40. Internet Protocol (IP) Pipeline Application
40.1. Application overview
The Internet Protocol (IP) Pipeline application is intended to be a vehicle for rapid development of packet processing applications on multi-core CPUs.
Following OpenFlow and P4 design principles, the application can be used to create functional blocks called pipelines out of input/output ports, tables and actions in a modular way. Multiple pipelines can be inter-connected through packet queues to create complete applications (super-pipelines).
The pipelines are mapped to application threads, with each pipeline executed by a single thread and each thread able to run one or several pipelines. The possibilities of creating pipelines out of ports, tables and actions, connecting multiple pipelines together and mapping the pipelines to execution threads are endless, therefore this application can be seen as a true application generator.
Pipelines are created and managed through Command Line Interface (CLI):
Any standard TCP client (e.g. telnet, netcat, custom script, etc) is typically able to connect to the application, send commands through the network and wait for the response before pushing the next command.
- All the application objects are created and managed through CLI commands:
- ‘Primitive’ objects used to create pipeline ports: memory pools, links (i.e. network interfaces), SW queues, traffic managers, etc.
- Action profiles: used to define the actions to be executed by pipeline input/output ports and tables.
- Pipeline components: input/output ports, tables, pipelines, mapping of pipelines to execution threads.
40.2. Running the application
The application startup command line is:
ip_pipeline [EAL_ARGS] -- [-s SCRIPT_FILE] [-h HOST] [-p PORT]
The application startup arguments are:
-s SCRIPT_FILE
- Optional: Yes
- Default: Not present
- Argument: Path to the CLI script file to be run at application startup. No CLI script file will run at startup if this argument is not present.
-h HOST
- Optional: Yes
- Default:
0.0.0.0
- Argument: IP Address of the host running ip pipeline application to be used by remote TCP based client (telnet, netcat, etc.) for connection.
-p PORT
- Optional: Yes
- Default:
8086
- Argument: TCP port number at which the ip pipeline is running. This port number should be used by remote TCP client (such as telnet, netcat, etc.) to connect to host application.
Refer to DPDK Getting Started Guide for general information on running applications and the Environment Abstraction Layer (EAL) options.
The following is an example command to run ip pipeline application configured for layer 2 forwarding:
$ ./build/ip_pipeline -c 0x3 -- -s examples/route_ecmp.cli
The application should start successfully and display as follows:
EAL: Detected 40 lcore(s)
EAL: Detected 2 NUMA nodes
EAL: Multi-process socket /var/run/.rte_unix
EAL: Probing VFIO support...
EAL: PCI device 0000:02:00.0 on NUMA socket 0
EAL: probe driver: 8086:10fb net_ixgbe
...
To run remote client (e.g. telnet) to communicate with the ip pipeline application:
$ telnet 127.0.0.1 8086
When running a telnet client as above, command prompt is displayed:
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
Welcome to IP Pipeline!
pipeline>
Once application and telnet client start running, messages can be sent from client to application. At any stage, telnet client can be terminated using the quit command.
40.3. Application stages
40.3.1. Initialization
During this stage, EAL layer is initialised and application specific arguments are parsed. Furthermore, the data structures (i.e. linked lists) for application objects are initialized. In case of any initialization error, an error message is displayed and the application is terminated.
40.3.2. Run-time
The master thread is creating and managing all the application objects based on CLI input.
Each data plane thread runs one or several pipelines previously assigned to it in round-robin order. Each data plane thread executes two tasks in time-sharing mode:
- Packet processing task: Process bursts of input packets read from the pipeline input ports.
- Message handling task: Periodically, the data plane thread pauses the packet processing task and polls for request messages send by the master thread. Examples: add/remove pipeline to/from current data plane thread, add/delete rules to/from given table of a specific pipeline owned by the current data plane thread, read statistics, etc.
40.4. Examples
Name | Table(s) | Actions | Messages |
---|---|---|---|
L2fwd Note: Implemented using pipeline with a simple pass-through connection between input and output ports. |
Stub | Forward |
|
Flow classification | Exact match
|
Forward |
|
KNI | Stub | Forward |
|
Firewall | ACL
|
Allow/Drop |
|
IP routing | LPM (IPv4)
|
Forward |
|
Equal-cost multi-path routing (ECMP) | LPM (IPv4)
Array
|
Forward, load balance, encap ether |
|
40.5. Command Line Interface (CLI)
40.5.1. Link
Link configuration
link <link_name> dev <device_name>|port <port_id> rxq <n_queues> <queue_size> <mempool_name> txq <n_queues> <queue_size> promiscuous on | off [rss <qid_0> ... <qid_n>]Note: The PCI device name must be specified in the Domain:Bus:Device.Function format.
40.5.2. Mempool
Mempool create
mempool <mempool_name> buffer <buffer_size> pool <pool_size> cache <cache_size> cpu <cpu_id>
40.5.3. Software queue
Create software queue
swq <swq_name> size <size> cpu <cpu_id>
40.5.4. Traffic manager
Add traffic manager subport profile
tmgr subport profile <tb_rate> <tb_size> <tc0_rate> <tc1_rate> <tc2_rate> <tc3_rate> <tc_period>Add traffic manager pipe profile
tmgr pipe profile <tb_rate> <tb_size> <tc0_rate> <tc1_rate> <tc2_rate> <tc3_rate> <tc_period> <tc_ov_weight> <wrr_weight0..15>Create traffic manager port
tmgr <tmgr_name> rate <rate> spp <n_subports_per_port> pps <n_pipes_per_subport> qsize <qsize_tc0> <qsize_tc1> <qsize_tc2> <qsize_tc3> fo <frame_overhead> mtu <mtu> cpu <cpu_id>Configure traffic manager subport
tmgr <tmgr_name> subport <subport_id> profile <subport_profile_id>Configure traffic manager pipe
tmgr <tmgr_name> subport <subport_id> pipe from <pipe_id_first> to <pipe_id_last> profile <pipe_profile_id>
40.5.5. Tap
Create tap port
tap <name>
40.5.6. Kni
Create kni port
kni <kni_name> link <link_name> mempool <mempool_name> [thread <thread_id>]
40.5.7. Cryptodev
Create cryptodev port
cryptodev <cryptodev_name> dev <DPDK Cryptodev PMD name> queue <n_queues> <queue_size>
40.5.8. Action profile
Create action profile for pipeline input port
port in action profile <profile_name> [filter match | mismatch offset <key_offset> mask <key_mask> key <key_value> port <port_id>] [balance offset <key_offset> mask <key_mask> port <port_id0> ... <port_id15>]Create action profile for the pipeline table
table action profile <profile_name> ipv4 | ipv6 offset <ip_offset> fwd [balance offset <key_offset> mask <key_mask> outoffset <out_offset>] [meter srtcm | trtcm tc <n_tc> stats none | pkts | bytes | both] [tm spp <n_subports_per_port> pps <n_pipes_per_subport>] [encap ether | vlan | qinq | mpls | pppoe] [nat src | dst proto udp | tcp] [ttl drop | fwd stats none | pkts] [stats pkts | bytes | both] [sym_crypto cryptodev <cryptodev_name> mempool_create <mempool_name> mempool_init <mempool_name>] [time]
40.5.9. Pipeline
Create pipeline
pipeline <pipeline_name>
period <timer_period_ms>
offset_port_id <offset_port_id>
cpu <cpu_id>
Create pipeline input port
pipeline <pipeline_name> port in
bsz <burst_size>
link <link_name> rxq <queue_id>
| swq <swq_name>
| tmgr <tmgr_name>
| tap <tap_name> mempool <mempool_name> mtu <mtu>
| kni <kni_name>
| source mempool <mempool_name> file <file_name> bpp <n_bytes_per_pkt>
[action <port_in_action_profile_name>]
[disabled]
Create pipeline output port
pipeline <pipeline_name> port out
bsz <burst_size>
link <link_name> txq <txq_id>
| swq <swq_name>
| tmgr <tmgr_name>
| tap <tap_name>
| kni <kni_name>
| sink [file <file_name> pkts <max_n_pkts>]
Create pipeline table
pipeline <pipeline_name> table
match
acl
ipv4 | ipv6
offset <ip_header_offset>
size <n_rules>
| array
offset <key_offset>
size <n_keys>
| hash
ext | lru
key <key_size>
mask <key_mask>
offset <key_offset>
buckets <n_buckets>
size <n_keys>
| lpm
ipv4 | ipv6
offset <ip_header_offset>
size <n_rules>
| stub
[action <table_action_profile_name>]
Connect pipeline input port to table
pipeline <pipeline_name> port in <port_id> table <table_id>
Display statistics for specific pipeline input port, output port or table
pipeline <pipeline_name> port in <port_id> stats read [clear]
pipeline <pipeline_name> port out <port_id> stats read [clear]
pipeline <pipeline_name> table <table_id> stats read [clear]
Enable given input port for specific pipeline instance
pipeline <pipeline_name> port out <port_id> disable
Disable given input port for specific pipeline instance
pipeline <pipeline_name> port out <port_id> disable
Add default rule to table for specific pipeline instance
pipeline <pipeline_name> table <table_id> rule add
match
default
action
fwd
drop
| port <port_id>
| meta
| table <table_id>
Add rule to table for specific pipeline instance
pipeline <pipeline_name> table <table_id> rule add
match
acl
priority <priority>
ipv4 | ipv6 <sa> <sa_depth> <da> <da_depth>
<sp0> <sp1> <dp0> <dp1> <proto>
| array <pos>
| hash
raw <key>
| ipv4_5tuple <sa> <da> <sp> <dp> <proto>
| ipv6_5tuple <sa> <da> <sp> <dp> <proto>
| ipv4_addr <addr>
| ipv6_addr <addr>
| qinq <svlan> <cvlan>
| lpm
ipv4 | ipv6 <addr> <depth>
action
fwd
drop
| port <port_id>
| meta
| table <table_id>
[balance <out0> ... <out7>]
[meter
tc0 meter <meter_profile_id> policer g <pa> y <pa> r <pa>
[tc1 meter <meter_profile_id> policer g <pa> y <pa> r <pa>
tc2 meter <meter_profile_id> policer g <pa> y <pa> r <pa>
tc3 meter <meter_profile_id> policer g <pa> y <pa> r <pa>]]
[tm subport <subport_id> pipe <pipe_id>]
[encap
ether <da> <sa>
| vlan <da> <sa> <pcp> <dei> <vid>
| qinq <da> <sa> <pcp> <dei> <vid> <pcp> <dei> <vid>
| mpls unicast | multicast
<da> <sa>
label0 <label> <tc> <ttl>
[label1 <label> <tc> <ttl>
[label2 <label> <tc> <ttl>
[label3 <label> <tc> <ttl>]]]
| pppoe <da> <sa> <session_id>]
[nat ipv4 | ipv6 <addr> <port>]
[ttl dec | keep]
[stats]
[time]
[sym_crypto
encrypt | decrypt
type
| cipher
cipher_algo <algo> cipher_key <key> cipher_iv <iv>
| cipher_auth
cipher_algo <algo> cipher_key <key> cipher_iv <iv>
auth_algo <algo> auth_key <key> digest_size <size>
| aead
aead_algo <algo> aead_key <key> aead_iv <iv> aead_aad <aad>
digest_size <size>
data_offset <data_offset>]
where:
<pa> ::= g | y | r | drop
Add bulk rules to table for specific pipeline instance
pipeline <pipeline_name> table <table_id> rule add bulk <file_name> <n_rules>
Where:
- file_name = path to file
- File line format = match <match> action <action>
Delete table rule for specific pipeline instance
pipeline <pipeline_name> table <table_id> rule delete
match <match>
Delete default table rule for specific pipeline instance
pipeline <pipeline_name> table <table_id> rule delete
match
default
Add meter profile to the table for specific pipeline instance
pipeline <pipeline_name> table <table_id> meter profile <meter_profile_id>
add srtcm cir <cir> cbs <cbs> ebs <ebs>
| trtcm cir <cir> pir <pir> cbs <cbs> pbs <pbs>
Delete meter profile from the table for specific pipeline instance
pipeline <pipeline_name> table <table_id>
meter profile <meter_profile_id> delete
Update the dscp table for meter or traffic manager action for specific pipeline instance
pipeline <pipeline_name> table <table_id> dscp <file_name>
Where:
- file_name = path to file
- exactly 64 lines
- File line format = <tc_id> <tc_queue_id> <color>, with <color> as: g | y | r
40.5.10. Pipeline enable/disable
Enable given pipeline instance for specific data plane thread
thread <thread_id> pipeline <pipeline_name> enableDisable given pipeline instance for specific data plane thread
thread <thread_id> pipeline <pipeline_name> disable