DPDK  24.11.0-rc0
examples/service_cores/main.c
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Intel Corporation
*/
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <errno.h>
#include <sys/queue.h>
#include <rte_memory.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_debug.h>
#include <rte_cycles.h>
/* allow application scheduling of the services */
#include <rte_service.h>
/* Allow application registration of its own services. An application does not
* have to register services, but it can be useful if it wishes to run a
* function on a core that is otherwise in use as a service core. In this
* example, all services are dummy services registered by the sample app itself.
*/
#include <rte_service_component.h>
#define PROFILE_CORES_MAX 8
#define PROFILE_SERVICE_PER_CORE 5
/* dummy function to do "work" */
static int32_t service_func(void *args)
{
RTE_SET_USED(args);
rte_delay_us(2000);
return 0;
}
static struct rte_service_spec services[] = {
{"service_1", service_func, NULL, 0, 0},
{"service_2", service_func, NULL, 0, 0},
{"service_3", service_func, NULL, 0, 0},
{"service_4", service_func, NULL, 0, 0},
{"service_5", service_func, NULL, 0, 0},
};
#define NUM_SERVICES RTE_DIM(services)
/* this struct holds the mapping of a particular core to all services */
struct profile_for_core {
uint32_t mapped_services[PROFILE_SERVICE_PER_CORE];
};
/* struct that can be applied as the service core mapping. Items in this
* struct will be passed to the ordinary rte_service_* APIs to configure the
* service cores at runtime, based on the requirements.
*
* These profiles can be considered a "configuration" for the service cores,
* where switching profile just changes the number of cores and the mappings
* for each of them. As a result, the core requirements and performance of the
* application scales.
*/
struct profile {
char name[64];
uint32_t num_cores;
struct profile_for_core cores[PROFILE_CORES_MAX];
};
static struct profile profiles[] = {
/* profile 0: high performance */
{
.name = "High Performance",
.num_cores = 5,
.cores[0] = {.mapped_services = {1, 0, 0, 0, 0} },
.cores[1] = {.mapped_services = {0, 1, 0, 0, 0} },
.cores[2] = {.mapped_services = {0, 0, 1, 0, 0} },
.cores[3] = {.mapped_services = {0, 0, 0, 1, 0} },
.cores[4] = {.mapped_services = {0, 0, 0, 0, 1} },
},
/* profile 1: mid performance with single service priority */
{
.name = "Mid-High Performance",
.num_cores = 3,
.cores[0] = {.mapped_services = {1, 1, 0, 0, 0} },
.cores[1] = {.mapped_services = {0, 0, 1, 1, 0} },
.cores[2] = {.mapped_services = {0, 0, 0, 0, 1} },
.cores[3] = {.mapped_services = {0, 0, 0, 0, 0} },
.cores[4] = {.mapped_services = {0, 0, 0, 0, 0} },
},
/* profile 2: mid performance with single service priority */
{
.name = "Mid-Low Performance",
.num_cores = 2,
.cores[0] = {.mapped_services = {1, 1, 1, 0, 0} },
.cores[1] = {.mapped_services = {1, 1, 0, 1, 1} },
.cores[2] = {.mapped_services = {0, 0, 0, 0, 0} },
.cores[3] = {.mapped_services = {0, 0, 0, 0, 0} },
.cores[4] = {.mapped_services = {0, 0, 0, 0, 0} },
},
/* profile 3: scale down performance on single core */
{
.name = "Scale down performance",
.num_cores = 1,
.cores[0] = {.mapped_services = {1, 1, 1, 1, 1} },
.cores[1] = {.mapped_services = {0, 0, 0, 0, 0} },
.cores[2] = {.mapped_services = {0, 0, 0, 0, 0} },
.cores[3] = {.mapped_services = {0, 0, 0, 0, 0} },
.cores[4] = {.mapped_services = {0, 0, 0, 0, 0} },
},
};
#define NUM_PROFILES RTE_DIM(profiles)
static void
apply_profile(int profile_id)
{
uint32_t i;
uint32_t s;
int ret;
struct profile *p = &profiles[profile_id];
const uint8_t core_off = 1;
if (p->num_cores > rte_lcore_count() - 1) {
printf("insufficent cores to run (%s)",
p->name);
return;
}
for (i = 0; i < p->num_cores; i++) {
uint32_t core = i + core_off;
ret = rte_service_lcore_add(core);
if (ret && ret != -EALREADY)
printf("core %d added ret %d\n", core, ret);
if (ret && ret != -EALREADY)
printf("core %d start ret %d\n", core, ret);
for (s = 0; s < NUM_SERVICES; s++) {
p->cores[i].mapped_services[s]))
printf("failed to map lcore %d\n", core);
}
}
for ( ; i < PROFILE_CORES_MAX; i++) {
uint32_t core = i + core_off;
for (s = 0; s < NUM_SERVICES; s++) {
ret = rte_service_map_lcore_set(s, core, 0);
if (ret && ret != -EINVAL) {
printf("%s %d: map lcore set = %d\n", __func__,
__LINE__, ret);
}
}
if (ret && ret != -EALREADY) {
printf("%s %d: lcore stop = %d\n", __func__,
__LINE__, ret);
}
ret = rte_service_lcore_del(core);
if (ret && ret != -EINVAL) {
printf("%s %d: lcore del = %d\n", __func__,
__LINE__, ret);
}
}
}
int
main(int argc, char **argv)
{
int ret;
ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_panic("Cannot init EAL\n");
uint32_t i;
for (i = 0; i < NUM_SERVICES; i++) {
services[i].callback_userdata = 0;
uint32_t id;
/* Register a service as an application. 8< */
ret = rte_service_component_register(&services[i], &id);
if (ret)
rte_exit(-1, "service register() failed");
/* set the service itself to be ready to run. In the case of
* ethdev, eventdev etc PMDs, this will be set when the
* appropriate configure or setup function is called.
*/
rte_service_component_runstate_set(id, 1);
/* Collect statistics for the service */
/* the application sets the service to be active. Note that the
* previous component_runstate_set() is the PMD indicating
* ready, while this function is the application setting the
* service to run. Applications can choose to not run a service
* by setting runstate to 0 at any time.
*/
if (ret)
return -ENOEXEC;
/* >8 End of registering a service as an application. */
}
i = 0;
while (1) {
const char clr[] = { 27, '[', '2', 'J', '\0' };
const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' };
printf("%s%s", clr, topLeft);
apply_profile(i);
printf("\n==> Profile: %s\n\n", profiles[i].name);
rte_delay_us_sleep(1 * US_PER_S);
rte_service_dump(stdout, UINT32_MAX);
rte_delay_us_sleep(5 * US_PER_S);
rte_service_dump(stdout, UINT32_MAX);
i++;
if (i >= NUM_PROFILES)
i = 0;
}
/* clean up the EAL */
return 0;
}