.. Copyright (c) <2015-2017>, Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ===================== VF to VF Bridge Tests ===================== This test suite aims to validate the bridge function on physical functional for virtual functional to virtual functional communication. Cases of the suite based on the vm to vm test scenario, echo vm needs on vf, and both of the vfs generated from the same pf port. Prerequisites: ============== On host: * Guest: two img with os for kvm qemu * NIC: one pf port On Guest: * Stream Source end: scapy pcpay Set up basic virtual scenario: ============================== Step 1: generate two vfs on the target pf port (i.e. 0000:85:00.0):: echo 2 > /sys/bus/pci/devices/0000\:85\:00.0/sriov_numvfs Step 2: bind the two vfs to vfio-pci:: modprobe vfio-pci ./dpdk/usertools/dpdk-devbind.py -b vfio-pci 0000:85:02.0 0000:85:02.1 Step 3: passthrough vf 0 to vm0 and start vm0:: taskset -c 20,21,22,23 /usr/local/qemu-2.4.0/x86_64-softmmu/qemu-system-x86_64 \ -name vm0 -enable-kvm -chardev socket,path=/tmp/vm0_qga0.sock,server,nowait,id=vm0_qga0 \ -device virtio-serial -device virtserialport,chardev=vm0_qga0,name=org.qemu.guest_agent.0 \ -daemonize -monitor unix:/tmp/vm0_monitor.sock,server,nowait \ -net nic,vlan=0,macaddr=00:00:00:e2:4f:fb,addr=1f \ -net user,vlan=0,hostfwd=tcp:10.239.128.125:6064-:22 \ -device vfio-pci,host=85:10.0,id=pt_0 -cpu host -smp 4 -m 6144 \ -object memory-backend-file,id=mem,size=6144M,mem-path=/mnt/huge,share=on \ -numa node,memdev=mem -mem-prealloc -drive file=/home/img/vm0.img -vnc :4 Step 4: passthrough vf 1 to vm1 and start vm1:: taskset -c 30,31,32,33 /usr/local/qemu-2.4.0/x86_64-softmmu/qemu-system-x86_64 \ -name vm1 -enable-kvm -chardev socket,path=/tmp/vm1_qga0.sock,server,nowait,id=vm1_qga0 \ -device virtio-serial -device virtserialport,chardev=vm1_qga0,name=org.qemu.guest_agent.0 \ -daemonize -monitor unix:/tmp/vm1_monitor.sock,server,nowait \ -net nic,vlan=0,macaddr=00:00:00:7b:d5:cb,addr=1f \ -net user,vlan=0,hostfwd=tcp:10.239.128.125:6126-:22 \ -device vfio-pci,host=85:10.2,id=pt_0 -cpu host -smp 4 -m 6144 \ -object memory-backend-file,id=mem,size=6144M,mem-path=/mnt/huge,share=on \ -numa node,memdev=mem -mem-prealloc -drive file=/home/img/vm1.img -vnc :5 Test Case1: test_2vf_d2d_testpmd_stream ======================================= both vfs in the two vms using the dpdk driver, send stream from vf1 in vm1 by dpdk testpmd to vf in vm0, and verify the vf on vm0 can receive stream. Step 1: run testpmd on vm0:: ./x86_64-native-linuxapp-gcc/app/testpmd -c 0x7 -n 1 -- -i --tx-offloads=0x8fff Step 2: set rxonly and start on vm0:: set fwd rxonly start Step 3: run testpmd on vm1:: ./x86_64-native-linuxapp-gcc/app/testpmd -c 0x7 -n 1 -- -i Step 4: Set forward, specifying that the opposing MAC sends 100 packets on vm1:: set fwd mac set eth-peer 0 52:54:12:45:67:10(vm0_mac) set burst 50 start tx_first 2 Step 5: verify vf 0 receive status on vm0: Rx-packets equal to send packets count, 100:: show port stats 0 ######################## NIC statistics for port 0 ######################## RX-packets: 100 RX-missed: 0 RX-bytes: 6000 RX-errors: 0 RX-nombuf: 0 TX-packets: 0 TX-errors: 0 TX-bytes: 0 ############################################################################ Test Case2: test_2vf_d2k_testpmd_stream ======================================= Step 1: bind vf to kernel driver on vm0 Step 2: start up vf interface and using tcpdump to capture received packets:: tcpdump -i vm0_vf ether dst vm0_mac -w m.pcap Step 3: Set forward, specifying that the opposing MAC sends 100 packets on vm1:: set fwd mac set eth-peer 0 52:54:12:45:67:10(vm0_mac) set burst 50 start tx_first 2 Step 4: verify vf 0 receive status on vm0: packet captured equal to send packets count, 100 Test Case3: test_2vf_k2d_scapy_stream ===================================== Step 1: run testpmd on vm0:: ./x86_64-native-linuxapp-gcc/app/testpmd -c 0x7 -n 1 -- -i --tx-offloads=0x8fff Step 2: set rxonly and start on vm0:: set fwd rxonly start Step 3: bind vf to kernel driver on vm0 Step 4: using scapy to send packets on vm1:: sendp([Ether(dst="vm0_mac", src="vm1_mac"") / IP() / Raw(load="X" * 46)], iface="ens4", count=100) Step 5:verify vf 0 receive status on vm0: Rx-packets equal to send packets count, 100:: show port stats 0 ######################## NIC statistics for port 0 ######################## RX-packets: 100 RX-missed: 0 RX-bytes: 6000 RX-errors: 0 RX-nombuf: 0 TX-packets: 0 TX-errors: 0 TX-bytes: 0 ############################################################################