DPDK  22.07.0
examples/l3fwd-graph/main.c
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2020 Marvell International Ltd.
*/
#include <arpa/inet.h>
#include <errno.h>
#include <getopt.h>
#include <inttypes.h>
#include <signal.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <sys/queue.h>
#include <unistd.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_eal.h>
#include <rte_ethdev.h>
#include <rte_launch.h>
#include <rte_lcore.h>
#include <rte_log.h>
#include <rte_mempool.h>
#include <rte_per_lcore.h>
#include <rte_string_fns.h>
#include <rte_vect.h>
#include <cmdline_parse.h>
#include <cmdline_parse_etheraddr.h>
/* Log type */
#define RTE_LOGTYPE_L3FWD_GRAPH RTE_LOGTYPE_USER1
/*
* Configurable number of RX/TX ring descriptors
*/
#define RTE_TEST_RX_DESC_DEFAULT 1024
#define RTE_TEST_TX_DESC_DEFAULT 1024
#define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS
#define MAX_RX_QUEUE_PER_PORT 128
#define MAX_RX_QUEUE_PER_LCORE 16
#define MAX_LCORE_PARAMS 1024
#define NB_SOCKETS 8
/* Static global variables used within this file. */
static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
static int promiscuous_on;
static int numa_on = 1;
static int per_port_pool;
static volatile bool force_quit;
/* Ethernet addresses of ports */
static uint64_t dest_eth_addr[RTE_MAX_ETHPORTS];
static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
xmm_t val_eth[RTE_MAX_ETHPORTS];
/* Mask of enabled ports */
static uint32_t enabled_port_mask;
struct lcore_rx_queue {
uint16_t port_id;
uint8_t queue_id;
char node_name[RTE_NODE_NAMESIZE];
};
/* Lcore conf */
struct lcore_conf {
uint16_t n_rx_queue;
struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
struct rte_graph *graph;
char name[RTE_GRAPH_NAMESIZE];
rte_graph_t graph_id;
static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
struct lcore_params {
uint16_t port_id;
uint8_t queue_id;
uint8_t lcore_id;
static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
static struct lcore_params lcore_params_array_default[] = {
{0, 0, 2}, {0, 1, 2}, {0, 2, 2}, {1, 0, 2}, {1, 1, 2},
{1, 2, 2}, {2, 0, 2}, {3, 0, 3}, {3, 1, 3},
};
static struct lcore_params *lcore_params = lcore_params_array_default;
static uint16_t nb_lcore_params = RTE_DIM(lcore_params_array_default);
static struct rte_eth_conf port_conf = {
.rxmode = {
.split_hdr_size = 0,
},
.rx_adv_conf = {
.rss_conf = {
.rss_key = NULL,
.rss_hf = RTE_ETH_RSS_IP,
},
},
.txmode = {
.mq_mode = RTE_ETH_MQ_TX_NONE,
},
};
static uint32_t max_pkt_len;
static struct rte_mempool *pktmbuf_pool[RTE_MAX_ETHPORTS][NB_SOCKETS];
static struct rte_node_ethdev_config ethdev_conf[RTE_MAX_ETHPORTS];
struct ipv4_l3fwd_lpm_route {
uint32_t ip;
uint8_t depth;
uint8_t if_out;
};
#define IPV4_L3FWD_LPM_NUM_ROUTES \
(sizeof(ipv4_l3fwd_lpm_route_array) / \
sizeof(ipv4_l3fwd_lpm_route_array[0]))
/* 198.18.0.0/16 are set aside for RFC2544 benchmarking. */
static struct ipv4_l3fwd_lpm_route ipv4_l3fwd_lpm_route_array[] = {
{RTE_IPV4(198, 18, 0, 0), 24, 0}, {RTE_IPV4(198, 18, 1, 0), 24, 1},
{RTE_IPV4(198, 18, 2, 0), 24, 2}, {RTE_IPV4(198, 18, 3, 0), 24, 3},
{RTE_IPV4(198, 18, 4, 0), 24, 4}, {RTE_IPV4(198, 18, 5, 0), 24, 5},
{RTE_IPV4(198, 18, 6, 0), 24, 6}, {RTE_IPV4(198, 18, 7, 0), 24, 7},
};
static int
check_lcore_params(void)
{
uint8_t queue, lcore;
int socketid;
uint16_t i;
for (i = 0; i < nb_lcore_params; ++i) {
queue = lcore_params[i].queue_id;
if (queue >= MAX_RX_QUEUE_PER_PORT) {
printf("Invalid queue number: %hhu\n", queue);
return -1;
}
lcore = lcore_params[i].lcore_id;
if (!rte_lcore_is_enabled(lcore)) {
printf("Error: lcore %hhu is not enabled in lcore mask\n",
lcore);
return -1;
}
if (lcore == rte_get_main_lcore()) {
printf("Error: lcore %u is main lcore\n", lcore);
return -1;
}
socketid = rte_lcore_to_socket_id(lcore);
if ((socketid != 0) && (numa_on == 0)) {
printf("Warning: lcore %hhu is on socket %d with numa off\n",
lcore, socketid);
}
}
return 0;
}
static int
check_port_config(void)
{
uint16_t portid;
uint16_t i;
for (i = 0; i < nb_lcore_params; ++i) {
portid = lcore_params[i].port_id;
if ((enabled_port_mask & (1 << portid)) == 0) {
printf("Port %u is not enabled in port mask\n", portid);
return -1;
}
if (!rte_eth_dev_is_valid_port(portid)) {
printf("Port %u is not present on the board\n", portid);
return -1;
}
}
return 0;
}
static uint8_t
get_port_n_rx_queues(const uint16_t port)
{
int queue = -1;
uint16_t i;
for (i = 0; i < nb_lcore_params; ++i) {
if (lcore_params[i].port_id == port) {
if (lcore_params[i].queue_id == queue + 1)
queue = lcore_params[i].queue_id;
else
rte_exit(EXIT_FAILURE,
"Queue ids of the port %d must be"
" in sequence and must start with 0\n",
lcore_params[i].port_id);
}
}
return (uint8_t)(++queue);
}
static int
init_lcore_rx_queues(void)
{
uint16_t i, nb_rx_queue;
uint8_t lcore;
for (i = 0; i < nb_lcore_params; ++i) {
lcore = lcore_params[i].lcore_id;
nb_rx_queue = lcore_conf[lcore].n_rx_queue;
if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
printf("Error: too many queues (%u) for lcore: %u\n",
(unsigned int)nb_rx_queue + 1,
(unsigned int)lcore);
return -1;
}
lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
lcore_params[i].port_id;
lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
lcore_params[i].queue_id;
lcore_conf[lcore].n_rx_queue++;
}
return 0;
}
/* Display usage */
static void
print_usage(const char *prgname)
{
fprintf(stderr,
"%s [EAL options] --"
" -p PORTMASK"
" [-P]"
" --config (port,queue,lcore)[,(port,queue,lcore)]"
" [--eth-dest=X,MM:MM:MM:MM:MM:MM]"
" [--max-pkt-len PKTLEN]"
" [--no-numa]"
" [--per-port-pool]\n\n"
" -p PORTMASK: Hexadecimal bitmask of ports to configure\n"
" -P : Enable promiscuous mode\n"
" --config (port,queue,lcore): Rx queue configuration\n"
" --eth-dest=X,MM:MM:MM:MM:MM:MM: Ethernet destination for "
"port X\n"
" --max-pkt-len PKTLEN: maximum packet length in decimal (64-9600)\n"
" --no-numa: Disable numa awareness\n"
" --per-port-pool: Use separate buffer pool per port\n\n",
prgname);
}
static int
parse_max_pkt_len(const char *pktlen)
{
unsigned long len;
char *end = NULL;
/* Parse decimal string */
len = strtoul(pktlen, &end, 10);
if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0'))
return -1;
if (len == 0)
return -1;
return len;
}
static int
parse_portmask(const char *portmask)
{
char *end = NULL;
unsigned long pm;
/* Parse hexadecimal string */
pm = strtoul(portmask, &end, 16);
if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
return 0;
return pm;
}
static int
parse_config(const char *q_arg)
{
enum fieldnames { FLD_PORT = 0, FLD_QUEUE, FLD_LCORE, _NUM_FLD };
unsigned long int_fld[_NUM_FLD];
const char *p, *p0 = q_arg;
char *str_fld[_NUM_FLD];
uint32_t size;
char s[256];
char *end;
int i;
nb_lcore_params = 0;
while ((p = strchr(p0, '(')) != NULL) {
++p;
p0 = strchr(p, ')');
if (p0 == NULL)
return -1;
size = p0 - p;
if (size >= sizeof(s))
return -1;
memcpy(s, p, size);
s[size] = '\0';
if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
_NUM_FLD)
return -1;
for (i = 0; i < _NUM_FLD; i++) {
errno = 0;
int_fld[i] = strtoul(str_fld[i], &end, 0);
if (errno != 0 || end == str_fld[i])
return -1;
}
if (nb_lcore_params >= MAX_LCORE_PARAMS) {
printf("Exceeded max number of lcore params: %hu\n",
nb_lcore_params);
return -1;
}
if (int_fld[FLD_PORT] >= RTE_MAX_ETHPORTS ||
int_fld[FLD_LCORE] >= RTE_MAX_LCORE) {
printf("Invalid port/lcore id\n");
return -1;
}
lcore_params_array[nb_lcore_params].port_id =
(uint8_t)int_fld[FLD_PORT];
lcore_params_array[nb_lcore_params].queue_id =
(uint8_t)int_fld[FLD_QUEUE];
lcore_params_array[nb_lcore_params].lcore_id =
(uint8_t)int_fld[FLD_LCORE];
++nb_lcore_params;
}
lcore_params = lcore_params_array;
return 0;
}
static void
parse_eth_dest(const char *optarg)
{
uint8_t c, *dest, peer_addr[6];
uint16_t portid;
char *port_end;
errno = 0;
portid = strtoul(optarg, &port_end, 10);
if (errno != 0 || port_end == optarg || *port_end++ != ',')
rte_exit(EXIT_FAILURE, "Invalid eth-dest: %s", optarg);
if (portid >= RTE_MAX_ETHPORTS)
rte_exit(EXIT_FAILURE,
"eth-dest: port %d >= RTE_MAX_ETHPORTS(%d)\n", portid,
RTE_MAX_ETHPORTS);
if (cmdline_parse_etheraddr(NULL, port_end, &peer_addr,
sizeof(peer_addr)) < 0)
rte_exit(EXIT_FAILURE, "Invalid ethernet address: %s\n",
port_end);
dest = (uint8_t *)&dest_eth_addr[portid];
for (c = 0; c < 6; c++)
dest[c] = peer_addr[c];
*(uint64_t *)(val_eth + portid) = dest_eth_addr[portid];
}
#define MAX_JUMBO_PKT_LEN 9600
#define MEMPOOL_CACHE_SIZE 256
static const char short_options[] = "p:" /* portmask */
"P" /* promiscuous */
;
#define CMD_LINE_OPT_CONFIG "config"
#define CMD_LINE_OPT_ETH_DEST "eth-dest"
#define CMD_LINE_OPT_NO_NUMA "no-numa"
#define CMD_LINE_OPT_MAX_PKT_LEN "max-pkt-len"
#define CMD_LINE_OPT_PER_PORT_POOL "per-port-pool"
enum {
/* Long options mapped to a short option */
/* First long only option value must be >= 256, so that we won't
* conflict with short options
*/
CMD_LINE_OPT_MIN_NUM = 256,
CMD_LINE_OPT_CONFIG_NUM,
CMD_LINE_OPT_ETH_DEST_NUM,
CMD_LINE_OPT_NO_NUMA_NUM,
CMD_LINE_OPT_MAX_PKT_LEN_NUM,
CMD_LINE_OPT_PARSE_PER_PORT_POOL,
};
static const struct option lgopts[] = {
{CMD_LINE_OPT_CONFIG, 1, 0, CMD_LINE_OPT_CONFIG_NUM},
{CMD_LINE_OPT_ETH_DEST, 1, 0, CMD_LINE_OPT_ETH_DEST_NUM},
{CMD_LINE_OPT_NO_NUMA, 0, 0, CMD_LINE_OPT_NO_NUMA_NUM},
{CMD_LINE_OPT_MAX_PKT_LEN, 1, 0, CMD_LINE_OPT_MAX_PKT_LEN_NUM},
{CMD_LINE_OPT_PER_PORT_POOL, 0, 0, CMD_LINE_OPT_PARSE_PER_PORT_POOL},
{NULL, 0, 0, 0},
};
/*
* This expression is used to calculate the number of mbufs needed
* depending on user input, taking into account memory for rx and
* tx hardware rings, cache per lcore and mtable per port per lcore.
* RTE_MAX is used to ensure that NB_MBUF never goes below a minimum
* value of 8192
*/
#define NB_MBUF(nports) \
RTE_MAX((nports * nb_rx_queue * nb_rxd + \
nports * nb_lcores * RTE_GRAPH_BURST_SIZE + \
nports * n_tx_queue * nb_txd + \
nb_lcores * MEMPOOL_CACHE_SIZE), 8192u)
/* Parse the argument given in the command line of the application */
static int
parse_args(int argc, char **argv)
{
char *prgname = argv[0];
int option_index;
char **argvopt;
int opt, ret;
argvopt = argv;
/* Error or normal output strings. */
while ((opt = getopt_long(argc, argvopt, short_options, lgopts,
&option_index)) != EOF) {
switch (opt) {
/* Portmask */
case 'p':
enabled_port_mask = parse_portmask(optarg);
if (enabled_port_mask == 0) {
fprintf(stderr, "Invalid portmask\n");
print_usage(prgname);
return -1;
}
break;
case 'P':
promiscuous_on = 1;
break;
/* Long options */
case CMD_LINE_OPT_CONFIG_NUM:
ret = parse_config(optarg);
if (ret) {
fprintf(stderr, "Invalid config\n");
print_usage(prgname);
return -1;
}
break;
case CMD_LINE_OPT_ETH_DEST_NUM:
parse_eth_dest(optarg);
break;
case CMD_LINE_OPT_NO_NUMA_NUM:
numa_on = 0;
break;
case CMD_LINE_OPT_MAX_PKT_LEN_NUM: {
max_pkt_len = parse_max_pkt_len(optarg);
break;
}
case CMD_LINE_OPT_PARSE_PER_PORT_POOL:
printf("Per port buffer pool is enabled\n");
per_port_pool = 1;
break;
default:
print_usage(prgname);
return -1;
}
}
if (optind >= 0)
argv[optind - 1] = prgname;
ret = optind - 1;
optind = 1; /* Reset getopt lib */
return ret;
}
static void
print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
{
char buf[RTE_ETHER_ADDR_FMT_SIZE];
rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
printf("%s%s", name, buf);
}
static int
init_mem(uint16_t portid, uint32_t nb_mbuf)
{
uint32_t lcore_id;
int socketid;
char s[64];
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;
if (numa_on)
socketid = rte_lcore_to_socket_id(lcore_id);
else
socketid = 0;
if (socketid >= NB_SOCKETS) {
rte_exit(EXIT_FAILURE,
"Socket %d of lcore %u is out of range %d\n",
socketid, lcore_id, NB_SOCKETS);
}
if (pktmbuf_pool[portid][socketid] == NULL) {
snprintf(s, sizeof(s), "mbuf_pool_%d:%d", portid,
socketid);
/* Create a pool with priv size of a cacheline */
pktmbuf_pool[portid][socketid] =
s, nb_mbuf, MEMPOOL_CACHE_SIZE,
RTE_CACHE_LINE_SIZE,
RTE_MBUF_DEFAULT_BUF_SIZE, socketid);
if (pktmbuf_pool[portid][socketid] == NULL)
rte_exit(EXIT_FAILURE,
"Cannot init mbuf pool on socket %d\n",
socketid);
else
printf("Allocated mbuf pool on socket %d\n",
socketid);
}
}
return 0;
}
/* Check the link status of all ports in up to 9s, and print them finally */
static void
check_all_ports_link_status(uint32_t port_mask)
{
#define CHECK_INTERVAL 100 /* 100ms */
#define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
uint8_t count, all_ports_up, print_flag = 0;
struct rte_eth_link link;
uint16_t portid;
int ret;
char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
printf("\nChecking link status");
fflush(stdout);
for (count = 0; count <= MAX_CHECK_TIME; count++) {
if (force_quit)
return;
all_ports_up = 1;
{
if (force_quit)
return;
if ((port_mask & (1 << portid)) == 0)
continue;
memset(&link, 0, sizeof(link));
ret = rte_eth_link_get_nowait(portid, &link);
if (ret < 0) {
all_ports_up = 0;
if (print_flag == 1)
printf("Port %u link get failed: %s\n",
portid, rte_strerror(-ret));
continue;
}
/* Print link status if flag set */
if (print_flag == 1) {
rte_eth_link_to_str(link_status_text,
sizeof(link_status_text), &link);
printf("Port %d %s\n", portid,
link_status_text);
continue;
}
/* Clear all_ports_up flag if any link down */
if (link.link_status == RTE_ETH_LINK_DOWN) {
all_ports_up = 0;
break;
}
}
/* After finally printing all link status, get out */
if (print_flag == 1)
break;
if (all_ports_up == 0) {
printf(".");
fflush(stdout);
rte_delay_ms(CHECK_INTERVAL);
}
/* Set the print_flag if all ports up or timeout */
if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
print_flag = 1;
printf("Done\n");
}
}
}
static void
signal_handler(int signum)
{
if (signum == SIGINT || signum == SIGTERM) {
printf("\n\nSignal %d received, preparing to exit...\n",
signum);
force_quit = true;
}
}
static void
print_stats(void)
{
const char topLeft[] = {27, '[', '1', ';', '1', 'H', '\0'};
const char clr[] = {27, '[', '2', 'J', '\0'};
struct rte_graph_cluster_stats *stats;
const char *pattern = "worker_*";
/* Prepare stats object */
memset(&s_param, 0, sizeof(s_param));
s_param.f = stdout;
s_param.socket_id = SOCKET_ID_ANY;
s_param.graph_patterns = &pattern;
s_param.nb_graph_patterns = 1;
stats = rte_graph_cluster_stats_create(&s_param);
if (stats == NULL)
rte_exit(EXIT_FAILURE, "Unable to create stats object\n");
while (!force_quit) {
/* Clear screen and move to top left */
printf("%s%s", clr, topLeft);
}
}
/* Main processing loop. 8< */
static int
graph_main_loop(void *conf)
{
struct lcore_conf *qconf;
struct rte_graph *graph;
uint32_t lcore_id;
RTE_SET_USED(conf);
lcore_id = rte_lcore_id();
qconf = &lcore_conf[lcore_id];
graph = qconf->graph;
if (!graph) {
RTE_LOG(INFO, L3FWD_GRAPH, "Lcore %u has nothing to do\n",
lcore_id);
return 0;
}
RTE_LOG(INFO, L3FWD_GRAPH,
"Entering main loop on lcore %u, graph %s(%p)\n", lcore_id,
qconf->name, graph);
while (likely(!force_quit))
return 0;
}
/* >8 End of main processing loop. */
static uint32_t
eth_dev_get_overhead_len(uint32_t max_rx_pktlen, uint16_t max_mtu)
{
uint32_t overhead_len;
if (max_mtu != UINT16_MAX && max_rx_pktlen > max_mtu)
overhead_len = max_rx_pktlen - max_mtu;
else
return overhead_len;
}
static int
config_port_max_pkt_len(struct rte_eth_conf *conf,
struct rte_eth_dev_info *dev_info)
{
uint32_t overhead_len;
if (max_pkt_len == 0)
return 0;
if (max_pkt_len < RTE_ETHER_MIN_LEN || max_pkt_len > MAX_JUMBO_PKT_LEN)
return -1;
overhead_len = eth_dev_get_overhead_len(dev_info->max_rx_pktlen,
dev_info->max_mtu);
conf->rxmode.mtu = max_pkt_len - overhead_len;
if (conf->rxmode.mtu > RTE_ETHER_MTU)
return 0;
}
int
main(int argc, char **argv)
{
/* Rewrite data of src and dst ether addr */
uint8_t rewrite_data[2 * sizeof(struct rte_ether_addr)];
/* Graph initialization. 8< */
static const char * const default_patterns[] = {
"ip4*",
"ethdev_tx-*",
"pkt_drop",
};
uint8_t nb_rx_queue, queue, socketid;
struct rte_graph_param graph_conf;
struct rte_eth_dev_info dev_info;
uint32_t nb_ports, nb_conf = 0;
uint32_t n_tx_queue, nb_lcores;
struct rte_eth_txconf *txconf;
uint16_t queueid, portid, i;
const char **node_patterns;
struct lcore_conf *qconf;
uint16_t nb_graphs = 0;
uint16_t nb_patterns;
uint8_t rewrite_len;
uint32_t lcore_id;
int ret;
/* Init EAL */
ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
argc -= ret;
argv += ret;
force_quit = false;
signal(SIGINT, signal_handler);
signal(SIGTERM, signal_handler);
/* Pre-init dst MACs for all ports to 02:00:00:00:00:xx */
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
dest_eth_addr[portid] =
RTE_ETHER_LOCAL_ADMIN_ADDR + ((uint64_t)portid << 40);
*(uint64_t *)(val_eth + portid) = dest_eth_addr[portid];
}
/* Parse application arguments (after the EAL ones) */
ret = parse_args(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid L3FWD_GRAPH parameters\n");
if (check_lcore_params() < 0)
rte_exit(EXIT_FAILURE, "check_lcore_params() failed\n");
ret = init_lcore_rx_queues();
if (ret < 0)
rte_exit(EXIT_FAILURE, "init_lcore_rx_queues() failed\n");
if (check_port_config() < 0)
rte_exit(EXIT_FAILURE, "check_port_config() failed\n");
nb_lcores = rte_lcore_count();
/* Initialize all ports. 8< */
{
struct rte_eth_conf local_port_conf = port_conf;
/* Skip ports that are not enabled */
if ((enabled_port_mask & (1 << portid)) == 0) {
printf("\nSkipping disabled port %d\n", portid);
continue;
}
/* Init port */
printf("Initializing port %d ... ", portid);
fflush(stdout);
nb_rx_queue = get_port_n_rx_queues(portid);
n_tx_queue = nb_lcores;
if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
n_tx_queue = MAX_TX_QUEUE_PER_PORT;
printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
nb_rx_queue, n_tx_queue);
rte_eth_dev_info_get(portid, &dev_info);
ret = config_port_max_pkt_len(&local_port_conf, &dev_info);
if (ret != 0)
rte_exit(EXIT_FAILURE,
"Invalid max packet length: %u (port %u)\n",
max_pkt_len, portid);
local_port_conf.txmode.offloads |=
local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
printf("Port %u modified RSS hash function based on "
"hardware support,"
"requested:%#" PRIx64 " configured:%#" PRIx64
"\n",
portid, port_conf.rx_adv_conf.rss_conf.rss_hf,
local_port_conf.rx_adv_conf.rss_conf.rss_hf);
}
ret = rte_eth_dev_configure(portid, nb_rx_queue,
n_tx_queue, &local_port_conf);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Cannot configure device: err=%d, port=%d\n",
ret, portid);
ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
&nb_txd);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Cannot adjust number of descriptors: err=%d, "
"port=%d\n",
ret, portid);
rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
print_ethaddr(" Address:", &ports_eth_addr[portid]);
printf(", ");
print_ethaddr(
"Destination:",
(const struct rte_ether_addr *)&dest_eth_addr[portid]);
printf(", ");
/*
* prepare src MACs for each port.
*/
&ports_eth_addr[portid],
(struct rte_ether_addr *)(val_eth + portid) + 1);
/* Init memory */
if (!per_port_pool) {
/* portid = 0; this is *not* signifying the first port,
* rather, it signifies that portid is ignored.
*/
ret = init_mem(0, NB_MBUF(nb_ports));
} else {
ret = init_mem(portid, NB_MBUF(1));
}
if (ret < 0)
rte_exit(EXIT_FAILURE, "init_mem() failed\n");
/* Init one TX queue per couple (lcore,port) */
queueid = 0;
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;
qconf = &lcore_conf[lcore_id];
if (numa_on)
socketid = (uint8_t)rte_lcore_to_socket_id(
lcore_id);
else
socketid = 0;
printf("txq=%u,%d,%d ", lcore_id, queueid, socketid);
fflush(stdout);
txconf = &dev_info.default_txconf;
txconf->offloads = local_port_conf.txmode.offloads;
ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
socketid, txconf);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"rte_eth_tx_queue_setup: err=%d, "
"port=%d\n",
ret, portid);
queueid++;
}
/* Setup ethdev node config */
ethdev_conf[nb_conf].port_id = portid;
ethdev_conf[nb_conf].num_rx_queues = nb_rx_queue;
ethdev_conf[nb_conf].num_tx_queues = n_tx_queue;
if (!per_port_pool)
ethdev_conf[nb_conf].mp = pktmbuf_pool[0];
else
ethdev_conf[nb_conf].mp = pktmbuf_pool[portid];
ethdev_conf[nb_conf].mp_count = NB_SOCKETS;
nb_conf++;
printf("\n");
}
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;
qconf = &lcore_conf[lcore_id];
printf("\nInitializing rx queues on lcore %u ... ", lcore_id);
fflush(stdout);
/* Init RX queues */
for (queue = 0; queue < qconf->n_rx_queue; ++queue) {
struct rte_eth_rxconf rxq_conf;
portid = qconf->rx_queue_list[queue].port_id;
queueid = qconf->rx_queue_list[queue].queue_id;
if (numa_on)
socketid = (uint8_t)rte_lcore_to_socket_id(
lcore_id);
else
socketid = 0;
printf("rxq=%d,%d,%d ", portid, queueid, socketid);
fflush(stdout);
rte_eth_dev_info_get(portid, &dev_info);
rxq_conf = dev_info.default_rxconf;
rxq_conf.offloads = port_conf.rxmode.offloads;
if (!per_port_pool)
portid, queueid, nb_rxd, socketid,
&rxq_conf, pktmbuf_pool[0][socketid]);
else
portid, queueid, nb_rxd, socketid,
&rxq_conf,
pktmbuf_pool[portid][socketid]);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"rte_eth_rx_queue_setup: err=%d, "
"port=%d\n",
ret, portid);
/* Add this queue node to its graph */
snprintf(qconf->rx_queue_list[queue].node_name,
RTE_NODE_NAMESIZE, "ethdev_rx-%u-%u", portid,
queueid);
}
/* Alloc a graph to this lcore only if source exists */
if (qconf->n_rx_queue)
nb_graphs++;
}
printf("\n");
/* Ethdev node config, skip rx queue mapping */
ret = rte_node_eth_config(ethdev_conf, nb_conf, nb_graphs);
/* >8 End of graph creation. */
if (ret)
rte_exit(EXIT_FAILURE, "rte_node_eth_config: err=%d\n", ret);
/* Start ports */
{
if ((enabled_port_mask & (1 << portid)) == 0)
continue;
/* Start device */
ret = rte_eth_dev_start(portid);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"rte_eth_dev_start: err=%d, port=%d\n", ret,
portid);
/*
* If enabled, put device in promiscuous mode.
* This allows IO forwarding mode to forward packets
* to itself through 2 cross-connected ports of the
* target machine.
*/
if (promiscuous_on)
}
printf("\n");
check_all_ports_link_status(enabled_port_mask);
/* Graph Initialization */
nb_patterns = RTE_DIM(default_patterns);
node_patterns = malloc((MAX_RX_QUEUE_PER_LCORE + nb_patterns) *
sizeof(*node_patterns));
if (!node_patterns)
return -ENOMEM;
memcpy(node_patterns, default_patterns,
nb_patterns * sizeof(*node_patterns));
memset(&graph_conf, 0, sizeof(graph_conf));
graph_conf.node_patterns = node_patterns;
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
rte_graph_t graph_id;
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;
qconf = &lcore_conf[lcore_id];
/* Skip graph creation if no source exists */
if (!qconf->n_rx_queue)
continue;
/* Add rx node patterns of this lcore */
for (i = 0; i < qconf->n_rx_queue; i++) {
graph_conf.node_patterns[nb_patterns + i] =
qconf->rx_queue_list[i].node_name;
}
graph_conf.nb_node_patterns = nb_patterns + i;
graph_conf.socket_id = rte_lcore_to_socket_id(lcore_id);
snprintf(qconf->name, sizeof(qconf->name), "worker_%u",
lcore_id);
graph_id = rte_graph_create(qconf->name, &graph_conf);
if (graph_id == RTE_GRAPH_ID_INVALID)
rte_exit(EXIT_FAILURE,
"rte_graph_create(): graph_id invalid"
" for lcore %u\n", lcore_id);
qconf->graph_id = graph_id;
qconf->graph = rte_graph_lookup(qconf->name);
/* >8 End of graph initialization. */
if (!qconf->graph)
rte_exit(EXIT_FAILURE,
"rte_graph_lookup(): graph %s not found\n",
qconf->name);
}
memset(&rewrite_data, 0, sizeof(rewrite_data));
rewrite_len = sizeof(rewrite_data);
/* Add route to ip4 graph infra. 8< */
for (i = 0; i < IPV4_L3FWD_LPM_NUM_ROUTES; i++) {
char route_str[INET6_ADDRSTRLEN * 4];
char abuf[INET6_ADDRSTRLEN];
struct in_addr in;
uint32_t dst_port;
/* Skip unused ports */
if ((1 << ipv4_l3fwd_lpm_route_array[i].if_out &
enabled_port_mask) == 0)
continue;
dst_port = ipv4_l3fwd_lpm_route_array[i].if_out;
in.s_addr = htonl(ipv4_l3fwd_lpm_route_array[i].ip);
snprintf(route_str, sizeof(route_str), "%s / %d (%d)",
inet_ntop(AF_INET, &in, abuf, sizeof(abuf)),
ipv4_l3fwd_lpm_route_array[i].depth,
ipv4_l3fwd_lpm_route_array[i].if_out);
/* Use route index 'i' as next hop id */
ipv4_l3fwd_lpm_route_array[i].ip,
ipv4_l3fwd_lpm_route_array[i].depth, i,
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Unable to add ip4 route %s to graph\n",
route_str);
memcpy(rewrite_data, val_eth + dst_port, rewrite_len);
/* Add next hop rewrite data for id 'i' */
ret = rte_node_ip4_rewrite_add(i, rewrite_data,
rewrite_len, dst_port);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Unable to add next hop %u for "
"route %s\n", i, route_str);
RTE_LOG(INFO, L3FWD_GRAPH, "Added route %s, next_hop %u\n",
route_str, i);
}
/* >8 End of adding route to ip4 graph infa. */
/* Launch per-lcore init on every worker lcore */
rte_eal_mp_remote_launch(graph_main_loop, NULL, SKIP_MAIN);
/* Accumulate and print stats on main until exit */
print_stats();
/* Wait for worker cores to exit */
ret = 0;
ret = rte_eal_wait_lcore(lcore_id);
/* Destroy graph */
if (ret < 0 || rte_graph_destroy(
rte_graph_from_name(lcore_conf[lcore_id].name))) {
ret = -1;
break;
}
}
free(node_patterns);
/* Stop ports */
if ((enabled_port_mask & (1 << portid)) == 0)
continue;
printf("Closing port %d...", portid);
ret = rte_eth_dev_stop(portid);
if (ret != 0)
printf("Failed to stop port %u: %s\n",
portid, rte_strerror(-ret));
printf(" Done\n");
}
/* clean up the EAL */
printf("Bye...\n");
return ret;
}