DPDK  20.11.3
examples/fips_validation/main.c
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Intel Corporation
*/
#include <sys/stat.h>
#include <getopt.h>
#include <dirent.h>
#include <rte_cryptodev.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_string_fns.h>
#include "fips_validation.h"
#include "fips_dev_self_test.h"
#define REQ_FILE_PATH_KEYWORD "req-file"
#define RSP_FILE_PATH_KEYWORD "rsp-file"
#define MBUF_DATAROOM_KEYWORD "mbuf-dataroom"
#define FOLDER_KEYWORD "path-is-folder"
#define CRYPTODEV_KEYWORD "cryptodev"
#define CRYPTODEV_ID_KEYWORD "cryptodev-id"
#define CRYPTODEV_ST_KEYWORD "self-test"
#define CRYPTODEV_BK_ID_KEYWORD "broken-test-id"
#define CRYPTODEV_BK_DIR_KEY "broken-test-dir"
#define CRYPTODEV_ENC_KEYWORD "enc"
#define CRYPTODEV_DEC_KEYWORD "dec"
struct fips_test_vector vec;
struct fips_test_interim_info info;
struct cryptodev_fips_validate_env {
const char *req_path;
const char *rsp_path;
uint32_t is_path_folder;
uint8_t dev_id;
uint8_t dev_support_sgl;
uint16_t mbuf_data_room;
struct rte_mempool *mpool;
struct rte_mempool *sess_mpool;
struct rte_mempool *sess_priv_mpool;
struct rte_mempool *op_pool;
struct rte_mbuf *mbuf;
uint8_t *digest;
uint16_t digest_len;
struct rte_crypto_op *op;
uint16_t self_test;
struct fips_dev_broken_test_config *broken_test_config;
} env;
static int
cryptodev_fips_validate_app_int(void)
{
struct rte_cryptodev_config conf = {rte_socket_id(), 1, 0};
struct rte_cryptodev_qp_conf qp_conf = {128, NULL, NULL};
struct rte_cryptodev_info dev_info;
env.dev_id);
uint32_t nb_mbufs = UINT16_MAX / env.mbuf_data_room + 1;
int ret;
if (env.self_test) {
ret = fips_dev_self_test(env.dev_id, env.broken_test_config);
if (ret < 0) {
struct rte_cryptodev *cryptodev =
rte_cryptodev_pmd_destroy(cryptodev);
return ret;
}
}
ret = rte_cryptodev_configure(env.dev_id, &conf);
if (ret < 0)
return ret;
rte_cryptodev_info_get(env.dev_id, &dev_info);
if (dev_info.feature_flags & RTE_CRYPTODEV_FF_IN_PLACE_SGL)
env.dev_support_sgl = 1;
else
env.dev_support_sgl = 0;
env.mpool = rte_pktmbuf_pool_create("FIPS_MEMPOOL", nb_mbufs,
0, 0, sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM +
env.mbuf_data_room, rte_socket_id());
if (!env.mpool)
return ret;
ret = rte_cryptodev_queue_pair_setup(env.dev_id, 0, &qp_conf,
if (ret < 0)
return ret;
ret = -ENOMEM;
"FIPS_SESS_MEMPOOL", 16, 0, 0, 0, rte_socket_id());
if (!env.sess_mpool)
goto error_exit;
env.sess_priv_mpool = rte_mempool_create("FIPS_SESS_PRIV_MEMPOOL",
16, sess_sz, 0, 0, NULL, NULL, NULL,
NULL, rte_socket_id(), 0);
if (!env.sess_priv_mpool)
goto error_exit;
"FIPS_OP_POOL",
1, 0,
16,
if (!env.op_pool)
goto error_exit;
if (!env.op)
goto error_exit;
qp_conf.mp_session = env.sess_mpool;
qp_conf.mp_session_private = env.sess_priv_mpool;
ret = rte_cryptodev_queue_pair_setup(env.dev_id, 0, &qp_conf,
if (ret < 0)
goto error_exit;
return 0;
error_exit:
rte_mempool_free(env.mpool);
if (env.sess_mpool)
rte_mempool_free(env.sess_mpool);
if (env.sess_priv_mpool)
rte_mempool_free(env.sess_priv_mpool);
if (env.op_pool)
rte_mempool_free(env.op_pool);
return ret;
}
static void
cryptodev_fips_validate_app_uninit(void)
{
rte_pktmbuf_free(env.mbuf);
rte_cryptodev_sym_session_clear(env.dev_id, env.sess);
rte_mempool_free(env.mpool);
rte_mempool_free(env.sess_mpool);
rte_mempool_free(env.sess_priv_mpool);
rte_mempool_free(env.op_pool);
}
static int
fips_test_one_file(void);
static int
parse_cryptodev_arg(char *arg)
{
int id = rte_cryptodev_get_dev_id(arg);
if (id < 0) {
RTE_LOG(ERR, USER1, "Error %i: invalid cryptodev name %s\n",
id, arg);
return id;
}
env.dev_id = (uint8_t)id;
return 0;
}
static int
parse_cryptodev_id_arg(char *arg)
{
uint32_t cryptodev_id;
if (parser_read_uint32(&cryptodev_id, arg) < 0) {
RTE_LOG(ERR, USER1, "Error %i: invalid cryptodev id %s\n",
-EINVAL, arg);
return -1;
}
if (!rte_cryptodev_pmd_is_valid_dev(cryptodev_id)) {
RTE_LOG(ERR, USER1, "Error %i: invalid cryptodev id %s\n",
cryptodev_id, arg);
return -1;
}
env.dev_id = (uint8_t)cryptodev_id;
return 0;
}
static void
cryptodev_fips_validate_usage(const char *prgname)
{
uint32_t def_mbuf_seg_size = DEF_MBUF_SEG_SIZE;
printf("%s [EAL options] --\n"
" --%s: REQUEST-FILE-PATH\n"
" --%s: RESPONSE-FILE-PATH\n"
" --%s: indicating both paths are folders\n"
" --%s: mbuf dataroom size (default %u bytes)\n"
" --%s: CRYPTODEV-NAME\n"
" --%s: CRYPTODEV-ID-NAME\n"
" --%s: self test indicator\n"
" --%s: self broken test ID\n"
" --%s: self broken test direction\n",
prgname, REQ_FILE_PATH_KEYWORD, RSP_FILE_PATH_KEYWORD,
FOLDER_KEYWORD, MBUF_DATAROOM_KEYWORD, def_mbuf_seg_size,
CRYPTODEV_KEYWORD, CRYPTODEV_ID_KEYWORD, CRYPTODEV_ST_KEYWORD,
CRYPTODEV_BK_ID_KEYWORD, CRYPTODEV_BK_DIR_KEY);
}
static int
cryptodev_fips_validate_parse_args(int argc, char **argv)
{
int opt, ret;
char *prgname = argv[0];
char **argvopt;
int option_index;
struct option lgopts[] = {
{REQ_FILE_PATH_KEYWORD, required_argument, 0, 0},
{RSP_FILE_PATH_KEYWORD, required_argument, 0, 0},
{FOLDER_KEYWORD, no_argument, 0, 0},
{MBUF_DATAROOM_KEYWORD, required_argument, 0, 0},
{CRYPTODEV_KEYWORD, required_argument, 0, 0},
{CRYPTODEV_ID_KEYWORD, required_argument, 0, 0},
{CRYPTODEV_ST_KEYWORD, no_argument, 0, 0},
{CRYPTODEV_BK_ID_KEYWORD, required_argument, 0, 0},
{CRYPTODEV_BK_DIR_KEY, required_argument, 0, 0},
{NULL, 0, 0, 0}
};
argvopt = argv;
env.mbuf_data_room = DEF_MBUF_SEG_SIZE;
env.dev_id = 0;
else {
cryptodev_fips_validate_usage(prgname);
return -EINVAL;
}
while ((opt = getopt_long(argc, argvopt, "s:",
lgopts, &option_index)) != EOF) {
switch (opt) {
case 0:
if (strcmp(lgopts[option_index].name,
REQ_FILE_PATH_KEYWORD) == 0)
env.req_path = optarg;
else if (strcmp(lgopts[option_index].name,
RSP_FILE_PATH_KEYWORD) == 0)
env.rsp_path = optarg;
else if (strcmp(lgopts[option_index].name,
FOLDER_KEYWORD) == 0)
env.is_path_folder = 1;
else if (strcmp(lgopts[option_index].name,
CRYPTODEV_KEYWORD) == 0) {
ret = parse_cryptodev_arg(optarg);
if (ret < 0) {
cryptodev_fips_validate_usage(prgname);
return -EINVAL;
}
} else if (strcmp(lgopts[option_index].name,
CRYPTODEV_ID_KEYWORD) == 0) {
ret = parse_cryptodev_id_arg(optarg);
if (ret < 0) {
cryptodev_fips_validate_usage(prgname);
return -EINVAL;
}
} else if (strcmp(lgopts[option_index].name,
CRYPTODEV_ST_KEYWORD) == 0) {
env.self_test = 1;
} else if (strcmp(lgopts[option_index].name,
CRYPTODEV_BK_ID_KEYWORD) == 0) {
if (!env.broken_test_config) {
env.broken_test_config = rte_malloc(
NULL,
sizeof(*env.broken_test_config),
0);
if (!env.broken_test_config)
return -ENOMEM;
env.broken_test_config->expect_fail_dir =
self_test_dir_enc_auth_gen;
}
if (parser_read_uint32(
&env.broken_test_config->expect_fail_test_idx,
optarg) < 0) {
rte_free(env.broken_test_config);
cryptodev_fips_validate_usage(prgname);
return -EINVAL;
}
} else if (strcmp(lgopts[option_index].name,
CRYPTODEV_BK_DIR_KEY) == 0) {
if (!env.broken_test_config) {
env.broken_test_config = rte_malloc(
NULL,
sizeof(*env.broken_test_config),
0);
if (!env.broken_test_config)
return -ENOMEM;
env.broken_test_config->
expect_fail_test_idx = 0;
}
if (strcmp(optarg, CRYPTODEV_ENC_KEYWORD) == 0)
env.broken_test_config->expect_fail_dir =
self_test_dir_enc_auth_gen;
else if (strcmp(optarg, CRYPTODEV_DEC_KEYWORD)
== 0)
env.broken_test_config->expect_fail_dir =
self_test_dir_dec_auth_verify;
else {
rte_free(env.broken_test_config);
cryptodev_fips_validate_usage(prgname);
return -EINVAL;
}
} else if (strcmp(lgopts[option_index].name,
MBUF_DATAROOM_KEYWORD) == 0) {
uint32_t data_room_size;
if (parser_read_uint32(&data_room_size,
optarg) < 0) {
cryptodev_fips_validate_usage(prgname);
return -EINVAL;
}
if (data_room_size == 0 ||
data_room_size > UINT16_MAX) {
cryptodev_fips_validate_usage(prgname);
return -EINVAL;
}
env.mbuf_data_room = data_room_size;
} else {
cryptodev_fips_validate_usage(prgname);
return -EINVAL;
}
break;
default:
return -1;
}
}
if ((env.req_path == NULL && env.rsp_path != NULL) ||
(env.req_path != NULL && env.rsp_path == NULL)) {
RTE_LOG(ERR, USER1, "Missing req path or rsp path\n");
cryptodev_fips_validate_usage(prgname);
return -EINVAL;
}
if (env.req_path == NULL && env.self_test == 0) {
RTE_LOG(ERR, USER1, "--self-test must be set if req path is missing\n");
cryptodev_fips_validate_usage(prgname);
return -EINVAL;
}
return 0;
}
int
main(int argc, char *argv[])
{
int ret;
ret = rte_eal_init(argc, argv);
if (ret < 0) {
RTE_LOG(ERR, USER1, "Error %i: Failed init\n", ret);
return -1;
}
argc -= ret;
argv += ret;
ret = cryptodev_fips_validate_parse_args(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Failed to parse arguments!\n");
ret = cryptodev_fips_validate_app_int();
if (ret < 0) {
RTE_LOG(ERR, USER1, "Error %i: Failed init\n", ret);
return -1;
}
if (env.req_path == NULL || env.rsp_path == NULL) {
printf("No request, exit.\n");
goto exit;
}
if (!env.is_path_folder) {
printf("Processing file %s... ", env.req_path);
ret = fips_test_init(env.req_path, env.rsp_path,
rte_cryptodev_name_get(env.dev_id));
if (ret < 0) {
RTE_LOG(ERR, USER1, "Error %i: Failed test %s\n",
ret, env.req_path);
goto exit;
}
ret = fips_test_one_file();
if (ret < 0) {
RTE_LOG(ERR, USER1, "Error %i: Failed test %s\n",
ret, env.req_path);
goto exit;
}
printf("Done\n");
} else {
struct dirent *dir;
DIR *d_req, *d_rsp;
char req_path[1024];
char rsp_path[1024];
d_req = opendir(env.req_path);
if (!d_req) {
RTE_LOG(ERR, USER1, "Error %i: Path %s not exist\n",
-EINVAL, env.req_path);
goto exit;
}
d_rsp = opendir(env.rsp_path);
if (!d_rsp) {
ret = mkdir(env.rsp_path, 0700);
if (ret == 0)
d_rsp = opendir(env.rsp_path);
else {
RTE_LOG(ERR, USER1, "Error %i: Invalid %s\n",
-EINVAL, env.rsp_path);
goto exit;
}
}
closedir(d_rsp);
while ((dir = readdir(d_req)) != NULL) {
if (strstr(dir->d_name, "req") == NULL)
continue;
snprintf(req_path, 1023, "%s/%s", env.req_path,
dir->d_name);
snprintf(rsp_path, 1023, "%s/%s", env.rsp_path,
dir->d_name);
strlcpy(strstr(rsp_path, "req"), "rsp", 4);
printf("Processing file %s... ", req_path);
ret = fips_test_init(req_path, rsp_path,
rte_cryptodev_name_get(env.dev_id));
if (ret < 0) {
RTE_LOG(ERR, USER1, "Error %i: Failed test %s\n",
ret, req_path);
break;
}
ret = fips_test_one_file();
if (ret < 0) {
RTE_LOG(ERR, USER1, "Error %i: Failed test %s\n",
ret, req_path);
break;
}
printf("Done\n");
}
closedir(d_req);
}
exit:
fips_test_clear();
cryptodev_fips_validate_app_uninit();
/* clean up the EAL */
return ret;
}
#define IV_OFF (sizeof(struct rte_crypto_op) + sizeof(struct rte_crypto_sym_op))
#define CRYPTODEV_FIPS_MAX_RETRIES 16
struct fips_test_ops test_ops;
static int
prepare_data_mbufs(struct fips_val *val)
{
struct rte_mbuf *m, *head = 0;
uint8_t *src = val->val;
uint32_t total_len = val->len;
uint16_t nb_seg;
int ret = 0;
if (env.mbuf)
rte_pktmbuf_free(env.mbuf);
if (total_len > RTE_MBUF_MAX_NB_SEGS) {
RTE_LOG(ERR, USER1, "Data len %u too big\n", total_len);
return -EPERM;
}
nb_seg = total_len / env.mbuf_data_room;
if (total_len % env.mbuf_data_room)
nb_seg++;
m = rte_pktmbuf_alloc(env.mpool);
if (!m) {
RTE_LOG(ERR, USER1, "Error %i: Not enough mbuf\n",
-ENOMEM);
return -ENOMEM;
}
head = m;
while (nb_seg) {
uint16_t len = RTE_MIN(total_len, env.mbuf_data_room);
uint8_t *dst = (uint8_t *)rte_pktmbuf_append(m, len);
if (!dst) {
RTE_LOG(ERR, USER1, "Error %i: MBUF too small\n",
-ENOMEM);
ret = -ENOMEM;
goto error_exit;
}
memcpy(dst, src, len);
if (head != m) {
ret = rte_pktmbuf_chain(head, m);
if (ret) {
RTE_LOG(ERR, USER1, "Error %i: SGL build\n",
ret);
goto error_exit;
}
}
total_len -= len;
if (total_len) {
if (!env.dev_support_sgl) {
RTE_LOG(ERR, USER1, "SGL not supported\n");
ret = -EPERM;
goto error_exit;
}
m = rte_pktmbuf_alloc(env.mpool);
if (!m) {
RTE_LOG(ERR, USER1, "Error %i: No memory\n",
-ENOMEM);
goto error_exit;
}
} else
break;
src += len;
nb_seg--;
}
if (total_len) {
RTE_LOG(ERR, USER1, "Error %i: Failed to store all data\n",
-ENOMEM);
goto error_exit;
}
env.mbuf = head;
return 0;
error_exit:
if (head)
return ret;
}
static int
prepare_cipher_op(void)
{
struct rte_crypto_sym_op *sym = env.op->sym;
uint8_t *iv = rte_crypto_op_ctod_offset(env.op, uint8_t *, IV_OFF);
int ret;
memcpy(iv, vec.iv.val, vec.iv.len);
if (info.op == FIPS_TEST_ENC_AUTH_GEN) {
ret = prepare_data_mbufs(&vec.pt);
if (ret < 0)
return ret;
sym->cipher.data.length = vec.pt.len;
} else {
ret = prepare_data_mbufs(&vec.ct);
if (ret < 0)
return ret;
sym->cipher.data.length = vec.ct.len;
}
sym->m_src = env.mbuf;
sym->cipher.data.offset = 0;
return 0;
}
int
prepare_auth_op(void)
{
struct rte_crypto_sym_op *sym = env.op->sym;
int ret;
if (vec.iv.len) {
uint8_t *iv = rte_crypto_op_ctod_offset(env.op, uint8_t *,
IV_OFF);
memset(iv, 0, vec.iv.len);
if (vec.iv.val)
memcpy(iv, vec.iv.val, vec.iv.len);
}
ret = prepare_data_mbufs(&vec.pt);
if (ret < 0)
return ret;
if (env.digest)
rte_free(env.digest);
env.digest = rte_zmalloc(NULL, vec.cipher_auth.digest.len,
RTE_CACHE_LINE_SIZE);
if (!env.digest) {
RTE_LOG(ERR, USER1, "Not enough memory\n");
return -ENOMEM;
}
env.digest_len = vec.cipher_auth.digest.len;
sym->m_src = env.mbuf;
sym->auth.data.offset = 0;
sym->auth.data.length = vec.pt.len;
sym->auth.digest.data = env.digest;
sym->auth.digest.phys_addr = rte_malloc_virt2iova(env.digest);
if (info.op == FIPS_TEST_DEC_AUTH_VERIF)
memcpy(env.digest, vec.cipher_auth.digest.val,
vec.cipher_auth.digest.len);
return 0;
}
int
prepare_aead_op(void)
{
struct rte_crypto_sym_op *sym = env.op->sym;
uint8_t *iv = rte_crypto_op_ctod_offset(env.op, uint8_t *, IV_OFF);
int ret;
if (info.algo == FIPS_TEST_ALGO_AES_CCM)
iv++;
if (vec.iv.val)
memcpy(iv, vec.iv.val, vec.iv.len);
else
/* if REQ file has iv length but not data, default as all 0 */
memset(iv, 0, vec.iv.len);
if (info.op == FIPS_TEST_ENC_AUTH_GEN) {
ret = prepare_data_mbufs(&vec.pt);
if (ret < 0)
return ret;
if (env.digest)
rte_free(env.digest);
env.digest = rte_zmalloc(NULL, vec.aead.digest.len,
RTE_CACHE_LINE_SIZE);
if (!env.digest) {
RTE_LOG(ERR, USER1, "Not enough memory\n");
return -ENOMEM;
}
env.digest_len = vec.cipher_auth.digest.len;
sym->aead.data.length = vec.pt.len;
sym->aead.digest.data = env.digest;
sym->aead.digest.phys_addr = rte_malloc_virt2iova(env.digest);
} else {
ret = prepare_data_mbufs(&vec.ct);
if (ret < 0)
return ret;
sym->aead.data.length = vec.ct.len;
sym->aead.digest.data = vec.aead.digest.val;
sym->aead.digest.phys_addr = rte_malloc_virt2iova(
sym->aead.digest.data);
}
sym->m_src = env.mbuf;
sym->aead.data.offset = 0;
sym->aead.aad.data = vec.aead.aad.val;
sym->aead.aad.phys_addr = rte_malloc_virt2iova(sym->aead.aad.data);
return 0;
}
static int
prepare_aes_xform(struct rte_crypto_sym_xform *xform)
{
struct rte_crypto_cipher_xform *cipher_xform = &xform->cipher;
if (info.interim_info.aes_data.cipher_algo == RTE_CRYPTO_CIPHER_AES_CBC)
else
cipher_xform->op = (info.op == FIPS_TEST_ENC_AUTH_GEN) ?
cipher_xform->key.data = vec.cipher_auth.key.val;
cipher_xform->key.length = vec.cipher_auth.key.len;
if (cipher_xform->algo == RTE_CRYPTO_CIPHER_AES_CBC) {
cipher_xform->iv.length = vec.iv.len;
cipher_xform->iv.offset = IV_OFF;
} else {
cipher_xform->iv.length = 0;
cipher_xform->iv.offset = 0;
}
cap_idx.algo.cipher = cipher_xform->algo;
cap = rte_cryptodev_sym_capability_get(env.dev_id, &cap_idx);
if (!cap) {
RTE_LOG(ERR, USER1, "Failed to get capability for cdev %u\n",
env.dev_id);
return -EINVAL;
}
cipher_xform->key.length,
cipher_xform->iv.length) != 0) {
RTE_LOG(ERR, USER1, "PMD %s key length %u IV length %u\n",
info.device_name, cipher_xform->key.length,
cipher_xform->iv.length);
return -EPERM;
}
return 0;
}
static int
prepare_tdes_xform(struct rte_crypto_sym_xform *xform)
{
struct rte_crypto_cipher_xform *cipher_xform = &xform->cipher;
if (info.interim_info.tdes_data.test_mode == TDES_MODE_CBC)
else
cipher_xform->op = (info.op == FIPS_TEST_ENC_AUTH_GEN) ?
cipher_xform->key.data = vec.cipher_auth.key.val;
cipher_xform->key.length = vec.cipher_auth.key.len;
if (cipher_xform->algo == RTE_CRYPTO_CIPHER_3DES_CBC) {
cipher_xform->iv.length = vec.iv.len;
cipher_xform->iv.offset = IV_OFF;
} else {
cipher_xform->iv.length = 0;
cipher_xform->iv.offset = 0;
}
cap_idx.algo.cipher = cipher_xform->algo;
cap = rte_cryptodev_sym_capability_get(env.dev_id, &cap_idx);
if (!cap) {
RTE_LOG(ERR, USER1, "Failed to get capability for cdev %u\n",
env.dev_id);
return -EINVAL;
}
cipher_xform->key.length,
cipher_xform->iv.length) != 0) {
RTE_LOG(ERR, USER1, "PMD %s key length %u IV length %u\n",
info.device_name, cipher_xform->key.length,
cipher_xform->iv.length);
return -EPERM;
}
return 0;
}
static int
prepare_hmac_xform(struct rte_crypto_sym_xform *xform)
{
struct rte_crypto_auth_xform *auth_xform = &xform->auth;
auth_xform->algo = info.interim_info.hmac_data.algo;
auth_xform->digest_length = vec.cipher_auth.digest.len;
auth_xform->key.data = vec.cipher_auth.key.val;
auth_xform->key.length = vec.cipher_auth.key.len;
cap_idx.algo.auth = auth_xform->algo;
cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH;
cap = rte_cryptodev_sym_capability_get(env.dev_id, &cap_idx);
if (!cap) {
RTE_LOG(ERR, USER1, "Failed to get capability for cdev %u\n",
env.dev_id);
return -EINVAL;
}
auth_xform->key.length,
auth_xform->digest_length, 0) != 0) {
RTE_LOG(ERR, USER1, "PMD %s key length %u IV length %u\n",
info.device_name, auth_xform->key.length,
auth_xform->digest_length);
return -EPERM;
}
return 0;
}
int
prepare_gcm_xform(struct rte_crypto_sym_xform *xform)
{
struct rte_crypto_aead_xform *aead_xform = &xform->aead;
aead_xform->algo = RTE_CRYPTO_AEAD_AES_GCM;
aead_xform->aad_length = vec.aead.aad.len;
aead_xform->digest_length = vec.aead.digest.len;
aead_xform->iv.offset = IV_OFF;
aead_xform->iv.length = vec.iv.len;
aead_xform->key.data = vec.aead.key.val;
aead_xform->key.length = vec.aead.key.len;
aead_xform->op = (info.op == FIPS_TEST_ENC_AUTH_GEN) ?
cap_idx.algo.aead = aead_xform->algo;
cap_idx.type = RTE_CRYPTO_SYM_XFORM_AEAD;
cap = rte_cryptodev_sym_capability_get(env.dev_id, &cap_idx);
if (!cap) {
RTE_LOG(ERR, USER1, "Failed to get capability for cdev %u\n",
env.dev_id);
return -EINVAL;
}
aead_xform->key.length,
aead_xform->digest_length, aead_xform->aad_length,
aead_xform->iv.length) != 0) {
RTE_LOG(ERR, USER1,
"PMD %s key_len %u tag_len %u aad_len %u iv_len %u\n",
info.device_name, aead_xform->key.length,
aead_xform->digest_length,
aead_xform->aad_length,
aead_xform->iv.length);
return -EPERM;
}
return 0;
}
int
prepare_gmac_xform(struct rte_crypto_sym_xform *xform)
{
struct rte_crypto_auth_xform *auth_xform = &xform->auth;
auth_xform->op = (info.op == FIPS_TEST_ENC_AUTH_GEN) ?
auth_xform->iv.offset = IV_OFF;
auth_xform->iv.length = vec.iv.len;
auth_xform->digest_length = vec.aead.digest.len;
auth_xform->key.data = vec.aead.key.val;
auth_xform->key.length = vec.aead.key.len;
cap_idx.algo.auth = auth_xform->algo;
cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH;
cap = rte_cryptodev_sym_capability_get(env.dev_id, &cap_idx);
if (!cap) {
RTE_LOG(ERR, USER1, "Failed to get capability for cdev %u\n",
env.dev_id);
return -EINVAL;
}
auth_xform->key.length,
auth_xform->digest_length,
auth_xform->iv.length) != 0) {
RTE_LOG(ERR, USER1,
"PMD %s key length %u Digest length %u IV length %u\n",
info.device_name, auth_xform->key.length,
auth_xform->digest_length,
auth_xform->iv.length);
return -EPERM;
}
return 0;
}
static int
prepare_cmac_xform(struct rte_crypto_sym_xform *xform)
{
struct rte_crypto_auth_xform *auth_xform = &xform->auth;
auth_xform->op = (info.op == FIPS_TEST_ENC_AUTH_GEN) ?
auth_xform->digest_length = vec.cipher_auth.digest.len;
auth_xform->key.data = vec.cipher_auth.key.val;
auth_xform->key.length = vec.cipher_auth.key.len;
cap_idx.algo.auth = auth_xform->algo;
cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH;
cap = rte_cryptodev_sym_capability_get(env.dev_id, &cap_idx);
if (!cap) {
RTE_LOG(ERR, USER1, "Failed to get capability for cdev %u\n",
env.dev_id);
return -EINVAL;
}
auth_xform->key.length,
auth_xform->digest_length, 0) != 0) {
RTE_LOG(ERR, USER1, "PMD %s key length %u IV length %u\n",
info.device_name, auth_xform->key.length,
auth_xform->digest_length);
return -EPERM;
}
return 0;
}
static int
prepare_ccm_xform(struct rte_crypto_sym_xform *xform)
{
struct rte_crypto_aead_xform *aead_xform = &xform->aead;
aead_xform->algo = RTE_CRYPTO_AEAD_AES_CCM;
aead_xform->aad_length = vec.aead.aad.len;
aead_xform->digest_length = vec.aead.digest.len;
aead_xform->iv.offset = IV_OFF;
aead_xform->iv.length = vec.iv.len;
aead_xform->key.data = vec.aead.key.val;
aead_xform->key.length = vec.aead.key.len;
aead_xform->op = (info.op == FIPS_TEST_ENC_AUTH_GEN) ?
cap_idx.algo.aead = aead_xform->algo;
cap_idx.type = RTE_CRYPTO_SYM_XFORM_AEAD;
cap = rte_cryptodev_sym_capability_get(env.dev_id, &cap_idx);
if (!cap) {
RTE_LOG(ERR, USER1, "Failed to get capability for cdev %u\n",
env.dev_id);
return -EINVAL;
}
aead_xform->key.length,
aead_xform->digest_length, aead_xform->aad_length,
aead_xform->iv.length) != 0) {
RTE_LOG(ERR, USER1,
"PMD %s key_len %u tag_len %u aad_len %u iv_len %u\n",
info.device_name, aead_xform->key.length,
aead_xform->digest_length,
aead_xform->aad_length,
aead_xform->iv.length);
return -EPERM;
}
return 0;
}
static int
prepare_sha_xform(struct rte_crypto_sym_xform *xform)
{
struct rte_crypto_auth_xform *auth_xform = &xform->auth;
auth_xform->algo = info.interim_info.sha_data.algo;
auth_xform->digest_length = vec.cipher_auth.digest.len;
cap_idx.algo.auth = auth_xform->algo;
cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH;
cap = rte_cryptodev_sym_capability_get(env.dev_id, &cap_idx);
if (!cap) {
RTE_LOG(ERR, USER1, "Failed to get capability for cdev %u\n",
env.dev_id);
return -EINVAL;
}
auth_xform->key.length,
auth_xform->digest_length, 0) != 0) {
RTE_LOG(ERR, USER1, "PMD %s key length %u digest length %u\n",
info.device_name, auth_xform->key.length,
auth_xform->digest_length);
return -EPERM;
}
return 0;
}
static int
prepare_xts_xform(struct rte_crypto_sym_xform *xform)
{
struct rte_crypto_cipher_xform *cipher_xform = &xform->cipher;
cipher_xform->op = (info.op == FIPS_TEST_ENC_AUTH_GEN) ?
cipher_xform->key.data = vec.cipher_auth.key.val;
cipher_xform->key.length = vec.cipher_auth.key.len;
cipher_xform->iv.length = vec.iv.len;
cipher_xform->iv.offset = IV_OFF;
cap_idx.algo.cipher = RTE_CRYPTO_CIPHER_AES_XTS;
cap = rte_cryptodev_sym_capability_get(env.dev_id, &cap_idx);
if (!cap) {
RTE_LOG(ERR, USER1, "Failed to get capability for cdev %u\n",
env.dev_id);
return -EINVAL;
}
cipher_xform->key.length,
cipher_xform->iv.length) != 0) {
RTE_LOG(ERR, USER1, "PMD %s key length %u IV length %u\n",
info.device_name, cipher_xform->key.length,
cipher_xform->iv.length);
return -EPERM;
}
return 0;
}
static int
get_writeback_data(struct fips_val *val)
{
struct rte_mbuf *m = env.mbuf;
uint16_t total_len = data_len + env.digest_len;
uint8_t *src, *dst, *wb_data;
/* in case val is reused for MCT test, try to free the buffer first */
if (val->val) {
free(val->val);
val->val = NULL;
}
wb_data = dst = calloc(1, total_len);
if (!dst) {
RTE_LOG(ERR, USER1, "Error %i: Not enough memory\n", -ENOMEM);
return -ENOMEM;
}
while (m && data_len) {
uint16_t seg_len = RTE_MIN(rte_pktmbuf_data_len(m), data_len);
src = rte_pktmbuf_mtod(m, uint8_t *);
memcpy(dst, src, seg_len);
m = m->next;
data_len -= seg_len;
dst += seg_len;
}
if (data_len) {
RTE_LOG(ERR, USER1, "Error -1: write back data\n");
free(wb_data);
return -1;
}
if (env.digest)
memcpy(dst, env.digest, env.digest_len);
val->val = wb_data;
val->len = total_len;
return 0;
}
static int
fips_run_test(void)
{
struct rte_crypto_sym_xform xform = {0};
uint16_t n_deqd;
int ret;
ret = test_ops.prepare_xform(&xform);
if (ret < 0)
return ret;
env.sess = rte_cryptodev_sym_session_create(env.sess_mpool);
if (!env.sess)
return -ENOMEM;
env.sess, &xform, env.sess_priv_mpool);
if (ret < 0) {
RTE_LOG(ERR, USER1, "Error %i: Init session\n",
ret);
goto exit;
}
ret = test_ops.prepare_op();
if (ret < 0) {
RTE_LOG(ERR, USER1, "Error %i: Prepare op\n",
ret);
goto exit;
}
if (rte_cryptodev_enqueue_burst(env.dev_id, 0, &env.op, 1) < 1) {
RTE_LOG(ERR, USER1, "Error: Failed enqueue\n");
ret = -1;
goto exit;
}
do {
struct rte_crypto_op *deqd_op;
n_deqd = rte_cryptodev_dequeue_burst(env.dev_id, 0, &deqd_op,
1);
} while (n_deqd == 0);
vec.status = env.op->status;
exit:
rte_cryptodev_sym_session_clear(env.dev_id, env.sess);
env.sess = NULL;
return ret;
}
static int
fips_generic_test(void)
{
struct fips_val val = {NULL, 0};
int ret;
fips_test_write_one_case();
ret = fips_run_test();
if (ret < 0) {
if (ret == -EPERM || ret == -ENOTSUP) {
fprintf(info.fp_wr, "Bypass\n\n");
return 0;
}
return ret;
}
ret = get_writeback_data(&val);
if (ret < 0)
return ret;
switch (info.file_type) {
case FIPS_TYPE_REQ:
case FIPS_TYPE_RSP:
if (info.parse_writeback == NULL)
return -EPERM;
ret = info.parse_writeback(&val);
if (ret < 0)
return ret;
break;
case FIPS_TYPE_FAX:
if (info.kat_check == NULL)
return -EPERM;
ret = info.kat_check(&val);
if (ret < 0)
return ret;
break;
}
fprintf(info.fp_wr, "\n");
free(val.val);
return 0;
}
static int
fips_mct_tdes_test(void)
{
#define TDES_BLOCK_SIZE 8
#define TDES_EXTERN_ITER 400
#define TDES_INTERN_ITER 10000
struct fips_val val = {NULL, 0}, val_key;
uint8_t prev_out[TDES_BLOCK_SIZE] = {0};
uint8_t prev_prev_out[TDES_BLOCK_SIZE] = {0};
uint8_t prev_in[TDES_BLOCK_SIZE] = {0};
uint32_t i, j, k;
int ret;
int test_mode = info.interim_info.tdes_data.test_mode;
for (i = 0; i < TDES_EXTERN_ITER; i++) {
if ((i == 0) && (info.version == 21.4f)) {
if (!(strstr(info.vec[0], "COUNT")))
fprintf(info.fp_wr, "%s%u\n", "COUNT = ", 0);
}
if (i != 0)
update_info_vec(i);
fips_test_write_one_case();
for (j = 0; j < TDES_INTERN_ITER; j++) {
ret = fips_run_test();
if (ret < 0) {
if (ret == -EPERM) {
fprintf(info.fp_wr, "Bypass\n");
return 0;
}
return ret;
}
ret = get_writeback_data(&val);
if (ret < 0)
return ret;
if (info.op == FIPS_TEST_DEC_AUTH_VERIF)
memcpy(prev_in, vec.ct.val, TDES_BLOCK_SIZE);
if (j == 0) {
memcpy(prev_out, val.val, TDES_BLOCK_SIZE);
if (info.op == FIPS_TEST_ENC_AUTH_GEN) {
if (test_mode == TDES_MODE_ECB) {
memcpy(vec.pt.val, val.val,
TDES_BLOCK_SIZE);
} else {
memcpy(vec.pt.val, vec.iv.val,
TDES_BLOCK_SIZE);
memcpy(vec.iv.val, val.val,
TDES_BLOCK_SIZE);
}
} else {
if (test_mode == TDES_MODE_ECB) {
memcpy(vec.ct.val, val.val,
TDES_BLOCK_SIZE);
} else {
memcpy(vec.iv.val, vec.ct.val,
TDES_BLOCK_SIZE);
memcpy(vec.ct.val, val.val,
TDES_BLOCK_SIZE);
}
}
continue;
}
if (info.op == FIPS_TEST_ENC_AUTH_GEN) {
if (test_mode == TDES_MODE_ECB) {
memcpy(vec.pt.val, val.val,
TDES_BLOCK_SIZE);
} else {
memcpy(vec.iv.val, val.val,
TDES_BLOCK_SIZE);
memcpy(vec.pt.val, prev_out,
TDES_BLOCK_SIZE);
}
} else {
if (test_mode == TDES_MODE_ECB) {
memcpy(vec.ct.val, val.val,
TDES_BLOCK_SIZE);
} else {
memcpy(vec.iv.val, vec.ct.val,
TDES_BLOCK_SIZE);
memcpy(vec.ct.val, val.val,
TDES_BLOCK_SIZE);
}
}
if (j == TDES_INTERN_ITER - 1)
continue;
memcpy(prev_out, val.val, TDES_BLOCK_SIZE);
if (j == TDES_INTERN_ITER - 3)
memcpy(prev_prev_out, val.val, TDES_BLOCK_SIZE);
}
info.parse_writeback(&val);
fprintf(info.fp_wr, "\n");
if (i == TDES_EXTERN_ITER - 1)
continue;
memcpy(&val_key, &vec.cipher_auth.key, sizeof(val_key));
if (info.interim_info.tdes_data.nb_keys == 0) {
if (memcmp(val_key.val, val_key.val + 8, 8) == 0)
info.interim_info.tdes_data.nb_keys = 1;
else if (memcmp(val_key.val, val_key.val + 16, 8) == 0)
info.interim_info.tdes_data.nb_keys = 2;
else
info.interim_info.tdes_data.nb_keys = 3;
}
for (k = 0; k < TDES_BLOCK_SIZE; k++) {
switch (info.interim_info.tdes_data.nb_keys) {
case 3:
val_key.val[k] ^= val.val[k];
val_key.val[k + 8] ^= prev_out[k];
val_key.val[k + 16] ^= prev_prev_out[k];
break;
case 2:
val_key.val[k] ^= val.val[k];
val_key.val[k + 8] ^= prev_out[k];
val_key.val[k + 16] ^= val.val[k];
break;
default: /* case 1 */
val_key.val[k] ^= val.val[k];
val_key.val[k + 8] ^= val.val[k];
val_key.val[k + 16] ^= val.val[k];
break;
}
}
for (k = 0; k < 24; k++)
val_key.val[k] = (__builtin_popcount(val_key.val[k]) &
0x1) ?
val_key.val[k] : (val_key.val[k] ^ 0x1);
if (info.op == FIPS_TEST_ENC_AUTH_GEN) {
if (test_mode == TDES_MODE_ECB) {
memcpy(vec.pt.val, val.val, TDES_BLOCK_SIZE);
} else {
memcpy(vec.iv.val, val.val, TDES_BLOCK_SIZE);
memcpy(vec.pt.val, prev_out, TDES_BLOCK_SIZE);
}
} else {
if (test_mode == TDES_MODE_ECB) {
memcpy(vec.ct.val, val.val, TDES_BLOCK_SIZE);
} else {
memcpy(vec.iv.val, prev_out, TDES_BLOCK_SIZE);
memcpy(vec.ct.val, val.val, TDES_BLOCK_SIZE);
}
}
}
if (val.val)
free(val.val);
return 0;
}
static int
fips_mct_aes_ecb_test(void)
{
#define AES_BLOCK_SIZE 16
#define AES_EXTERN_ITER 100
#define AES_INTERN_ITER 1000
struct fips_val val = {NULL, 0}, val_key;
uint8_t prev_out[AES_BLOCK_SIZE] = {0};
uint32_t i, j, k;
int ret;
for (i = 0; i < AES_EXTERN_ITER; i++) {
if (i != 0)
update_info_vec(i);
fips_test_write_one_case();
for (j = 0; j < AES_INTERN_ITER; j++) {
ret = fips_run_test();
if (ret < 0) {
if (ret == -EPERM) {
fprintf(info.fp_wr, "Bypass\n");
return 0;
}
return ret;
}
ret = get_writeback_data(&val);
if (ret < 0)
return ret;
if (info.op == FIPS_TEST_ENC_AUTH_GEN)
memcpy(vec.pt.val, val.val, AES_BLOCK_SIZE);
else
memcpy(vec.ct.val, val.val, AES_BLOCK_SIZE);
if (j == AES_INTERN_ITER - 1)
continue;
memcpy(prev_out, val.val, AES_BLOCK_SIZE);
}
info.parse_writeback(&val);
fprintf(info.fp_wr, "\n");
if (i == AES_EXTERN_ITER - 1)
continue;
memcpy(&val_key, &vec.cipher_auth.key, sizeof(val_key));
for (k = 0; k < vec.cipher_auth.key.len; k++) {
switch (vec.cipher_auth.key.len) {
case 16:
val_key.val[k] ^= val.val[k];
break;
case 24:
if (k < 8)
val_key.val[k] ^= prev_out[k + 8];
else
val_key.val[k] ^= val.val[k - 8];
break;
case 32:
if (k < 16)
val_key.val[k] ^= prev_out[k];
else
val_key.val[k] ^= val.val[k - 16];
break;
default:
return -1;
}
}
}
if (val.val)
free(val.val);
return 0;
}
static int
fips_mct_aes_test(void)
{
#define AES_BLOCK_SIZE 16
#define AES_EXTERN_ITER 100
#define AES_INTERN_ITER 1000
struct fips_val val = {NULL, 0}, val_key;
uint8_t prev_out[AES_BLOCK_SIZE] = {0};
uint8_t prev_in[AES_BLOCK_SIZE] = {0};
uint32_t i, j, k;
int ret;
if (info.interim_info.aes_data.cipher_algo == RTE_CRYPTO_CIPHER_AES_ECB)
return fips_mct_aes_ecb_test();
for (i = 0; i < AES_EXTERN_ITER; i++) {
if (i != 0)
update_info_vec(i);
fips_test_write_one_case();
for (j = 0; j < AES_INTERN_ITER; j++) {
ret = fips_run_test();
if (ret < 0) {
if (ret == -EPERM) {
fprintf(info.fp_wr, "Bypass\n");
return 0;
}
return ret;
}
ret = get_writeback_data(&val);
if (ret < 0)
return ret;
if (info.op == FIPS_TEST_DEC_AUTH_VERIF)
memcpy(prev_in, vec.ct.val, AES_BLOCK_SIZE);
if (j == 0) {
memcpy(prev_out, val.val, AES_BLOCK_SIZE);
if (info.op == FIPS_TEST_ENC_AUTH_GEN) {
memcpy(vec.pt.val, vec.iv.val,
AES_BLOCK_SIZE);
memcpy(vec.iv.val, val.val,
AES_BLOCK_SIZE);
} else {
memcpy(vec.ct.val, vec.iv.val,
AES_BLOCK_SIZE);
memcpy(vec.iv.val, prev_in,
AES_BLOCK_SIZE);
}
continue;
}
if (info.op == FIPS_TEST_ENC_AUTH_GEN) {
memcpy(vec.iv.val, val.val, AES_BLOCK_SIZE);
memcpy(vec.pt.val, prev_out, AES_BLOCK_SIZE);
} else {
memcpy(vec.iv.val, prev_in, AES_BLOCK_SIZE);
memcpy(vec.ct.val, prev_out, AES_BLOCK_SIZE);
}
if (j == AES_INTERN_ITER - 1)
continue;
memcpy(prev_out, val.val, AES_BLOCK_SIZE);
}
info.parse_writeback(&val);
fprintf(info.fp_wr, "\n");
if (i == AES_EXTERN_ITER - 1)
continue;
memcpy(&val_key, &vec.cipher_auth.key, sizeof(val_key));
for (k = 0; k < vec.cipher_auth.key.len; k++) {
switch (vec.cipher_auth.key.len) {
case 16:
val_key.val[k] ^= val.val[k];
break;
case 24:
if (k < 8)
val_key.val[k] ^= prev_out[k + 8];
else
val_key.val[k] ^= val.val[k - 8];
break;
case 32:
if (k < 16)
val_key.val[k] ^= prev_out[k];
else
val_key.val[k] ^= val.val[k - 16];
break;
default:
return -1;
}
}
if (info.op == FIPS_TEST_DEC_AUTH_VERIF)
memcpy(vec.iv.val, val.val, AES_BLOCK_SIZE);
}
if (val.val)
free(val.val);
return 0;
}
static int
fips_mct_sha_test(void)
{
#define SHA_EXTERN_ITER 100
#define SHA_INTERN_ITER 1000
#define SHA_MD_BLOCK 3
struct fips_val val = {NULL, 0}, md[SHA_MD_BLOCK];
char temp[MAX_DIGEST_SIZE*2];
int ret;
uint32_t i, j;
val.val = rte_malloc(NULL, (MAX_DIGEST_SIZE*SHA_MD_BLOCK), 0);
for (i = 0; i < SHA_MD_BLOCK; i++)
md[i].val = rte_malloc(NULL, (MAX_DIGEST_SIZE*2), 0);
rte_free(vec.pt.val);
vec.pt.val = rte_malloc(NULL, (MAX_DIGEST_SIZE*SHA_MD_BLOCK), 0);
fips_test_write_one_case();
fprintf(info.fp_wr, "\n");
for (j = 0; j < SHA_EXTERN_ITER; j++) {
memcpy(md[0].val, vec.cipher_auth.digest.val,
vec.cipher_auth.digest.len);
md[0].len = vec.cipher_auth.digest.len;
memcpy(md[1].val, vec.cipher_auth.digest.val,
vec.cipher_auth.digest.len);
md[1].len = vec.cipher_auth.digest.len;
memcpy(md[2].val, vec.cipher_auth.digest.val,
vec.cipher_auth.digest.len);
md[2].len = vec.cipher_auth.digest.len;
for (i = 0; i < (SHA_INTERN_ITER); i++) {
memcpy(vec.pt.val, md[0].val,
(size_t)md[0].len);
memcpy((vec.pt.val + md[0].len), md[1].val,
(size_t)md[1].len);
memcpy((vec.pt.val + md[0].len + md[1].len),
md[2].val,
(size_t)md[2].len);
vec.pt.len = md[0].len + md[1].len + md[2].len;
ret = fips_run_test();
if (ret < 0) {
if (ret == -EPERM || ret == -ENOTSUP) {
fprintf(info.fp_wr, "Bypass\n\n");
return 0;
}
return ret;
}
ret = get_writeback_data(&val);
if (ret < 0)
return ret;
memcpy(md[0].val, md[1].val, md[1].len);
md[0].len = md[1].len;
memcpy(md[1].val, md[2].val, md[2].len);
md[1].len = md[2].len;
memcpy(md[2].val, (val.val + vec.pt.len),
vec.cipher_auth.digest.len);
md[2].len = vec.cipher_auth.digest.len;
}
memcpy(vec.cipher_auth.digest.val, md[2].val, md[2].len);
vec.cipher_auth.digest.len = md[2].len;
fprintf(info.fp_wr, "COUNT = %u\n", j);
writeback_hex_str("", temp, &vec.cipher_auth.digest);
fprintf(info.fp_wr, "MD = %s\n\n", temp);
}
for (i = 0; i < (SHA_MD_BLOCK); i++)
rte_free(md[i].val);
rte_free(vec.pt.val);
if (val.val)
free(val.val);
return 0;
}
static int
init_test_ops(void)
{
switch (info.algo) {
case FIPS_TEST_ALGO_AES:
test_ops.prepare_op = prepare_cipher_op;
test_ops.prepare_xform = prepare_aes_xform;
if (info.interim_info.aes_data.test_type == AESAVS_TYPE_MCT)
test_ops.test = fips_mct_aes_test;
else
test_ops.test = fips_generic_test;
break;
case FIPS_TEST_ALGO_HMAC:
test_ops.prepare_op = prepare_auth_op;
test_ops.prepare_xform = prepare_hmac_xform;
test_ops.test = fips_generic_test;
break;
case FIPS_TEST_ALGO_TDES:
test_ops.prepare_op = prepare_cipher_op;
test_ops.prepare_xform = prepare_tdes_xform;
if (info.interim_info.tdes_data.test_type == TDES_MCT)
test_ops.test = fips_mct_tdes_test;
else
test_ops.test = fips_generic_test;
break;
case FIPS_TEST_ALGO_AES_GCM:
test_ops.prepare_op = prepare_aead_op;
test_ops.prepare_xform = prepare_gcm_xform;
test_ops.test = fips_generic_test;
break;
case FIPS_TEST_ALGO_AES_CMAC:
test_ops.prepare_op = prepare_auth_op;
test_ops.prepare_xform = prepare_cmac_xform;
test_ops.test = fips_generic_test;
break;
case FIPS_TEST_ALGO_AES_CCM:
test_ops.prepare_op = prepare_aead_op;
test_ops.prepare_xform = prepare_ccm_xform;
test_ops.test = fips_generic_test;
break;
case FIPS_TEST_ALGO_SHA:
test_ops.prepare_op = prepare_auth_op;
test_ops.prepare_xform = prepare_sha_xform;
if (info.interim_info.sha_data.test_type == SHA_MCT)
test_ops.test = fips_mct_sha_test;
else
test_ops.test = fips_generic_test;
break;
case FIPS_TEST_ALGO_AES_XTS:
test_ops.prepare_op = prepare_cipher_op;
test_ops.prepare_xform = prepare_xts_xform;
test_ops.test = fips_generic_test;
break;
default:
if (strstr(info.file_name, "TECB") ||
strstr(info.file_name, "TCBC")) {
info.algo = FIPS_TEST_ALGO_TDES;
test_ops.prepare_op = prepare_cipher_op;
test_ops.prepare_xform = prepare_tdes_xform;
if (info.interim_info.tdes_data.test_type == TDES_MCT)
test_ops.test = fips_mct_tdes_test;
else
test_ops.test = fips_generic_test;
break;
}
return -1;
}
return 0;
}
static void
print_test_block(void)
{
uint32_t i;
for (i = 0; i < info.nb_vec_lines; i++)
printf("%s\n", info.vec[i]);
printf("\n");
}
static int
fips_test_one_file(void)
{
int fetch_ret = 0, ret;
ret = init_test_ops();
if (ret < 0) {
RTE_LOG(ERR, USER1, "Error %i: Init test op\n", ret);
return ret;
}
while (ret >= 0 && fetch_ret == 0) {
fetch_ret = fips_test_fetch_one_block();
if (fetch_ret < 0) {
RTE_LOG(ERR, USER1, "Error %i: Fetch block\n",
fetch_ret);
ret = fetch_ret;
goto error_one_case;
}
if (info.nb_vec_lines == 0) {
if (fetch_ret == -EOF)
break;
fprintf(info.fp_wr, "\n");
continue;
}
ret = fips_test_parse_one_case();
switch (ret) {
case 0:
ret = test_ops.test();
if (ret == 0)
break;
RTE_LOG(ERR, USER1, "Error %i: test block\n",
ret);
goto error_one_case;
case 1:
break;
default:
RTE_LOG(ERR, USER1, "Error %i: Parse block\n",
ret);
goto error_one_case;
}
continue;
error_one_case:
print_test_block();
}
fips_test_clear();
if (env.digest)
rte_free(env.digest);
if (env.mbuf)
rte_pktmbuf_free(env.mbuf);
return ret;
}