DPDK  18.11.11
examples/qos_sched/app_thread.c
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <stdint.h>
#include <rte_log.h>
#include <rte_mbuf.h>
#include <rte_malloc.h>
#include <rte_cycles.h>
#include <rte_ethdev.h>
#include <rte_memcpy.h>
#include <rte_byteorder.h>
#include <rte_sched.h>
#include "main.h"
/*
* QoS parameters are encoded as follows:
* Outer VLAN ID defines subport
* Inner VLAN ID defines pipe
* Destination IP 0.0.XXX.0 defines traffic class
* Destination IP host (0.0.0.XXX) defines queue
* Values below define offset to each field from start of frame
*/
#define SUBPORT_OFFSET 7
#define PIPE_OFFSET 9
#define TC_OFFSET 20
#define QUEUE_OFFSET 20
#define COLOR_OFFSET 19
static inline int
get_pkt_sched(struct rte_mbuf *m, uint32_t *subport, uint32_t *pipe,
uint32_t *traffic_class, uint32_t *queue, uint32_t *color)
{
uint16_t *pdata = rte_pktmbuf_mtod(m, uint16_t *);
*subport = (rte_be_to_cpu_16(pdata[SUBPORT_OFFSET]) & 0x0FFF) &
(port_params.n_subports_per_port - 1); /* Outer VLAN ID*/
*pipe = (rte_be_to_cpu_16(pdata[PIPE_OFFSET]) & 0x0FFF) &
(port_params.n_pipes_per_subport - 1); /* Inner VLAN ID */
*traffic_class = (pdata[QUEUE_OFFSET] & 0x0F) &
(RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE - 1); /* Destination IP */
*queue = ((pdata[QUEUE_OFFSET] >> 8) & 0x0F) &
(RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS - 1) ; /* Destination IP */
*color = pdata[COLOR_OFFSET] & 0x03; /* Destination IP */
return 0;
}
void
app_rx_thread(struct thread_conf **confs)
{
uint32_t i, nb_rx;
struct rte_mbuf *rx_mbufs[burst_conf.rx_burst] __rte_cache_aligned;
struct thread_conf *conf;
int conf_idx = 0;
uint32_t subport;
uint32_t pipe;
uint32_t traffic_class;
uint32_t queue;
uint32_t color;
while ((conf = confs[conf_idx])) {
nb_rx = rte_eth_rx_burst(conf->rx_port, conf->rx_queue, rx_mbufs,
burst_conf.rx_burst);
if (likely(nb_rx != 0)) {
APP_STATS_ADD(conf->stat.nb_rx, nb_rx);
for(i = 0; i < nb_rx; i++) {
get_pkt_sched(rx_mbufs[i],
&subport, &pipe, &traffic_class, &queue, &color);
rte_sched_port_pkt_write(rx_mbufs[i], subport, pipe,
traffic_class, queue, (enum rte_meter_color) color);
}
(void **)rx_mbufs, nb_rx, NULL) == 0)) {
for(i = 0; i < nb_rx; i++) {
rte_pktmbuf_free(rx_mbufs[i]);
APP_STATS_ADD(conf->stat.nb_drop, 1);
}
}
}
conf_idx++;
if (confs[conf_idx] == NULL)
conf_idx = 0;
}
}
/* Send the packet to an output interface
* For performance reason function returns number of packets dropped, not sent,
* so 0 means that all packets were sent successfully
*/
static inline void
app_send_burst(struct thread_conf *qconf)
{
struct rte_mbuf **mbufs;
uint32_t n, ret;
mbufs = (struct rte_mbuf **)qconf->m_table;
n = qconf->n_mbufs;
do {
ret = rte_eth_tx_burst(qconf->tx_port, qconf->tx_queue, mbufs, (uint16_t)n);
/* we cannot drop the packets, so re-send */
/* update number of packets to be sent */
n -= ret;
mbufs = (struct rte_mbuf **)&mbufs[ret];
} while (n);
}
/* Send the packet to an output interface */
static void
app_send_packets(struct thread_conf *qconf, struct rte_mbuf **mbufs, uint32_t nb_pkt)
{
uint32_t i, len;
len = qconf->n_mbufs;
for(i = 0; i < nb_pkt; i++) {
qconf->m_table[len] = mbufs[i];
len++;
/* enough pkts to be sent */
if (unlikely(len == burst_conf.tx_burst)) {
qconf->n_mbufs = len;
app_send_burst(qconf);
len = 0;
}
}
qconf->n_mbufs = len;
}
void
app_tx_thread(struct thread_conf **confs)
{
struct rte_mbuf *mbufs[burst_conf.qos_dequeue];
struct thread_conf *conf;
int conf_idx = 0;
int retval;
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
while ((conf = confs[conf_idx])) {
retval = rte_ring_sc_dequeue_bulk(conf->tx_ring, (void **)mbufs,
burst_conf.qos_dequeue, NULL);
if (likely(retval != 0)) {
app_send_packets(conf, mbufs, burst_conf.qos_dequeue);
conf->counter = 0; /* reset empty read loop counter */
}
conf->counter++;
/* drain ring and TX queues */
if (unlikely(conf->counter > drain_tsc)) {
/* now check is there any packets left to be transmitted */
if (conf->n_mbufs != 0) {
app_send_burst(conf);
conf->n_mbufs = 0;
}
conf->counter = 0;
}
conf_idx++;
if (confs[conf_idx] == NULL)
conf_idx = 0;
}
}
void
app_worker_thread(struct thread_conf **confs)
{
struct rte_mbuf *mbufs[burst_conf.ring_burst];
struct thread_conf *conf;
int conf_idx = 0;
while ((conf = confs[conf_idx])) {
uint32_t nb_pkt;
/* Read packet from the ring */
nb_pkt = rte_ring_sc_dequeue_burst(conf->rx_ring, (void **)mbufs,
burst_conf.ring_burst, NULL);
if (likely(nb_pkt)) {
int nb_sent = rte_sched_port_enqueue(conf->sched_port, mbufs,
nb_pkt);
APP_STATS_ADD(conf->stat.nb_drop, nb_pkt - nb_sent);
APP_STATS_ADD(conf->stat.nb_rx, nb_pkt);
}
nb_pkt = rte_sched_port_dequeue(conf->sched_port, mbufs,
burst_conf.qos_dequeue);
if (likely(nb_pkt > 0))
while (rte_ring_sp_enqueue_bulk(conf->tx_ring,
(void **)mbufs, nb_pkt, NULL) == 0)
; /* empty body */
conf_idx++;
if (confs[conf_idx] == NULL)
conf_idx = 0;
}
}
void
app_mixed_thread(struct thread_conf **confs)
{
struct rte_mbuf *mbufs[burst_conf.ring_burst];
struct thread_conf *conf;
int conf_idx = 0;
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
while ((conf = confs[conf_idx])) {
uint32_t nb_pkt;
/* Read packet from the ring */
nb_pkt = rte_ring_sc_dequeue_burst(conf->rx_ring, (void **)mbufs,
burst_conf.ring_burst, NULL);
if (likely(nb_pkt)) {
int nb_sent = rte_sched_port_enqueue(conf->sched_port, mbufs,
nb_pkt);
APP_STATS_ADD(conf->stat.nb_drop, nb_pkt - nb_sent);
APP_STATS_ADD(conf->stat.nb_rx, nb_pkt);
}
nb_pkt = rte_sched_port_dequeue(conf->sched_port, mbufs,
burst_conf.qos_dequeue);
if (likely(nb_pkt > 0)) {
app_send_packets(conf, mbufs, nb_pkt);
conf->counter = 0; /* reset empty read loop counter */
}
conf->counter++;
/* drain ring and TX queues */
if (unlikely(conf->counter > drain_tsc)) {
/* now check is there any packets left to be transmitted */
if (conf->n_mbufs != 0) {
app_send_burst(conf);
conf->n_mbufs = 0;
}
conf->counter = 0;
}
conf_idx++;
if (confs[conf_idx] == NULL)
conf_idx = 0;
}
}