.. BSD LICENSE Copyright(c) 2015-2017 Netronome Systems, Inc. All rights reserved. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. NFP poll mode driver library ============================ Netronome's sixth generation of flow processors pack 216 programmable cores and over 100 hardware accelerators that uniquely combine packet, flow, security and content processing in a single device that scales up to 400-Gb/s. This document explains how to use DPDK with the Netronome Poll Mode Driver (PMD) supporting Netronome's Network Flow Processor 6xxx (NFP-6xxx) and Netronome's Flow Processor 4xxx (NFP-4xxx). NFP is a SRIOV capable device and the PMD driver supports the physical function (PF) and the virtual functions (VFs). Dependencies ------------ Before using the Netronome's DPDK PMD some NFP configuration, which is not related to DPDK, is required. The system requires installation of **Netronome's BSP (Board Support Package)** along with a specific NFP firmware application. Netronome's NSP ABI version should be 0.20 or higher. If you have a NFP device you should already have the code and documentation for this configuration. Contact **support@netronome.com** to obtain the latest available firmware. The NFP Linux netdev kernel driver for VFs has been a part of the vanilla kernel since kernel version 4.5, and support for the PF since kernel version 4.11. Support for older kernels can be obtained on Github at **https://github.com/Netronome/nfp-drv-kmods** along with the build instructions. NFP PMD needs to be used along with UIO ``igb_uio`` or VFIO (``vfio-pci``) Linux kernel driver. Building the software --------------------- Netronome's PMD code is provided in the **drivers/net/nfp** directory. Although NFP PMD has NetronomeĀ“s BSP dependencies, it is possible to compile it along with other DPDK PMDs even if no BSP was installed previously. Of course, a DPDK app will require such a BSP installed for using the NFP PMD, along with a specific NFP firmware application. Default PMD configuration is at the **common_linuxapp configuration** file: - **CONFIG_RTE_LIBRTE_NFP_PMD=y** Once the DPDK is built all the DPDK apps and examples include support for the NFP PMD. Driver compilation and testing ------------------------------ Refer to the document :ref:`compiling and testing a PMD for a NIC ` for details. Using the PF ------------ NFP PMD supports using the NFP PF as another DPDK port, but it does not have any functionality for controlling VFs. In fact, it is not possible to use the PMD with the VFs if the PF is being used by DPDK, that is, with the NFP PF bound to ``igb_uio`` or ``vfio-pci`` kernel drivers. Future DPDK versions will have a PMD able to work with the PF and VFs at the same time and with the PF implementing VF management along with other PF-only functionalities/offloads. The PMD PF has extra work to do which will delay the DPDK app initialization. This additional effort could be checking if a firmware is already available in the device, uploading the firmware if necessary or configuring the Link state properly when starting or stopping a PF port. Note that firmware upload is not always necessary which is the main delay for NFP PF PMD initialization. Depending on the Netronome product installed in the system, firmware files should be available under ``/lib/firmware/netronome``. DPDK PMD supporting the PF requires a specific link, ``/lib/firmware/netronome/nic_dpdk_default.nffw``, which should be created automatically with Netronome's Agilio products installation. PF multiport support -------------------- Some NFP cards support several physical ports with just one single PCI device. The DPDK core is designed with a 1:1 relationship between PCI devices and DPDK ports, so NFP PMD PF support requires handling the multiport case specifically. During NFP PF initialization, the PMD will extract the information about the number of PF ports from the firmware and will create as many DPDK ports as needed. Because the unusual relationship between a single PCI device and several DPDK ports, there are some limitations when using more than one PF DPDK port: there is no support for RX interrupts and it is not possible either to use those PF ports with the device hotplug functionality. System configuration -------------------- #. **Enable SR-IOV on the NFP device:** The current NFP PMD supports the PF and the VFs on a NFP device. However, it is not possible to work with both at the same time because the VFs require the PF being bound to the NFP PF Linux netdev driver. Make sure you are working with a kernel with NFP PF support or get the drivers from the above Github repository and follow the instructions for building and installing it. VFs need to be enabled before they can be used with the PMD. Before enabling the VFs it is useful to obtain information about the current NFP PCI device detected by the system: .. code-block:: console lspci -d19ee: Now, for example, configure two virtual functions on a NFP-6xxx device whose PCI system identity is "0000:03:00.0": .. code-block:: console echo 2 > /sys/bus/pci/devices/0000:03:00.0/sriov_numvfs The result of this command may be shown using lspci again: .. code-block:: console lspci -d19ee: -k Two new PCI devices should appear in the output of the above command. The -k option shows the device driver, if any, that devices are bound to. Depending on the modules loaded at this point the new PCI devices may be bound to nfp_netvf driver.