#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <signal.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/epoll.h>
#include <sys/queue.h>
#include <sys/time.h>
#include <sys/socket.h>
#include <sys/select.h>
#ifdef USE_JANSSON
#include <jansson.h>
#else
#pragma message "Jansson dev libs unavailable, not including JSON parsing"
#endif
#ifdef RTE_LIBRTE_I40E_PMD
#endif
#include <libvirt/libvirt.h>
#include "channel_monitor.h"
#include "channel_commands.h"
#include "channel_manager.h"
#include "power_manager.h"
#include "oob_monitor.h"
#define RTE_LOGTYPE_CHANNEL_MONITOR RTE_LOGTYPE_USER1
#define MAX_EVENTS 256
uint64_t vsi_pkt_count_prev[384];
uint64_t rdtsc_prev[384];
#define MAX_JSON_STRING_LEN 1024
char json_data[MAX_JSON_STRING_LEN];
double time_period_ms = 1;
static volatile unsigned run_loop = 1;
static int global_event_fd;
static unsigned int policy_is_set;
static struct epoll_event *global_events_list;
static struct policy policies[MAX_CLIENTS];
#ifdef USE_JANSSON
union PFID {
    uint64_t pfid;
};
static int
{
    int i;
    char *end;
    i = 0;
    do {
        errno = 0;
        o[i] = strtoul(a, &end, 16);
        if (errno != 0 || end == a || (end[0] != ':' && end[0] != 0))
            return -1;
        a = end + 1;
    } 
while (++i != 
RTE_DIM(o) / 
sizeof(o[0]) && end[0] != 0);
    
    if (end[0] != 0)
        return -1;
    
        while (i-- != 0) {
            if (o[i] > UINT8_MAX)
                return -1;
        }
    
        while (i-- != 0) {
            if (o[i] > UINT16_MAX)
                return -1;
                    (uint8_t)(o[i] >> 8);
                    (uint8_t)(o[i] & 0xff);
        }
    
    } else
        return -1;
    return 0;
}
static int
set_policy_mac(struct channel_packet *pkt, int idx, char *mac)
{
    union PFID pfid;
    int ret;
    
    ret = str_to_ether_addr(mac, &pfid.addr);
    if (ret != 0) {
            "Invalid mac address received in JSON\n");
        pkt->vfid[idx] = 0;
        return -1;
    }
    printf("Received MAC Address: %02" PRIx8 ":%02" PRIx8 ":%02" PRIx8 ":"
            "%02" PRIx8 ":%02" PRIx8 ":%02" PRIx8 "\n",
            pfid.addr.addr_bytes[0], pfid.addr.addr_bytes[1],
            pfid.addr.addr_bytes[2], pfid.addr.addr_bytes[3],
            pfid.addr.addr_bytes[4], pfid.addr.addr_bytes[5]);
    pkt->vfid[idx] = pfid.pfid;
    return 0;
}
static int
parse_json_to_pkt(json_t *element, struct channel_packet *pkt)
{
    const char *key;
    json_t *value;
    int ret;
    memset(pkt, 0, sizeof(struct channel_packet));
    pkt->nb_mac_to_monitor = 0;
    pkt->t_boost_status.tbEnabled = false;
    pkt->workload = LOW;
    pkt->policy_to_use = TIME;
    pkt->command = PKT_POLICY;
    pkt->core_type = CORE_TYPE_PHYSICAL;
    json_object_foreach(element, key, value) {
        if (!strcmp(key, "policy")) {
            
            ret = parse_json_to_pkt(value, pkt);
            if (ret)
                return ret;
        } else if (!strcmp(key, "instruction")) {
            
            ret = parse_json_to_pkt(value, pkt);
            if (ret)
                return ret;
        } else if (!strcmp(key, "name")) {
            strlcpy(pkt->vm_name, json_string_value(value),
                    sizeof(pkt->vm_name));
        } else if (!strcmp(key, "command")) {
            char command[32];
            snprintf(command, 32, "%s", json_string_value(value));
            if (!strcmp(command, "power")) {
                pkt->command = CPU_POWER;
            } else if (!strcmp(command, "create")) {
                pkt->command = PKT_POLICY;
            } else if (!strcmp(command, "destroy")) {
                pkt->command = PKT_POLICY_REMOVE;
            } else {
                    "Invalid command received in JSON\n");
                return -1;
            }
        } else if (!strcmp(key, "policy_type")) {
            char command[32];
            snprintf(command, 32, "%s", json_string_value(value));
            if (!strcmp(command, "TIME")) {
                pkt->policy_to_use = TIME;
            } else if (!strcmp(command, "TRAFFIC")) {
                pkt->policy_to_use = TRAFFIC;
            } else if (!strcmp(command, "WORKLOAD")) {
                pkt->policy_to_use = WORKLOAD;
            } else if (!strcmp(command, "BRANCH_RATIO")) {
                pkt->policy_to_use = BRANCH_RATIO;
            } else {
                    "Wrong policy_type received in JSON\n");
                return -1;
            }
        } else if (!strcmp(key, "workload")) {
            char command[32];
            snprintf(command, 32, "%s", json_string_value(value));
            if (!strcmp(command, "HIGH")) {
                pkt->workload = HIGH;
            } else if (!strcmp(command, "MEDIUM")) {
                pkt->workload = MEDIUM;
            } else if (!strcmp(command, "LOW")) {
                pkt->workload = LOW;
            } else {
                    "Wrong workload received in JSON\n");
                return -1;
            }
        } else if (!strcmp(key, "busy_hours")) {
            unsigned int i;
            size_t size = json_array_size(value);
            for (i = 0; i < size; i++) {
                int hour = (int)json_integer_value(
                        json_array_get(value, i));
                pkt->timer_policy.busy_hours[i] = hour;
            }
        } else if (!strcmp(key, "quiet_hours")) {
            unsigned int i;
            size_t size = json_array_size(value);
            for (i = 0; i < size; i++) {
                int hour = (int)json_integer_value(
                        json_array_get(value, i));
                pkt->timer_policy.quiet_hours[i] = hour;
            }
        } else if (!strcmp(key, "core_list")) {
            unsigned int i;
            size_t size = json_array_size(value);
            for (i = 0; i < size; i++) {
                int core = (int)json_integer_value(
                        json_array_get(value, i));
                pkt->vcpu_to_control[i] = core;
            }
            pkt->num_vcpu = size;
        } else if (!strcmp(key, "mac_list")) {
            unsigned int i;
            size_t size = json_array_size(value);
            for (i = 0; i < size; i++) {
                char mac[32];
                snprintf(mac, 32, "%s", json_string_value(
                        json_array_get(value, i)));
                set_policy_mac(pkt, i, mac);
            }
            pkt->nb_mac_to_monitor = size;
        } else if (!strcmp(key, "avg_packet_thresh")) {
            pkt->traffic_policy.avg_max_packet_thresh =
                    (uint32_t)json_integer_value(value);
        } else if (!strcmp(key, "max_packet_thresh")) {
            pkt->traffic_policy.max_max_packet_thresh =
                    (uint32_t)json_integer_value(value);
        } else if (!strcmp(key, "unit")) {
            char unit[32];
            snprintf(unit, 32, "%s", json_string_value(value));
            if (!strcmp(unit, "SCALE_UP")) {
                pkt->unit = CPU_POWER_SCALE_UP;
            } else if (!strcmp(unit, "SCALE_DOWN")) {
                pkt->unit = CPU_POWER_SCALE_DOWN;
            } else if (!strcmp(unit, "SCALE_MAX")) {
                pkt->unit = CPU_POWER_SCALE_MAX;
            } else if (!strcmp(unit, "SCALE_MIN")) {
                pkt->unit = CPU_POWER_SCALE_MIN;
            } else if (!strcmp(unit, "ENABLE_TURBO")) {
                pkt->unit = CPU_POWER_ENABLE_TURBO;
            } else if (!strcmp(unit, "DISABLE_TURBO")) {
                pkt->unit = CPU_POWER_DISABLE_TURBO;
            } else {
                    "Invalid command received in JSON\n");
                return -1;
            }
        } else if (!strcmp(key, "resource_id")) {
            pkt->resource_id = (uint32_t)json_integer_value(value);
        } else {
                "Unknown key received in JSON string: %s\n",
                key);
        }
    }
    return 0;
}
#endif
void channel_monitor_exit(void)
{
    run_loop = 0;
}
static void
core_share(int pNo, int z, int x, int t)
{
    if (policies[pNo].core_share[z].pcpu == lvm_info[x].pcpus[t]) {
        if (strcmp(policies[pNo].pkt.vm_name,
                lvm_info[x].vm_name) != 0) {
            policies[pNo].core_share[z].status = 1;
            power_manager_scale_core_max(
                    policies[pNo].core_share[z].pcpu);
        }
    }
}
static void
core_share_status(int pNo)
{
    int noVms = 0, noVcpus = 0, z, x, t;
    get_all_vm(&noVms, &noVcpus);
    
    for (z = 0; z < noVcpus; z++)
        policies[pNo].core_share[z].status = 0;
    
    for (z = 0; z < policies[pNo].pkt.num_vcpu; z++) {
        
        for (x = 0; x < noVms; x++) {
            
            for (t = 0; t < lvm_info[x].num_cpus; t++)
                core_share(pNo, z, x, t);
        }
    }
}
static int
pcpu_monitor(struct policy *pol, struct core_info *ci, int pcpu, int count)
{
    int ret = 0;
    if (pol->pkt.policy_to_use == BRANCH_RATIO) {
        ci->cd[pcpu].oob_enabled = 1;
        ret = add_core_to_monitor(pcpu);
        if (ret == 0)
                    "Monitoring pcpu %d OOB for %s\n",
                    pcpu, pol->pkt.vm_name);
        else
                    "Error monitoring pcpu %d OOB for %s\n",
                    pcpu, pol->pkt.vm_name);
    } else {
        pol->core_share[count].pcpu = pcpu;
                "Monitoring pcpu %d for %s\n",
                pcpu, pol->pkt.vm_name);
    }
    return ret;
}
static void
get_pcpu_to_control(struct policy *pol)
{
    
    struct vm_info info;
    int pcpu, count;
    uint64_t mask_u64b;
    struct core_info *ci;
    ci = get_core_info();
            "Looking for pcpu for %s\n", pol->pkt.vm_name);
    
    if (pol->pkt.core_type == CORE_TYPE_VIRTUAL) {
        
        get_info_vm(pol->pkt.vm_name, &info);
        for (count = 0; count < pol->pkt.num_vcpu; count++) {
            mask_u64b =
                info.pcpu_mask[pol->pkt.vcpu_to_control[count]];
            for (pcpu = 0; mask_u64b;
                    mask_u64b &= ~(1ULL << pcpu++)) {
                if ((mask_u64b >> pcpu) & 1)
                    pcpu_monitor(pol, ci, pcpu, count);
            }
        }
    } else {
        
        for (count = 0; count < pol->pkt.num_vcpu; count++) {
            pcpu = pol->pkt.vcpu_to_control[count];
            pcpu_monitor(pol, ci, pcpu, count);
        }
    }
}
static int
get_pfid(struct policy *pol)
{
    int i, x, ret = 0;
    for (i = 0; i < pol->pkt.nb_mac_to_monitor; i++) {
#ifdef RTE_LIBRTE_I40E_PMD
                (struct ether_addr *)&(pol->pkt.vfid[i]));
#else
            ret = -ENOTSUP;
#endif
            if (ret != -EINVAL) {
                pol->port[i] = x;
                break;
            }
        }
        if (ret == -EINVAL || ret == -ENOTSUP || ret == ENODEV) {
                "Error with Policy. MAC not found on "
                "attached ports ");
            pol->enabled = 0;
            return ret;
        }
        pol->pfid[i] = ret;
    }
    return 1;
}
static int
update_policy(struct channel_packet *pkt)
{
    unsigned int updated = 0;
    int i;
            "Applying policy for %s\n", pkt->vm_name);
    for (i = 0; i < MAX_CLIENTS; i++) {
        if (strcmp(policies[i].pkt.vm_name, pkt->vm_name) == 0) {
            
            policies[i].pkt = *pkt;
            get_pcpu_to_control(&policies[i]);
            if (get_pfid(&policies[i]) == -1) {
                updated = 1;
                break;
            }
            core_share_status(i);
            policies[i].enabled = 1;
            updated = 1;
        }
    }
    if (!updated) {
        for (i = 0; i < MAX_CLIENTS; i++) {
            if (policies[i].enabled == 0) {
                policies[i].pkt = *pkt;
                get_pcpu_to_control(&policies[i]);
                if (get_pfid(&policies[i]) == -1)
                    break;
                core_share_status(i);
                policies[i].enabled = 1;
                break;
            }
        }
    }
    return 0;
}
static int
{
    int i;
    
    for (i = 0; i < MAX_CLIENTS; i++) {
        if (strcmp(policies[i].pkt.vm_name, pkt->vm_name) == 0) {
            policies[i].enabled = 0;
            return 0;
        }
    }
    return -1;
}
static uint64_t
get_pkt_diff(struct policy *pol)
{
    uint64_t vsi_pkt_count,
        vsi_pkt_total = 0,
        vsi_pkt_count_prev_total = 0;
    double rdtsc_curr, rdtsc_diff, diff;
    int x;
#ifdef RTE_LIBRTE_I40E_PMD
#endif
    for (x = 0; x < pol->pkt.nb_mac_to_monitor; x++) {
#ifdef RTE_LIBRTE_I40E_PMD
        
        else
            vsi_pkt_count = -1;
#else
        vsi_pkt_count = -1;
#endif
        vsi_pkt_total += vsi_pkt_count;
        vsi_pkt_count_prev_total += vsi_pkt_count_prev[pol->pfid[x]];
        vsi_pkt_count_prev[pol->pfid[x]] = vsi_pkt_count;
    }
    rdtsc_curr = rte_rdtsc_precise();
    rdtsc_diff = rdtsc_curr - rdtsc_prev[pol->pfid[x-1]];
    rdtsc_prev[pol->pfid[x-1]] = rdtsc_curr;
    diff = (vsi_pkt_total - vsi_pkt_count_prev_total) *
    return diff;
}
static void
apply_traffic_profile(struct policy *pol)
{
    int count;
    uint64_t diff = 0;
    diff = get_pkt_diff(pol);
    if (diff >= (pol->pkt.traffic_policy.max_max_packet_thresh)) {
        for (count = 0; count < pol->pkt.num_vcpu; count++) {
            if (pol->core_share[count].status != 1)
                power_manager_scale_core_max(
                        pol->core_share[count].pcpu);
        }
    } else if (diff >= (pol->pkt.traffic_policy.avg_max_packet_thresh)) {
        for (count = 0; count < pol->pkt.num_vcpu; count++) {
            if (pol->core_share[count].status != 1)
                power_manager_scale_core_med(
                        pol->core_share[count].pcpu);
        }
    } else if (diff < (pol->pkt.traffic_policy.avg_max_packet_thresh)) {
        for (count = 0; count < pol->pkt.num_vcpu; count++) {
            if (pol->core_share[count].status != 1)
                power_manager_scale_core_min(
                        pol->core_share[count].pcpu);
        }
    }
}
static void
apply_time_profile(struct policy *pol)
{
    int count, x;
    struct timeval tv;
    struct tm *ptm;
    char time_string[40];
    
    gettimeofday(&tv, NULL);
    ptm = localtime(&tv.tv_sec);
    
    strftime(time_string, sizeof(time_string), "%Y-%m-%d %H:%M:%S", ptm);
    for (x = 0; x < HOURS; x++) {
        if (ptm->tm_hour == pol->pkt.timer_policy.busy_hours[x]) {
            for (count = 0; count < pol->pkt.num_vcpu; count++) {
                if (pol->core_share[count].status != 1) {
                    power_manager_scale_core_max(
                        pol->core_share[count].pcpu);
                }
            }
            break;
        } else if (ptm->tm_hour ==
                pol->pkt.timer_policy.quiet_hours[x]) {
            for (count = 0; count < pol->pkt.num_vcpu; count++) {
                if (pol->core_share[count].status != 1) {
                    power_manager_scale_core_min(
                        pol->core_share[count].pcpu);
            }
        }
            break;
        } else if (ptm->tm_hour ==
            pol->pkt.timer_policy.hours_to_use_traffic_profile[x]) {
            apply_traffic_profile(pol);
            break;
        }
    }
}
static void
apply_workload_profile(struct policy *pol)
{
    int count;
    if (pol->pkt.workload == HIGH) {
        for (count = 0; count < pol->pkt.num_vcpu; count++) {
            if (pol->core_share[count].status != 1)
                power_manager_scale_core_max(
                        pol->core_share[count].pcpu);
        }
    } else if (pol->pkt.workload == MEDIUM) {
        for (count = 0; count < pol->pkt.num_vcpu; count++) {
            if (pol->core_share[count].status != 1)
                power_manager_scale_core_med(
                        pol->core_share[count].pcpu);
        }
    } else if (pol->pkt.workload == LOW) {
        for (count = 0; count < pol->pkt.num_vcpu; count++) {
            if (pol->core_share[count].status != 1)
                power_manager_scale_core_min(
                        pol->core_share[count].pcpu);
        }
    }
}
static void
apply_policy(struct policy *pol)
{
    struct channel_packet *pkt = &pol->pkt;
    
    if (pkt->policy_to_use == TRAFFIC)
        apply_traffic_profile(pol);
    else if (pkt->policy_to_use == TIME)
        apply_time_profile(pol);
    else if (pkt->policy_to_use == WORKLOAD)
        apply_workload_profile(pol);
}
static int
process_request(struct channel_packet *pkt, struct channel_info *chan_info)
{
    uint64_t core_mask;
    if (chan_info == NULL)
        return -1;
            CHANNEL_MGR_CHANNEL_PROCESSING) == 0)
        return -1;
    if (pkt->command == CPU_POWER) {
        core_mask = get_pcpus_mask(chan_info, pkt->resource_id);
        if (core_mask == 0) {
            
            core_mask = 1ULL << pkt->resource_id;
        }
        if (__builtin_popcountll(core_mask) == 1) {
            unsigned core_num = __builtin_ffsll(core_mask) - 1;
            switch (pkt->unit) {
            case(CPU_POWER_SCALE_MIN):
                    power_manager_scale_core_min(core_num);
            break;
            case(CPU_POWER_SCALE_MAX):
                    power_manager_scale_core_max(core_num);
            break;
            case(CPU_POWER_SCALE_DOWN):
                    power_manager_scale_core_down(core_num);
            break;
            case(CPU_POWER_SCALE_UP):
                    power_manager_scale_core_up(core_num);
            break;
            case(CPU_POWER_ENABLE_TURBO):
                power_manager_enable_turbo_core(core_num);
            break;
            case(CPU_POWER_DISABLE_TURBO):
                power_manager_disable_turbo_core(core_num);
            break;
            default:
                break;
            }
        } else {
            switch (pkt->unit) {
            case(CPU_POWER_SCALE_MIN):
                    power_manager_scale_mask_min(core_mask);
            break;
            case(CPU_POWER_SCALE_MAX):
                    power_manager_scale_mask_max(core_mask);
            break;
            case(CPU_POWER_SCALE_DOWN):
                    power_manager_scale_mask_down(core_mask);
            break;
            case(CPU_POWER_SCALE_UP):
                    power_manager_scale_mask_up(core_mask);
            break;
            case(CPU_POWER_ENABLE_TURBO):
                power_manager_enable_turbo_mask(core_mask);
            break;
            case(CPU_POWER_DISABLE_TURBO):
                power_manager_disable_turbo_mask(core_mask);
            break;
            default:
                break;
            }
        }
    }
    if (pkt->command == PKT_POLICY) {
        RTE_LOG(INFO, CHANNEL_MONITOR, 
"Processing policy request %s\n",
 
                pkt->vm_name);
        update_policy(pkt);
        policy_is_set = 1;
    }
    if (pkt->command == PKT_POLICY_REMOVE) {
                 "Removing policy %s\n", pkt->vm_name);
        remove_policy(pkt);
    }
    
            CHANNEL_MGR_CHANNEL_CONNECTED);
    return 0;
}
int
add_channel_to_monitor(struct channel_info **chan_info)
{
    struct channel_info *info = *chan_info;
    struct epoll_event event;
    event.events = EPOLLIN;
    event.data.ptr = info;
    if (epoll_ctl(global_event_fd, EPOLL_CTL_ADD, info->fd, &event) < 0) {
        RTE_LOG(ERR, CHANNEL_MONITOR, 
"Unable to add channel '%s' " 
                "to epoll\n", info->channel_path);
        return -1;
    }
    RTE_LOG(ERR, CHANNEL_MONITOR, 
"Added channel '%s' " 
            "to monitor\n", info->channel_path);
    return 0;
}
int
remove_channel_from_monitor(struct channel_info *chan_info)
{
    if (epoll_ctl(global_event_fd, EPOLL_CTL_DEL,
            chan_info->fd, NULL) < 0) {
        RTE_LOG(ERR, CHANNEL_MONITOR, 
"Unable to remove channel '%s' " 
                "from epoll\n", chan_info->channel_path);
        return -1;
    }
    return 0;
}
int
channel_monitor_init(void)
{
    global_event_fd = epoll_create1(0);
    if (global_event_fd == 0) {
                "Error creating epoll context with error %s\n",
                strerror(errno));
        return -1;
    }
            sizeof(*global_events_list)
            * MAX_EVENTS, RTE_CACHE_LINE_SIZE);
    if (global_events_list == NULL) {
        RTE_LOG(ERR, CHANNEL_MONITOR, 
"Unable to rte_malloc for " 
                "epoll events\n");
        return -1;
    }
    return 0;
}
static void
read_binary_packet(struct channel_info *chan_info)
{
    struct channel_packet pkt;
    void *buffer = &pkt;
    int buffer_len = sizeof(pkt);
    int n_bytes, err = 0;
    while (buffer_len > 0) {
        n_bytes = read(chan_info->fd,
                buffer, buffer_len);
        if (n_bytes == buffer_len)
            break;
        if (n_bytes == -1) {
            err = errno;
                "Received error on "
                "channel '%s' read: %s\n",
                chan_info->channel_path,
                strerror(err));
            remove_channel(&chan_info);
            break;
        }
        buffer = (char *)buffer + n_bytes;
        buffer_len -= n_bytes;
    }
    if (!err)
        process_request(&pkt, chan_info);
}
#ifdef USE_JANSSON
static void
read_json_packet(struct channel_info *chan_info)
{
    struct channel_packet pkt;
    int n_bytes, ret;
    json_t *root;
    json_error_t error;
    
    do {
        int idx = 0;
        int indent = 0;
        do {
            n_bytes = read(chan_info->fd, &json_data[idx], 1);
            if (n_bytes == 0)
                break;
            if (json_data[idx] == '{')
                indent++;
            if (json_data[idx] == '}')
                indent--;
            if ((indent > 0) || (idx > 0))
                idx++;
            if (indent <= 0)
                json_data[idx] = 0;
            if (idx >= MAX_JSON_STRING_LEN-1)
                break;
        } while (indent > 0);
        json_data[idx] = '\0';
        if (strlen(json_data) == 0)
            continue;
        printf("got [%s]\n", json_data);
        root = json_loads(json_data, 0, &error);
        if (root) {
            
            ret = parse_json_to_pkt(root, &pkt);
            json_decref(root);
            if (ret) {
                    "Error validating JSON profile data\n");
                break;
            }
            process_request(&pkt, chan_info);
        } else {
                    "JSON error on line %d: %s\n",
                    error.line, error.text);
        }
    } while (n_bytes > 0);
}
#endif
void
run_channel_monitor(void)
{
    while (run_loop) {
        int n_events, i;
        n_events = epoll_wait(global_event_fd, global_events_list,
                MAX_EVENTS, 1);
        if (!run_loop)
            break;
        for (i = 0; i < n_events; i++) {
            struct channel_info *chan_info = (struct channel_info *)
                    global_events_list[i].data.ptr;
            if ((global_events_list[i].events & EPOLLERR) ||
                (global_events_list[i].events & EPOLLHUP)) {
                        "Remote closed connection for "
                        "channel '%s'\n",
                        chan_info->channel_path);
                remove_channel(&chan_info);
                continue;
            }
            if (global_events_list[i].events & EPOLLIN) {
                switch (chan_info->type) {
                case CHANNEL_TYPE_BINARY:
                    read_binary_packet(chan_info);
                    break;
#ifdef USE_JANSSON
                case CHANNEL_TYPE_JSON:
                    read_json_packet(chan_info);
                    break;
#endif
                default:
                    break;
                }
            }
        }
        if (policy_is_set) {
            int j;
            for (j = 0; j < MAX_CLIENTS; j++) {
                if (policies[j].enabled == 1)
                    apply_policy(&policies[j]);
            }
        }
    }
}