10. NXP DPAA2 CAAM (DPAA2_SEC)
The DPAA2_SEC PMD provides poll mode crypto driver support for NXP DPAA2 CAAM hardware accelerator.
10.1. Architecture
SEC is the SOC’s security engine, which serves as NXP’s latest cryptographic acceleration and offloading hardware. It combines functions previously implemented in separate modules to create a modular and scalable acceleration and assurance engine. It also implements block encryption algorithms, stream cipher algorithms, hashing algorithms, public key algorithms, run-time integrity checking, and a hardware random number generator. SEC performs higher-level cryptographic operations than previous NXP cryptographic accelerators. This provides significant improvement to system level performance.
DPAA2_SEC is one of the hardware resource in DPAA2 Architecture. More information on DPAA2 Architecture is described in DPAA2 Overview.
DPAA2_SEC PMD is one of DPAA2 drivers which interacts with Management Complex (MC) portal to access the hardware object - DPSECI. The MC provides access to create, discover, connect, configure and destroy dpseci objects in DPAA2_SEC PMD.
DPAA2_SEC PMD also uses some of the other hardware resources like buffer pools, queues, queue portals to store and to enqueue/dequeue data to the hardware SEC.
DPSECI objects are detected by PMD using a resource container called DPRC (like in DPAA2 Overview).
For example:
DPRC.1 (bus)
|
+--+--------+-------+-------+-------+---------+
| | | | | |
DPMCP.1 DPIO.1 DPBP.1 DPNI.1 DPMAC.1 DPSECI.1
DPMCP.2 DPIO.2 DPNI.2 DPMAC.2 DPSECI.2
DPMCP.3
10.2. Implementation
SEC provides platform assurance by working with SecMon, which is a companion logic block that tracks the security state of the SOC. SEC is programmed by means of descriptors (not to be confused with frame descriptors (FDs)) that indicate the operations to be performed and link to the message and associated data. SEC incorporates two DMA engines to fetch the descriptors, read the message data, and write the results of the operations. The DMA engine provides a scatter/gather capability so that SEC can read and write data scattered in memory. SEC may be configured by means of software for dynamic changes in byte ordering. The default configuration for this version of SEC is little-endian mode.
A block diagram similar to dpaa2 NIC is shown below to show where DPAA2_SEC fits in the DPAA2 Bus model
+----------------+
| DPDK DPAA2_SEC |
| PMD |
+----------------+ +------------+
| MC SEC object |.......| Mempool |
. . . . . . . . . | (DPSECI) | | (DPBP) |
. +---+---+--------+ +-----+------+
. ^ | .
. | |<enqueue, .
. | | dequeue> .
. | | .
. +---+---V----+ .
. . . . . . . . . . .| DPIO driver| .
. . | (DPIO) | .
. . +-----+------+ .
. . | QBMAN | .
. . | Driver | .
+----+------+-------+ +-----+----- | .
| dpaa2 bus | | .
| VFIO fslmc-bus |....................|.........................
| | |
| /bus/fslmc | |
+-------------------+ |
|
========================== HARDWARE =====|=======================
DPIO
|
DPSECI---DPBP
=========================================|========================
10.3. Features
The DPAA2_SEC PMD has support for:
Cipher algorithms:
RTE_CRYPTO_CIPHER_3DES_CBC
RTE_CRYPTO_CIPHER_AES128_CBC
RTE_CRYPTO_CIPHER_AES192_CBC
RTE_CRYPTO_CIPHER_AES256_CBC
RTE_CRYPTO_CIPHER_AES128_CTR
RTE_CRYPTO_CIPHER_AES192_CTR
RTE_CRYPTO_CIPHER_AES256_CTR
Hash algorithms:
RTE_CRYPTO_AUTH_SHA1_HMAC
RTE_CRYPTO_AUTH_SHA224_HMAC
RTE_CRYPTO_AUTH_SHA256_HMAC
RTE_CRYPTO_AUTH_SHA384_HMAC
RTE_CRYPTO_AUTH_SHA512_HMAC
RTE_CRYPTO_AUTH_MD5_HMAC
RTE_CRYPTO_AUTH_AES_XCBC_MAC
RTE_CRYPTO_AUTH_AES_CMAC
AEAD algorithms:
RTE_CRYPTO_AEAD_AES_GCM
10.4. Supported DPAA2 SoCs
LS2160A
LS2084A/LS2044A
LS2088A/LS2048A
LS1088A/LS1048A
10.5. Allowing & Blocking
The DPAA2 SEC device can be blocked with the following:
<dpdk app> <EAL args> -b "fslmc:dpseci.x" -- ...
Where x is the device object id as configured in resource container.
10.6. Limitations
Hash followed by Cipher mode is not supported
Only supports the session-oriented API implementation (session-less APIs are not supported).
10.7. Prerequisites
DPAA2_SEC driver has similar pre-requisites as described in DPAA2 Overview. The following dependencies are not part of DPDK and must be installed separately:
See NXP QorIQ DPAA2 Board Support Package for setup information
Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.
10.8. Enabling logs
For enabling logs, use the following EAL parameter:
./your_crypto_application <EAL args> --log-level=pmd.crypto.dpaa2:<level>
Using crypto.dpaa2
as log matching criteria, all Crypto PMD logs can be
enabled which are lower than logging level
.