DPDK  17.02.1
examples/bond/main.c
/*-
* BSD LICENSE
*
* Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdint.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <assert.h>
#include <errno.h>
#include <signal.h>
#include <stdarg.h>
#include <inttypes.h>
#include <getopt.h>
#include <termios.h>
#include <unistd.h>
#include <pthread.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_memzone.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_launch.h>
#include <rte_atomic.h>
#include <rte_cycles.h>
#include <rte_prefetch.h>
#include <rte_lcore.h>
#include <rte_per_lcore.h>
#include <rte_interrupts.h>
#include <rte_pci.h>
#include <rte_random.h>
#include <rte_debug.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_log.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_memcpy.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#include <rte_arp.h>
#include <rte_spinlock.h>
#include <cmdline_rdline.h>
#include <cmdline_parse.h>
#include <cmdline_parse_num.h>
#include <cmdline_parse_string.h>
#include <cmdline_parse_ipaddr.h>
#include <cmdline_parse_etheraddr.h>
#include <cmdline_socket.h>
#include <cmdline.h>
#include "main.h"
#include <rte_devargs.h>
#include "rte_byteorder.h"
#include "rte_cpuflags.h"
#include "rte_eth_bond.h"
#define RTE_LOGTYPE_DCB RTE_LOGTYPE_USER1
#define NB_MBUF (1024*8)
#define MAX_PKT_BURST 32
#define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
#define BURST_RX_INTERVAL_NS (10) /* RX poll interval ~100ns */
/*
* RX and TX Prefetch, Host, and Write-back threshold values should be
* carefully set for optimal performance. Consult the network
* controller's datasheet and supporting DPDK documentation for guidance
* on how these parameters should be set.
*/
#define RX_PTHRESH 8
#define RX_HTHRESH 8
#define RX_WTHRESH 4
#define RX_FTHRESH (MAX_PKT_BURST * 2)
/*
* These default values are optimized for use with the Intel(R) 82599 10 GbE
* Controller and the DPDK ixgbe PMD. Consider using other values for other
* network controllers and/or network drivers.
*/
#define TX_PTHRESH 36
#define TX_HTHRESH 0
#define TX_WTHRESH 0
/*
* Configurable number of RX/TX ring descriptors
*/
#define RTE_RX_DESC_DEFAULT 128
#define RTE_TX_DESC_DEFAULT 512
#define BOND_IP_1 7
#define BOND_IP_2 0
#define BOND_IP_3 0
#define BOND_IP_4 10
/* not defined under linux */
#ifndef NIPQUAD
#define NIPQUAD_FMT "%u.%u.%u.%u"
#endif
#define MAX_PORTS 4
#define PRINT_MAC(addr) printf("%02"PRIx8":%02"PRIx8":%02"PRIx8 \
":%02"PRIx8":%02"PRIx8":%02"PRIx8, \
addr.addr_bytes[0], addr.addr_bytes[1], addr.addr_bytes[2], \
addr.addr_bytes[3], addr.addr_bytes[4], addr.addr_bytes[5])
uint8_t slaves[RTE_MAX_ETHPORTS];
uint8_t slaves_count;
static uint8_t BOND_PORT = 0xff;
static struct rte_mempool *mbuf_pool;
static struct rte_eth_conf port_conf = {
.rxmode = {
.max_rx_pkt_len = ETHER_MAX_LEN,
.split_hdr_size = 0,
.header_split = 0,
.hw_ip_checksum = 0,
.hw_vlan_filter = 0,
.jumbo_frame = 0,
.hw_strip_crc = 0,
},
.rx_adv_conf = {
.rss_conf = {
.rss_key = NULL,
.rss_hf = ETH_RSS_IP,
},
},
.txmode = {
.mq_mode = ETH_MQ_TX_NONE,
},
};
static void
slave_port_init(uint8_t portid, struct rte_mempool *mbuf_pool)
{
int retval;
if (portid >= rte_eth_dev_count())
rte_exit(EXIT_FAILURE, "Invalid port\n");
retval = rte_eth_dev_configure(portid, 1, 1, &port_conf);
if (retval != 0)
rte_exit(EXIT_FAILURE, "port %u: configuration failed (res=%d)\n",
portid, retval);
/* RX setup */
retval = rte_eth_rx_queue_setup(portid, 0, RTE_RX_DESC_DEFAULT,
rte_eth_dev_socket_id(portid), NULL,
mbuf_pool);
if (retval < 0)
rte_exit(retval, " port %u: RX queue 0 setup failed (res=%d)",
portid, retval);
/* TX setup */
retval = rte_eth_tx_queue_setup(portid, 0, RTE_TX_DESC_DEFAULT,
rte_eth_dev_socket_id(portid), NULL);
if (retval < 0)
rte_exit(retval, "port %u: TX queue 0 setup failed (res=%d)",
portid, retval);
retval = rte_eth_dev_start(portid);
if (retval < 0)
rte_exit(retval,
"Start port %d failed (res=%d)",
portid, retval);
struct ether_addr addr;
rte_eth_macaddr_get(portid, &addr);
printf("Port %u MAC: ", (unsigned)portid);
PRINT_MAC(addr);
printf("\n");
}
static void
bond_port_init(struct rte_mempool *mbuf_pool)
{
int retval;
uint8_t i;
0 /*SOCKET_ID_ANY*/);
if (retval < 0)
rte_exit(EXIT_FAILURE,
"Faled to create bond port\n");
BOND_PORT = (uint8_t)retval;
retval = rte_eth_dev_configure(BOND_PORT, 1, 1, &port_conf);
if (retval != 0)
rte_exit(EXIT_FAILURE, "port %u: configuration failed (res=%d)\n",
BOND_PORT, retval);
/* RX setup */
retval = rte_eth_rx_queue_setup(BOND_PORT, 0, RTE_RX_DESC_DEFAULT,
rte_eth_dev_socket_id(BOND_PORT), NULL,
mbuf_pool);
if (retval < 0)
rte_exit(retval, " port %u: RX queue 0 setup failed (res=%d)",
BOND_PORT, retval);
/* TX setup */
retval = rte_eth_tx_queue_setup(BOND_PORT, 0, RTE_TX_DESC_DEFAULT,
rte_eth_dev_socket_id(BOND_PORT), NULL);
if (retval < 0)
rte_exit(retval, "port %u: TX queue 0 setup failed (res=%d)",
BOND_PORT, retval);
for (i = 0; i < slaves_count; i++) {
if (rte_eth_bond_slave_add(BOND_PORT, slaves[i]) == -1)
rte_exit(-1, "Oooops! adding slave (%u) to bond (%u) failed!\n",
slaves[i], BOND_PORT);
}
retval = rte_eth_dev_start(BOND_PORT);
if (retval < 0)
rte_exit(retval, "Start port %d failed (res=%d)", BOND_PORT, retval);
struct ether_addr addr;
rte_eth_macaddr_get(BOND_PORT, &addr);
printf("Port %u MAC: ", (unsigned)BOND_PORT);
PRINT_MAC(addr);
printf("\n");
}
static inline size_t
get_vlan_offset(struct ether_hdr *eth_hdr, uint16_t *proto)
{
size_t vlan_offset = 0;
struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
vlan_offset = sizeof(struct vlan_hdr);
*proto = vlan_hdr->eth_proto;
vlan_hdr = vlan_hdr + 1;
*proto = vlan_hdr->eth_proto;
vlan_offset += sizeof(struct vlan_hdr);
}
}
return vlan_offset;
}
struct global_flag_stru_t {
int LcoreMainIsRunning;
int LcoreMainCore;
uint32_t port_packets[4];
};
struct global_flag_stru_t global_flag_stru;
struct global_flag_stru_t *global_flag_stru_p = &global_flag_stru;
/*
* Main thread that does the work, reading from INPUT_PORT
* and writing to OUTPUT_PORT
*/
static int lcore_main(__attribute__((unused)) void *arg1)
{
struct rte_mbuf *pkts[MAX_PKT_BURST] __rte_cache_aligned;
struct ether_addr d_addr;
struct ether_hdr *eth_hdr;
struct arp_hdr *arp_hdr;
struct ipv4_hdr *ipv4_hdr;
uint16_t ether_type, offset;
uint16_t rx_cnt;
uint32_t bond_ip;
int i = 0;
uint8_t is_free;
bond_ip = BOND_IP_1 | (BOND_IP_2 << 8) |
(BOND_IP_3 << 16) | (BOND_IP_4 << 24);
rte_spinlock_trylock(&global_flag_stru_p->lock);
while (global_flag_stru_p->LcoreMainIsRunning) {
rte_spinlock_unlock(&global_flag_stru_p->lock);
rx_cnt = rte_eth_rx_burst(BOND_PORT, 0, pkts, MAX_PKT_BURST);
is_free = 0;
/* If didn't receive any packets, wait and go to next iteration */
if (rx_cnt == 0) {
continue;
}
/* Search incoming data for ARP packets and prepare response */
for (i = 0; i < rx_cnt; i++) {
if (rte_spinlock_trylock(&global_flag_stru_p->lock) == 1) {
global_flag_stru_p->port_packets[0]++;
rte_spinlock_unlock(&global_flag_stru_p->lock);
}
eth_hdr = rte_pktmbuf_mtod(pkts[i], struct ether_hdr *);
ether_type = eth_hdr->ether_type;
if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_VLAN))
printf("VLAN taged frame, offset:");
offset = get_vlan_offset(eth_hdr, &ether_type);
if (offset > 0)
printf("%d\n", offset);
if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_ARP)) {
if (rte_spinlock_trylock(&global_flag_stru_p->lock) == 1) {
global_flag_stru_p->port_packets[1]++;
rte_spinlock_unlock(&global_flag_stru_p->lock);
}
arp_hdr = (struct arp_hdr *)((char *)(eth_hdr + 1) + offset);
if (arp_hdr->arp_data.arp_tip == bond_ip) {
if (arp_hdr->arp_op == rte_cpu_to_be_16(ARP_OP_REQUEST)) {
arp_hdr->arp_op = rte_cpu_to_be_16(ARP_OP_REPLY);
/* Switch src and dst data and set bonding MAC */
ether_addr_copy(&eth_hdr->s_addr, &eth_hdr->d_addr);
rte_eth_macaddr_get(BOND_PORT, &eth_hdr->s_addr);
ether_addr_copy(&arp_hdr->arp_data.arp_sha, &arp_hdr->arp_data.arp_tha);
arp_hdr->arp_data.arp_tip = arp_hdr->arp_data.arp_sip;
rte_eth_macaddr_get(BOND_PORT, &d_addr);
ether_addr_copy(&d_addr, &arp_hdr->arp_data.arp_sha);
arp_hdr->arp_data.arp_sip = bond_ip;
rte_eth_tx_burst(BOND_PORT, 0, &pkts[i], 1);
is_free = 1;
} else {
rte_eth_tx_burst(BOND_PORT, 0, NULL, 0);
}
}
} else if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4)) {
if (rte_spinlock_trylock(&global_flag_stru_p->lock) == 1) {
global_flag_stru_p->port_packets[2]++;
rte_spinlock_unlock(&global_flag_stru_p->lock);
}
ipv4_hdr = (struct ipv4_hdr *)((char *)(eth_hdr + 1) + offset);
if (ipv4_hdr->dst_addr == bond_ip) {
ether_addr_copy(&eth_hdr->s_addr, &eth_hdr->d_addr);
rte_eth_macaddr_get(BOND_PORT, &eth_hdr->s_addr);
ipv4_hdr->dst_addr = ipv4_hdr->src_addr;
ipv4_hdr->src_addr = bond_ip;
rte_eth_tx_burst(BOND_PORT, 0, &pkts[i], 1);
}
}
/* Free processed packets */
if (is_free == 0)
rte_pktmbuf_free(pkts[i]);
}
rte_spinlock_trylock(&global_flag_stru_p->lock);
}
rte_spinlock_unlock(&global_flag_stru_p->lock);
printf("BYE lcore_main\n");
return 0;
}
struct cmd_obj_send_result {
cmdline_fixed_string_t action;
cmdline_ipaddr_t ip;
};
static inline void get_string(struct cmd_obj_send_result *res, char *buf, uint8_t size)
{
snprintf(buf, size, NIPQUAD_FMT,
((unsigned)((unsigned char *)&(res->ip.addr.ipv4))[0]),
((unsigned)((unsigned char *)&(res->ip.addr.ipv4))[1]),
((unsigned)((unsigned char *)&(res->ip.addr.ipv4))[2]),
((unsigned)((unsigned char *)&(res->ip.addr.ipv4))[3])
);
}
static void cmd_obj_send_parsed(void *parsed_result,
__attribute__((unused)) struct cmdline *cl,
__attribute__((unused)) void *data)
{
struct cmd_obj_send_result *res = parsed_result;
char ip_str[INET6_ADDRSTRLEN];
struct rte_mbuf *created_pkt;
struct ether_hdr *eth_hdr;
struct arp_hdr *arp_hdr;
uint32_t bond_ip;
size_t pkt_size;
if (res->ip.family == AF_INET)
get_string(res, ip_str, INET_ADDRSTRLEN);
else
cmdline_printf(cl, "Wrong IP format. Only IPv4 is supported\n");
bond_ip = BOND_IP_1 | (BOND_IP_2 << 8) |
(BOND_IP_3 << 16) | (BOND_IP_4 << 24);
created_pkt = rte_pktmbuf_alloc(mbuf_pool);
pkt_size = sizeof(struct ether_hdr) + sizeof(struct arp_hdr);
created_pkt->data_len = pkt_size;
created_pkt->pkt_len = pkt_size;
eth_hdr = rte_pktmbuf_mtod(created_pkt, struct ether_hdr *);
rte_eth_macaddr_get(BOND_PORT, &eth_hdr->s_addr);
memset(&eth_hdr->d_addr, 0xFF, ETHER_ADDR_LEN);
arp_hdr = (struct arp_hdr *)((char *)eth_hdr + sizeof(struct ether_hdr));
arp_hdr->arp_hrd = rte_cpu_to_be_16(ARP_HRD_ETHER);
arp_hdr->arp_pro = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
arp_hdr->arp_hln = ETHER_ADDR_LEN;
arp_hdr->arp_pln = sizeof(uint32_t);
arp_hdr->arp_op = rte_cpu_to_be_16(ARP_OP_REQUEST);
rte_eth_macaddr_get(BOND_PORT, &arp_hdr->arp_data.arp_sha);
arp_hdr->arp_data.arp_sip = bond_ip;
memset(&arp_hdr->arp_data.arp_tha, 0, ETHER_ADDR_LEN);
arp_hdr->arp_data.arp_tip =
((unsigned char *)&res->ip.addr.ipv4)[0] |
(((unsigned char *)&res->ip.addr.ipv4)[1] << 8) |
(((unsigned char *)&res->ip.addr.ipv4)[2] << 16) |
(((unsigned char *)&res->ip.addr.ipv4)[3] << 24);
rte_eth_tx_burst(BOND_PORT, 0, &created_pkt, 1);
cmdline_printf(cl, "\n");
}
cmdline_parse_token_string_t cmd_obj_action_send =
TOKEN_STRING_INITIALIZER(struct cmd_obj_send_result, action, "send");
cmdline_parse_token_ipaddr_t cmd_obj_ip =
TOKEN_IPV4_INITIALIZER(struct cmd_obj_send_result, ip);
cmdline_parse_inst_t cmd_obj_send = {
.f = cmd_obj_send_parsed, /* function to call */
.data = NULL, /* 2nd arg of func */
.help_str = "send client_ip",
.tokens = { /* token list, NULL terminated */
(void *)&cmd_obj_action_send,
(void *)&cmd_obj_ip,
NULL,
},
};
struct cmd_start_result {
cmdline_fixed_string_t start;
};
static void cmd_start_parsed(__attribute__((unused)) void *parsed_result,
struct cmdline *cl,
__attribute__((unused)) void *data)
{
int slave_core_id = rte_lcore_id();
rte_spinlock_trylock(&global_flag_stru_p->lock);
if (global_flag_stru_p->LcoreMainIsRunning == 0) {
if (lcore_config[global_flag_stru_p->LcoreMainCore].state != WAIT) {
rte_spinlock_unlock(&global_flag_stru_p->lock);
return;
}
rte_spinlock_unlock(&global_flag_stru_p->lock);
} else {
cmdline_printf(cl, "lcore_main already running on core:%d\n",
global_flag_stru_p->LcoreMainCore);
rte_spinlock_unlock(&global_flag_stru_p->lock);
return;
}
/* start lcore main on core != master_core - ARP response thread */
slave_core_id = rte_get_next_lcore(rte_lcore_id(), 1, 0);
if ((slave_core_id >= RTE_MAX_LCORE) || (slave_core_id == 0))
return;
rte_spinlock_trylock(&global_flag_stru_p->lock);
global_flag_stru_p->LcoreMainIsRunning = 1;
rte_spinlock_unlock(&global_flag_stru_p->lock);
cmdline_printf(cl,
"Starting lcore_main on core %d:%d "
"Our IP:%d.%d.%d.%d\n",
slave_core_id,
rte_eal_remote_launch(lcore_main, NULL, slave_core_id),
BOND_IP_1,
BOND_IP_2,
BOND_IP_3,
BOND_IP_4
);
}
cmdline_parse_token_string_t cmd_start_start =
TOKEN_STRING_INITIALIZER(struct cmd_start_result, start, "start");
cmdline_parse_inst_t cmd_start = {
.f = cmd_start_parsed, /* function to call */
.data = NULL, /* 2nd arg of func */
.help_str = "starts listening if not started at startup",
.tokens = { /* token list, NULL terminated */
(void *)&cmd_start_start,
NULL,
},
};
struct cmd_help_result {
cmdline_fixed_string_t help;
};
static void cmd_help_parsed(__attribute__((unused)) void *parsed_result,
struct cmdline *cl,
__attribute__((unused)) void *data)
{
cmdline_printf(cl,
"ALB - link bonding mode 6 example\n"
"send IP - sends one ARPrequest thru bonding for IP.\n"
"start - starts listening ARPs.\n"
"stop - stops lcore_main.\n"
"show - shows some bond info: ex. active slaves etc.\n"
"help - prints help.\n"
"quit - terminate all threads and quit.\n"
);
}
cmdline_parse_token_string_t cmd_help_help =
TOKEN_STRING_INITIALIZER(struct cmd_help_result, help, "help");
cmdline_parse_inst_t cmd_help = {
.f = cmd_help_parsed, /* function to call */
.data = NULL, /* 2nd arg of func */
.help_str = "show help",
.tokens = { /* token list, NULL terminated */
(void *)&cmd_help_help,
NULL,
},
};
struct cmd_stop_result {
cmdline_fixed_string_t stop;
};
static void cmd_stop_parsed(__attribute__((unused)) void *parsed_result,
struct cmdline *cl,
__attribute__((unused)) void *data)
{
rte_spinlock_trylock(&global_flag_stru_p->lock);
if (global_flag_stru_p->LcoreMainIsRunning == 0) {
cmdline_printf(cl,
"lcore_main not running on core:%d\n",
global_flag_stru_p->LcoreMainCore);
rte_spinlock_unlock(&global_flag_stru_p->lock);
return;
}
global_flag_stru_p->LcoreMainIsRunning = 0;
if (rte_eal_wait_lcore(global_flag_stru_p->LcoreMainCore) < 0)
cmdline_printf(cl,
"error: lcore_main can not stop on core:%d\n",
global_flag_stru_p->LcoreMainCore);
else
cmdline_printf(cl,
"lcore_main stopped on core:%d\n",
global_flag_stru_p->LcoreMainCore);
rte_spinlock_unlock(&global_flag_stru_p->lock);
}
cmdline_parse_token_string_t cmd_stop_stop =
TOKEN_STRING_INITIALIZER(struct cmd_stop_result, stop, "stop");
cmdline_parse_inst_t cmd_stop = {
.f = cmd_stop_parsed, /* function to call */
.data = NULL, /* 2nd arg of func */
.help_str = "this command do not handle any arguments",
.tokens = { /* token list, NULL terminated */
(void *)&cmd_stop_stop,
NULL,
},
};
struct cmd_quit_result {
cmdline_fixed_string_t quit;
};
static void cmd_quit_parsed(__attribute__((unused)) void *parsed_result,
struct cmdline *cl,
__attribute__((unused)) void *data)
{
rte_spinlock_trylock(&global_flag_stru_p->lock);
if (global_flag_stru_p->LcoreMainIsRunning == 0) {
cmdline_printf(cl,
"lcore_main not running on core:%d\n",
global_flag_stru_p->LcoreMainCore);
rte_spinlock_unlock(&global_flag_stru_p->lock);
cmdline_quit(cl);
return;
}
global_flag_stru_p->LcoreMainIsRunning = 0;
if (rte_eal_wait_lcore(global_flag_stru_p->LcoreMainCore) < 0)
cmdline_printf(cl,
"error: lcore_main can not stop on core:%d\n",
global_flag_stru_p->LcoreMainCore);
else
cmdline_printf(cl,
"lcore_main stopped on core:%d\n",
global_flag_stru_p->LcoreMainCore);
rte_spinlock_unlock(&global_flag_stru_p->lock);
cmdline_quit(cl);
}
cmdline_parse_token_string_t cmd_quit_quit =
TOKEN_STRING_INITIALIZER(struct cmd_quit_result, quit, "quit");
cmdline_parse_inst_t cmd_quit = {
.f = cmd_quit_parsed, /* function to call */
.data = NULL, /* 2nd arg of func */
.help_str = "this command do not handle any arguments",
.tokens = { /* token list, NULL terminated */
(void *)&cmd_quit_quit,
NULL,
},
};
struct cmd_show_result {
cmdline_fixed_string_t show;
};
static void cmd_show_parsed(__attribute__((unused)) void *parsed_result,
struct cmdline *cl,
__attribute__((unused)) void *data)
{
uint8_t slaves[16] = {0};
uint8_t len = 16;
struct ether_addr addr;
uint8_t i = 0;
while (i < slaves_count) {
PRINT_MAC(addr);
printf("\n");
i++;
}
rte_spinlock_trylock(&global_flag_stru_p->lock);
cmdline_printf(cl,
"Active_slaves:%d "
"packets received:Tot:%d Arp:%d IPv4:%d\n",
rte_eth_bond_active_slaves_get(BOND_PORT, slaves, len),
global_flag_stru_p->port_packets[0],
global_flag_stru_p->port_packets[1],
global_flag_stru_p->port_packets[2]);
rte_spinlock_unlock(&global_flag_stru_p->lock);
}
cmdline_parse_token_string_t cmd_show_show =
TOKEN_STRING_INITIALIZER(struct cmd_show_result, show, "show");
cmdline_parse_inst_t cmd_show = {
.f = cmd_show_parsed, /* function to call */
.data = NULL, /* 2nd arg of func */
.help_str = "this command do not handle any arguments",
.tokens = { /* token list, NULL terminated */
(void *)&cmd_show_show,
NULL,
},
};
/****** CONTEXT (list of instruction) */
cmdline_parse_ctx_t main_ctx[] = {
(cmdline_parse_inst_t *)&cmd_start,
(cmdline_parse_inst_t *)&cmd_obj_send,
(cmdline_parse_inst_t *)&cmd_stop,
(cmdline_parse_inst_t *)&cmd_show,
(cmdline_parse_inst_t *)&cmd_quit,
(cmdline_parse_inst_t *)&cmd_help,
NULL,
};
/* prompt function, called from main on MASTER lcore */
static void prompt(__attribute__((unused)) void *arg1)
{
struct cmdline *cl;
cl = cmdline_stdin_new(main_ctx, "bond6>");
if (cl != NULL) {
cmdline_interact(cl);
cmdline_stdin_exit(cl);
}
}
/* Main function, does initialisation and calls the per-lcore functions */
int
main(int argc, char *argv[])
{
int ret;
uint8_t nb_ports, i;
/* init EAL */
ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
argc -= ret;
argv += ret;
nb_ports = rte_eth_dev_count();
if (nb_ports == 0)
rte_exit(EXIT_FAILURE, "Give at least one port\n");
else if (nb_ports > MAX_PORTS)
rte_exit(EXIT_FAILURE, "You can have max 4 ports\n");
mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NB_MBUF, 32,
0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
if (mbuf_pool == NULL)
rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
/* initialize all ports */
slaves_count = nb_ports;
for (i = 0; i < nb_ports; i++) {
slave_port_init(i, mbuf_pool);
slaves[i] = i;
}
bond_port_init(mbuf_pool);
rte_spinlock_init(&global_flag_stru_p->lock);
int slave_core_id = rte_lcore_id();
/* check state of lcores */
RTE_LCORE_FOREACH_SLAVE(slave_core_id) {
if (lcore_config[slave_core_id].state != WAIT)
return -EBUSY;
}
/* start lcore main on core != master_core - ARP response thread */
slave_core_id = rte_get_next_lcore(rte_lcore_id(), 1, 0);
if ((slave_core_id >= RTE_MAX_LCORE) || (slave_core_id == 0))
return -EPERM;
global_flag_stru_p->LcoreMainIsRunning = 1;
global_flag_stru_p->LcoreMainCore = slave_core_id;
printf("Starting lcore_main on core %d:%d Our IP:%d.%d.%d.%d\n",
slave_core_id,
NULL,
slave_core_id),
BOND_IP_1,
BOND_IP_2,
BOND_IP_3,
BOND_IP_4
);
/* Start prompt for user interact */
prompt(NULL);
return 0;
}