6. dpdk-test-eventdev Application
The dpdk-test-eventdev
tool is a Data Plane Development Kit (DPDK)
application that allows exercising various eventdev use cases.
This application has a generic framework to add new eventdev based test cases to
verify functionality and measure the performance parameters of DPDK eventdev
devices.
6.1. Compiling the Application
Build the application
Execute the dpdk-setup.sh
script to build the DPDK library together with the
dpdk-test-eventdev
application.
Initially, the user must select a DPDK target to choose the correct target type and compiler options to use when building the libraries. The user must have all libraries, modules, updates and compilers installed in the system prior to this, as described in the earlier chapters in this Getting Started Guide.
6.2. Running the Application
The application has a number of command line options:
dpdk-test-eventdev [EAL Options] -- [application options]
6.2.1. EAL Options
The following are the EAL command-line options that can be used in conjunction
with the dpdk-test-eventdev
application.
See the DPDK Getting Started Guides for more information on these options.
-c <COREMASK>
or-l <CORELIST>
Set the hexadecimal bitmask of the cores to run on. The corelist is a list of cores to use.
--vdev <driver><id>
Add a virtual eventdev device.
6.2.2. Application Options
The following are the application command-line options:
--verbose
Set verbose level. Default is 1. Value > 1 displays more details.
--dev <n>
Set the device id of the event device.
--test <name>
Set test name, where
name
is one of the following:order_queue order_atq perf_queue perf_atq
--socket_id <n>
Set the socket id of the application resources.
--pool-sz <n>
Set the number of mbufs to be allocated from the mempool.
--plcores <CORELIST>
Set the list of cores to be used as producers.
--wlcores <CORELIST>
Set the list of cores to be used as workers.
--stlist <type_list>
Set the scheduled type of each stage where
type_list
size determines the number of stages used in the test application. Each type_list member can be one of the following:P or p : Parallel schedule type O or o : Ordered schedule type A or a : Atomic schedule type
Application expects the
type_list
in comma separated form (i.e.--stlist o,a,a,a
)--nb_flows <n>
Set the number of flows to produce.
--nb_pkts <n>
Set the number of packets to produce. 0 implies no limit.
--worker_deq_depth <n>
Set the dequeue depth of the worker.
--fwd_latency
Perform forward latency measurement.
--queue_priority
Enable queue priority.
6.3. Eventdev Tests
6.3.1. ORDER_QUEUE Test
This is a functional test case that aims at testing the following:
- Verify the ingress order maintenance.
- Verify the exclusive(atomic) access to given atomic flow per eventdev port.
# | Items | Value | Comments |
---|---|---|---|
1 | nb_queues | 2 | q0(ordered), q1(atomic) |
2 | nb_producers | 1 | |
3 | nb_workers | >= 1 | |
4 | nb_ports | nb_workers + 1 | Workers use port 0 to port n-1. Producer uses port n |
The order queue test configures the eventdev with two queues and an event producer to inject the events to q0(ordered) queue. Both q0(ordered) and q1(atomic) are linked to all the workers.
The event producer maintains a sequence number per flow and injects the events to the ordered queue. The worker receives the events from ordered queue and forwards to atomic queue. Since the events from an ordered queue can be processed in parallel on the different workers, the ingress order of events might have changed on the downstream atomic queue enqueue. On enqueue to the atomic queue, the eventdev PMD driver reorders the event to the original ingress order(i.e producer ingress order).
When the event is dequeued from the atomic queue by the worker, this test verifies the expected sequence number of associated event per flow by comparing the free running expected sequence number per flow.
6.3.1.1. Application options
Supported application command line options are following:
--verbose
--dev
--test
--socket_id
--pool_sz
--plcores
--wlcores
--nb_flows
--nb_pkts
--worker_deq_depth
6.3.1.2. Example
Example command to run order queue test:
sudo build/app/dpdk-test-eventdev --vdev=event_sw0 -- \
--test=order_queue --plcores 1 --wlcores 2,3
6.3.2. ORDER_ATQ Test
This test verifies the same aspects of order_queue
test, the difference is
the number of queues used, this test operates on a single all types queue(atq)
instead of two different queues for ordered and atomic.
# | Items | Value | Comments |
---|---|---|---|
1 | nb_queues | 1 | q0(all types queue) |
2 | nb_producers | 1 | |
3 | nb_workers | >= 1 | |
4 | nb_ports | nb_workers + 1 | Workers use port 0 to port n-1.Producer uses port n. |
6.3.2.1. Application options
Supported application command line options are following:
--verbose
--dev
--test
--socket_id
--pool_sz
--plcores
--wlcores
--nb_flows
--nb_pkts
--worker_deq_depth
6.3.2.2. Example
Example command to run order all types queue
test:
sudo build/app/dpdk-test-eventdev --vdev=event_octeontx -- \
--test=order_atq --plcores 1 --wlcores 2,3
6.3.3. PERF_QUEUE Test
This is a performance test case that aims at testing the following:
- Measure the number of events can be processed in a second.
- Measure the latency to forward an event.
# | Items | Value | Comments |
---|---|---|---|
1 | nb_queues | nb_producers * nb_stages | Queues will be configured based on the user requested sched type list(–stlist) |
2 | nb_producers | >= 1 | Selected through –plcores command line argument. |
3 | nb_workers | >= 1 | Selected through –wlcores command line argument |
4 | nb_ports | nb_workers + nb_producers | Workers use port 0 to port n-1. Producers use port n to port p |
The perf queue test configures the eventdev with Q queues and P ports, where Q and P is a function of the number of workers, the number of producers and number of stages as mentioned in Table 6.3.
The user can choose the number of workers, the number of producers and number of
stages through the --wlcores
, --plcores
and the --stlist
application
command line arguments respectively.
The producer(s) injects the events to eventdev based the first stage sched type
list requested by the user through --stlist
the command line argument.
Based on the number of stages to process(selected through --stlist
),
The application forwards the event to next upstream queue and terminates when it
reaches the last stage in the pipeline. On event termination, application
increments the number events processed and print periodically in one second
to get the number of events processed in one second.
When --fwd_latency
command line option selected, the application inserts
the timestamp in the event on the first stage and then on termination, it
updates the number of cycles to forward a packet. The application uses this
value to compute the average latency to a forward packet.
6.3.3.1. Application options
Supported application command line options are following:
--verbose
--dev
--test
--socket_id
--pool_sz
--plcores
--wlcores
--stlist
--nb_flows
--nb_pkts
--worker_deq_depth
--fwd_latency
--queue_priority
6.3.3.2. Example
Example command to run perf queue test:
sudo build/app/dpdk-test-eventdev -c 0xf -s 0x1 --vdev=event_sw0 -- \
--test=perf_queue --plcores=2 --wlcore=3 --stlist=p --nb_pkts=0
6.3.4. PERF_ATQ Test
This is a performance test case that aims at testing the following with
all types queue
eventdev scheme.
- Measure the number of events can be processed in a second.
- Measure the latency to forward an event.
# | Items | Value | Comments |
---|---|---|---|
1 | nb_queues | nb_producers | Queues will be configured based on the user requested sched type list(–stlist) |
2 | nb_producers | >= 1 | Selected through –plcores command line argument. |
3 | nb_workers | >= 1 | Selected through –wlcores command line argument |
4 | nb_ports | nb_workers + nb_producers | Workers use port 0 to port n-1. Producers use port n to port p |
The all types queues(atq)
perf test configures the eventdev with Q queues
and P ports, where Q and P is a function of the number of workers and number of
producers as mentioned in Table 6.4.
The atq queue test functions as same as perf_queue
test. The difference
is, It uses, all type queue scheme
instead of separate queues for each
stage and thus reduces the number of queues required to realize the use case
and enables flow pinning as the event does not move to the next queue.
6.3.4.1. Application options
Supported application command line options are following:
--verbose
--dev
--test
--socket_id
--pool_sz
--plcores
--wlcores
--stlist
--nb_flows
--nb_pkts
--worker_deq_depth
--fwd_latency
6.3.4.2. Example
Example command to run perf all types queue
test:
sudo build/app/dpdk-test-eventdev --vdev=event_octeontx -- \
--test=perf_atq --plcores=2 --wlcore=3 --stlist=p --nb_pkts=0