_ASSERT(sa != NULL);
if (ipsec_get_action_type(sa) ==
ret = xform_func(pkt, sa, cops[j]);
free_pkts(&pkt, 1);
continue;
}
} else if (ipsec_get_action_type(sa) ==
if (cops[j]->status) {
free_pkts(&pkt, 1);
continue;
}
}
pkts[nb_pkts++] = pkt;
}
}
return nb_pkts;
}
uint16_t
ipsec_inbound(
struct ipsec_ctx *ctx,
struct rte_mbuf *pkts[],
uint16_t nb_pkts, uint16_t len)
{
void *sas[nb_pkts];
inbound_sa_lookup(ctx->sa_ctx, pkts, sas, nb_pkts);
ipsec_enqueue(esp_inbound, ctx, pkts, sas, nb_pkts);
return ipsec_inline_dequeue(esp_inbound_post, ctx, pkts, len);
}
uint16_t
ipsec_inbound_cqp_dequeue(
struct ipsec_ctx *ctx,
struct rte_mbuf *pkts[],
uint16_t len)
{
return ipsec_dequeue(esp_inbound_post, ctx, pkts, len);
}
uint16_t
ipsec_outbound(
struct ipsec_ctx *ctx,
struct rte_mbuf *pkts[],
uint32_t sa_idx[], uint16_t nb_pkts, uint16_t len)
{
void *sas[nb_pkts];
outbound_sa_lookup(ctx->sa_ctx, sa_idx, sas, nb_pkts);
ipsec_enqueue(esp_outbound, ctx, pkts, sas, nb_pkts);
return ipsec_inline_dequeue(esp_outbound_post, ctx, pkts, len);
}
uint16_t
ipsec_outbound_cqp_dequeue(
struct ipsec_ctx *ctx,
struct rte_mbuf *pkts[],
uint16_t len)
{
return ipsec_dequeue(esp_outbound_post, ctx, pkts, len);
}