8. dpdk-test-crypto-perf Application

The dpdk-test-crypto-perf tool is a Data Plane Development Kit (DPDK) utility that allows measuring performance parameters of PMDs available in the crypto tree. There are available two measurement types: throughput and latency. User can use multiply cores to run tests on but only one type of crypto PMD can be measured during single application execution. Cipher parameters, type of device, type of operation and chain mode have to be specified in the command line as application parameters. These parameters are checked using device capabilities structure.

8.1. Limitations

On hardware devices the cycle-count doesn’t always represent the actual offload cost. The cycle-count only represents the offload cost when the hardware accelerator is not fully loaded, when loaded the cpu cycles freed up by the offload are still consumed by the test tool and included in the cycle-count. These cycles are consumed by retries and inefficient API calls enqueuing and dequeuing smaller bursts than specified by the cmdline parameter. This results in a larger cycle-count measurement and should not be interpreted as an offload cost measurement. Using “pmd-cyclecount” mode will give a better idea of actual costs of hardware acceleration.

On hardware devices the throughput measurement is not necessarily the maximum possible for the device, e.g. it may be necessary to use multiple cores to keep the hardware accelerator fully loaded and so measure maximum throughput.

8.2. Linearization setting

It is possible linearized input segmented packets just before crypto operation for devices which doesn’t support scatter-gather, and allows to measure performance also for this use case.

To set on the linearization options add below definition to the cperf_ops.h file:

#define CPERF_LINEARIZATION_ENABLE

8.3. Running the Application

The tool application has a number of command line options:

dpdk-test-crypto-perf [EAL Options] -- [Application Options]

8.3.1. EAL Options

The following are the EAL command-line options that can be used in conjunction with the dpdk-test-crypto-perf application. See the DPDK Getting Started Guides for more information on these options.

  • -c <COREMASK> or -l <CORELIST>

    Set the hexadecimal bitmask of the cores to run on. The corelist is a list cores to use.

  • -a <PCI>

    Add a PCI device in allow list.

  • --vdev <driver><id>

    Add a virtual device.

8.3.2. Application Options

The following are the application command-line options:

  • --ptest type

    Set test type, where type is one of the following:

    throughput
    latency
    verify
    pmd-cyclecount
    
  • --silent

    Disable options dump.

  • --pool-sz <n>

    Set the number of mbufs to be allocated in the mbuf pool.

  • --total-ops <n>

    Set the number of total operations performed.

  • --burst-sz <n>

    Set the number of packets per burst.

    This can be set as:
    • Single value (i.e. --burst-sz 16)

    • Range of values, using the following structure min:inc:max, where min is minimum size, inc is the increment size and max is the maximum size (i.e. --burst-sz 16:2:32)

    • List of values, up to 32 values, separated in commas (i.e. --burst-sz 16,24,32)

  • --buffer-sz <n>

    Set the size of single packet (plaintext or ciphertext in it).

    This can be set as:
    • Single value (i.e. --buffer-sz 16)

    • Range of values, using the following structure min:inc:max, where min is minimum size, inc is the increment size and max is the maximum size (i.e. --buffer-sz 16:2:32)

    • List of values, up to 32 values, separated in commas (i.e. --buffer-sz 32,64,128)

  • --imix <n>

    Set the distribution of packet sizes.

    A list of weights must be passed, containing the same number of items than buffer-sz, so each item in this list will be the weight of the packet size on the same position in the buffer-sz parameter (a list have to be passed in that parameter).

    Example:

    To test a distribution of 20% packets of 64 bytes, 40% packets of 100 bytes and 40% packets of 256 bytes, the command line would be: --buffer-sz 64,100,256 --imix 20,40,40. Note that the weights do not have to be percentages, so using --imix 1,2,2 would result in the same distribution

  • --segment-sz <n>

    Set the size of the segment to use, for Scatter Gather List testing. By default, it is set to the size of the maximum buffer size, including the digest size, so a single segment is created.

  • --devtype <name>

    Set device type, where name is one of the following:

    crypto_null
    crypto_aesni_mb
    crypto_aesni_gcm
    crypto_openssl
    crypto_qat
    crypto_snow3g
    crypto_kasumi
    crypto_zuc
    crypto_dpaa_sec
    crypto_dpaa2_sec
    crypto_armv8
    crypto_scheduler
    crypto_mvsam
    
  • --optype <name>

    Set operation type, where name is one of the following:

    cipher-only
    auth-only
    cipher-then-auth
    auth-then-cipher
    aead
    pdcp
    docsis
    

    For GCM/CCM algorithms you should use aead flag.

  • --sessionless

    Enable session-less crypto operations mode.

  • --out-of-place

    Enable out-of-place crypto operations mode.

  • --test-file <name>

    Set test vector file path. See the Test Vector File chapter.

  • --test-name <name>

    Set specific test name section in the test vector file.

  • --cipher-algo <name>

    Set cipher algorithm name, where name is one of the following:

    3des-cbc
    3des-ecb
    3des-ctr
    aes-cbc
    aes-ctr
    aes-ecb
    aes-f8
    aes-xts
    arc4
    null
    kasumi-f8
    snow3g-uea2
    zuc-eea3
    
  • --cipher-op <mode>

    Set cipher operation mode, where mode is one of the following:

    encrypt
    decrypt
    
  • --cipher-key-sz <n>

    Set the size of cipher key.

  • --cipher-iv-sz <n>

    Set the size of cipher iv.

  • --auth-algo <name>

    Set authentication algorithm name, where name is one of the following:

    3des-cbc
    aes-cbc-mac
    aes-cmac
    aes-gmac
    aes-xcbc-mac
    md5
    md5-hmac
    sha1
    sha1-hmac
    sha2-224
    sha2-224-hmac
    sha2-256
    sha2-256-hmac
    sha2-384
    sha2-384-hmac
    sha2-512
    sha2-512-hmac
    kasumi-f9
    snow3g-uia2
    zuc-eia3
    
  • --auth-op <mode>

    Set authentication operation mode, where mode is one of the following:

    verify
    generate
    
  • --auth-key-sz <n>

    Set the size of authentication key.

  • --auth-iv-sz <n>

    Set the size of auth iv.

  • --aead-algo <name>

    Set AEAD algorithm name, where name is one of the following:

    aes-ccm
    aes-gcm
    
  • --aead-op <mode>

    Set AEAD operation mode, where mode is one of the following:

    encrypt
    decrypt
    
  • --aead-key-sz <n>

    Set the size of AEAD key.

  • --aead-iv-sz <n>

    Set the size of AEAD iv.

  • --aead-aad-sz <n>

    Set the size of AEAD aad.

  • --digest-sz <n>

    Set the size of digest.

  • --desc-nb <n>

    Set number of descriptors for each crypto device.

  • --pmd-cyclecount-delay-ms <n>

    Add a delay (in milliseconds) between enqueue and dequeue in pmd-cyclecount benchmarking mode (useful when benchmarking hardware acceleration).

  • --csv-friendly

    Enable test result output CSV friendly rather than human friendly.

  • --pdcp-sn-sz <n>

    Set PDCP sequence number size(n) in bits. Valid values of n will be 5/7/12/15/18.

  • --pdcp-domain <control/user>

    Set PDCP domain to specify Control/user plane.

  • --docsis-hdr-sz <n>

    Set DOCSIS header size(n) in bytes.

  • --pdcp-ses-hfn-en

    Enable fixed session based HFN instead of per packet HFN.

8.3.3. Test Vector File

The test vector file is a text file contain information about test vectors. The file is made of the sections. The first section doesn’t have header. It contain global information used in each test variant vectors - typically information about plaintext, ciphertext, cipher key, auth key, initial vector. All other sections begin header. The sections contain particular information typically digest.

Format of the file:

Each line beginning with sign ‘#’ contain comment and it is ignored by parser:

# <comment>

Header line is just name in square bracket:

[<section name>]

Data line contain information token then sign ‘=’ and a string of bytes in C byte array format:

<token> = <C byte array>

Tokens list:

  • plaintext

    Original plaintext to be encrypted.

  • ciphertext

    Encrypted plaintext string.

  • cipher_key

    Key used in cipher operation.

  • auth_key

    Key used in auth operation.

  • cipher_iv

    Cipher Initial Vector.

  • auth_iv

    Auth Initial Vector.

  • aad

    Additional data.

  • digest

    Digest string.

8.4. Examples

Call application for performance throughput test of single Aesni MB PMD for cipher encryption aes-cbc and auth generation sha1-hmac, one million operations, burst size 32, packet size 64:

dpdk-test-crypto-perf -l 6-7 --vdev crypto_aesni_mb -a 0000:00:00.0 --
--ptest throughput --devtype crypto_aesni_mb --optype cipher-then-auth
--cipher-algo aes-cbc --cipher-op encrypt --cipher-key-sz 16 --auth-algo
sha1-hmac --auth-op generate --auth-key-sz 64 --digest-sz 12
--total-ops 10000000 --burst-sz 32 --buffer-sz 64

Call application for performance latency test of two Aesni MB PMD executed on two cores for cipher encryption aes-cbc, ten operations in silent mode:

dpdk-test-crypto-perf -l 4-7 --vdev crypto_aesni_mb1
--vdev crypto_aesni_mb2 -a 0000:00:00.0 -- --devtype crypto_aesni_mb
--cipher-algo aes-cbc --cipher-key-sz 16 --cipher-iv-sz 16
--cipher-op encrypt --optype cipher-only --silent
--ptest latency --total-ops 10

Call application for verification test of single open ssl PMD for cipher encryption aes-gcm and auth generation aes-gcm,ten operations in silent mode, test vector provide in file “test_aes_gcm.data” with packet verification:

dpdk-test-crypto-perf -l 4-7 --vdev crypto_openssl -a 0000:00:00.0 --
--devtype crypto_openssl --aead-algo aes-gcm --aead-key-sz 16
--aead-iv-sz 16 --aead-op encrypt --aead-aad-sz 16 --digest-sz 16
--optype aead --silent --ptest verify --total-ops 10
--test-file test_aes_gcm.data

Test vector file for cipher algorithm aes cbc 256 with authorization sha:

# Global Section
plaintext =
0xff, 0xca, 0xfb, 0xf1, 0x38, 0x20, 0x2f, 0x7b, 0x24, 0x98, 0x26, 0x7d, 0x1d, 0x9f, 0xb3, 0x93,
0xd9, 0xef, 0xbd, 0xad, 0x4e, 0x40, 0xbd, 0x60, 0xe9, 0x48, 0x59, 0x90, 0x67, 0xd7, 0x2b, 0x7b,
0x8a, 0xe0, 0x4d, 0xb0, 0x70, 0x38, 0xcc, 0x48, 0x61, 0x7d, 0xee, 0xd6, 0x35, 0x49, 0xae, 0xb4,
0xaf, 0x6b, 0xdd, 0xe6, 0x21, 0xc0, 0x60, 0xce, 0x0a, 0xf4, 0x1c, 0x2e, 0x1c, 0x8d, 0xe8, 0x7b
ciphertext =
0x77, 0xF9, 0xF7, 0x7A, 0xA3, 0xCB, 0x68, 0x1A, 0x11, 0x70, 0xD8, 0x7A, 0xB6, 0xE2, 0x37, 0x7E,
0xD1, 0x57, 0x1C, 0x8E, 0x85, 0xD8, 0x08, 0xBF, 0x57, 0x1F, 0x21, 0x6C, 0xAD, 0xAD, 0x47, 0x1E,
0x0D, 0x6B, 0x79, 0x39, 0x15, 0x4E, 0x5B, 0x59, 0x2D, 0x76, 0x87, 0xA6, 0xD6, 0x47, 0x8F, 0x82,
0xB8, 0x51, 0x91, 0x32, 0x60, 0xCB, 0x97, 0xDE, 0xBE, 0xF0, 0xAD, 0xFC, 0x23, 0x2E, 0x22, 0x02
cipher_key =
0xE4, 0x23, 0x33, 0x8A, 0x35, 0x64, 0x61, 0xE2, 0x49, 0x03, 0xDD, 0xC6, 0xB8, 0xCA, 0x55, 0x7A,
0xd0, 0xe7, 0x4b, 0xfb, 0x5d, 0xe5, 0x0c, 0xe7, 0x6f, 0x21, 0xb5, 0x52, 0x2a, 0xbb, 0xc7, 0xf7
auth_key =
0xaf, 0x96, 0x42, 0xf1, 0x8c, 0x50, 0xdc, 0x67, 0x1a, 0x43, 0x47, 0x62, 0xc7, 0x04, 0xab, 0x05,
0xf5, 0x0c, 0xe7, 0xa2, 0xa6, 0x23, 0xd5, 0x3d, 0x95, 0xd8, 0xcd, 0x86, 0x79, 0xf5, 0x01, 0x47,
0x4f, 0xf9, 0x1d, 0x9d, 0x36, 0xf7, 0x68, 0x1a, 0x64, 0x44, 0x58, 0x5d, 0xe5, 0x81, 0x15, 0x2a,
0x41, 0xe4, 0x0e, 0xaa, 0x1f, 0x04, 0x21, 0xff, 0x2c, 0xf3, 0x73, 0x2b, 0x48, 0x1e, 0xd2, 0xf7
cipher_iv =
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F
# Section sha 1 hmac buff 32
[sha1_hmac_buff_32]
digest =
0x36, 0xCA, 0x49, 0x6A, 0xE3, 0x54, 0xD8, 0x4F, 0x0B, 0x76, 0xD8, 0xAA, 0x78, 0xEB, 0x9D, 0x65,
0x2C, 0xCA, 0x1F, 0x97
# Section sha 256 hmac buff 32
[sha256_hmac_buff_32]
digest =
0x1C, 0xB2, 0x3D, 0xD1, 0xF9, 0xC7, 0x6C, 0x49, 0x2E, 0xDA, 0x94, 0x8B, 0xF1, 0xCF, 0x96, 0x43,
0x67, 0x50, 0x39, 0x76, 0xB5, 0xA1, 0xCE, 0xA1, 0xD7, 0x77, 0x10, 0x07, 0x43, 0x37, 0x05, 0xB4

8.5. Graph Crypto Perf Results

The dpdk-graph-crypto-perf.py tool is a simple script to automate running crypto performance tests, and graphing the results. It can be found in the app/test-crypto-perf/ directory. The output graphs include various grouped barcharts for throughput tests, and histogram and boxplot graphs for latency tests. These are output to PDF files, with one PDF per test suite graph type.

8.5.1. Dependencies

The following python modules must be installed to run the script:

  • img2pdf

  • plotly

  • pandas

  • glob

8.5.2. Test Configuration

The test cases run by the script are defined by a JSON config file. Some config files can be found in app/test-crypto-perf/configs/, or the user may create a new one following the same format as the config files provided.

An example of this format is shown below for one test suite in the crypto-perf-aesni-mb.json file. This shows the required default config for the test suite, and one test case. The test case has additional app config that will be combined with the default config when running the test case.

"throughput": {
    "default": {
        "eal": {
            "l": "1,2",
            "vdev": "crypto_aesni_mb"
        },
        "app": {
            "csv-friendly": true,
            "buffer-sz": "64,128,256,512,768,1024,1408,2048",
            "burst-sz": "1,4,8,16,32",
            "ptest": "throughput",
            "devtype": "crypto_aesni_mb"
        }
     },
    "AES-CBC-128 SHA1-HMAC auth-then-cipher decrypt": {
            "cipher-algo": "aes-cbc",
            "cipher-key-sz": "16",
            "auth-algo": "sha1-hmac",
            "optype": "auth-then-cipher",
            "cipher-op": "decrypt"
     }
}

Note

The specific test cases only allow modification of app parameters, and not EAL parameters. The default case is required for each test suite in the config file, to specify EAL parameters.

Currently, crypto_qat, crypto_aesni_mb, and crypto_aesni_gcm devices for both throughput and latency ptests are supported.

8.5.3. Usage

./dpdk-graph-crypto-perf <config_file>

The config_file positional argument is required to run the script. This points to a valid JSON config file containing test suites.

./dpdk-graph-crypto-perf configs/crypto-perf-aesni-mb.json

The following are the application optional command-line options:

  • -h, --help

    Display usage information and quit.

  • -f <file_path>, --file-path <file_path>

    Provide path to dpdk-test-crypto-perf application. The script uses the installed app by default.

    ./dpdk-graph-crypto-perf <config_file> \
        -f <build_dir>/app/dpdk-test-crypto-perf
    
  • -t <test_suite_list>, --test-suites <test_suite_list>

    Specify test suites to run. All test suites are run by default.

    To run crypto-perf-qat latency test suite only:

    ./dpdk-graph-crypto-perf configs/crypto-perf-qat -t latency
    

    To run both crypto-perf-aesni-mb throughput and latency test suites

    ./dpdk-graph-crypto-perf configs/crypto-perf-aesni-mb -t throughput latency
    
  • -o <output_path>, --output-path <output_path>

    Specify directory to use for output files. The default is to use the script’s directory.

    ./dpdk-graph-crypto-perf <config_file> -o <output_dir>
    
  • -v, --verbose

    Enable verbose output. This displays dpdk-test-crypto-perf app output in real-time.

    ./dpdk-graph-crypto-perf <config_file> -v
    

    Warning

    Latency performance tests have a large amount of output. It is not recommended to use the verbose option for latency tests.