DPDK 24.11.1
examples/l3fwd-power/main.c
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2018 Intel Corporation
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <string.h>
#include <sys/queue.h>
#include <stdarg.h>
#include <errno.h>
#include <getopt.h>
#include <unistd.h>
#include <signal.h>
#include <math.h>
#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_malloc.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_eal.h>
#include <rte_launch.h>
#include <rte_cycles.h>
#include <rte_prefetch.h>
#include <rte_lcore.h>
#include <rte_per_lcore.h>
#include <rte_interrupts.h>
#include <rte_random.h>
#include <rte_debug.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#include <rte_udp.h>
#include <rte_string_fns.h>
#include <rte_timer.h>
#include <rte_spinlock.h>
#include <rte_metrics.h>
#include <rte_telemetry.h>
#include <rte_power_qos.h>
#include "perf_core.h"
#include "main.h"
RTE_LOG_REGISTER(l3fwd_power_logtype, l3fwd.power, INFO);
#define RTE_LOGTYPE_L3FWD_POWER l3fwd_power_logtype
#define MAX_PKT_BURST 32
#define MIN_ZERO_POLL_COUNT 10
/* 100 ms interval */
#define TIMER_NUMBER_PER_SECOND 10
/* (10ms) */
#define INTERVALS_PER_SECOND 100
/* 100000 us */
#define SCALING_PERIOD (1000000/TIMER_NUMBER_PER_SECOND)
#define SCALING_DOWN_TIME_RATIO_THRESHOLD 0.25
#define APP_LOOKUP_EXACT_MATCH 0
#define APP_LOOKUP_LPM 1
#define DO_RFC_1812_CHECKS
#ifndef APP_LOOKUP_METHOD
#define APP_LOOKUP_METHOD APP_LOOKUP_LPM
#endif
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
#include <rte_hash.h>
#elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
#include <rte_lpm.h>
#else
#error "APP_LOOKUP_METHOD set to incorrect value"
#endif
#ifndef IPv6_BYTES
#define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
"%02x%02x:%02x%02x:%02x%02x:%02x%02x"
#define IPv6_BYTES(addr) \
addr[0], addr[1], addr[2], addr[3], \
addr[4], addr[5], addr[6], addr[7], \
addr[8], addr[9], addr[10], addr[11],\
addr[12], addr[13],addr[14], addr[15]
#endif
#define MAX_JUMBO_PKT_LEN 9600
#define IPV6_ADDR_LEN 16
#define MEMPOOL_CACHE_SIZE 256
/*
* This expression is used to calculate the number of mbufs needed depending on
* user input, taking into account memory for rx and tx hardware rings, cache
* per lcore and mtable per port per lcore. RTE_MAX is used to ensure that
* NB_MBUF never goes below a minimum value of 8192.
*/
#define NB_MBUF RTE_MAX ( \
(nb_ports*nb_rx_queue*nb_rxd + \
nb_ports*nb_lcores*MAX_PKT_BURST + \
nb_ports*n_tx_queue*nb_txd + \
nb_lcores*MEMPOOL_CACHE_SIZE), \
(unsigned)8192)
#define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
#define NB_SOCKETS 8
/* Configure how many packets ahead to prefetch, when reading packets */
#define PREFETCH_OFFSET 3
/*
* Configurable number of RX/TX ring descriptors
*/
#define RX_DESC_DEFAULT 1024
#define TX_DESC_DEFAULT 1024
#define NUM_TELSTATS RTE_DIM(telstats_strings)
static uint16_t nb_rxd = RX_DESC_DEFAULT;
static uint16_t nb_txd = TX_DESC_DEFAULT;
/* ethernet addresses of ports */
static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
/* ethernet addresses of ports */
static rte_spinlock_t locks[RTE_MAX_ETHPORTS];
/* mask of enabled ports */
static uint32_t enabled_port_mask = 0;
/* Ports set in promiscuous mode off by default. */
static int promiscuous_on = 0;
/* NUMA is enabled by default. */
static int numa_on = 1;
volatile bool quit_signal;
/* timer to update telemetry every 500ms */
static struct rte_timer telemetry_timer;
/* stats index returned by metrics lib */
int telstats_index;
/* flag to check if uncore option enabled */
int enabled_uncore = -1;
struct telstats_name {
};
/* telemetry stats to be reported */
const struct telstats_name telstats_strings[] = {
{"empty_poll"},
{"full_poll"},
{"busy_percent"}
};
/* core busyness in percentage */
enum busy_rate {
ZERO = 0,
PARTIAL = 50,
FULL = 100
};
enum uncore_choice {
UNCORE_MIN = 0,
UNCORE_MAX = 1,
UNCORE_IDX = 2
};
/* reference poll count to measure core busyness */
#define DEFAULT_COUNT 10000
/*
* reference CYCLES to be used to
* measure core busyness based on poll count
*/
#define MIN_CYCLES 1500000ULL
#define MAX_CYCLES 22000000ULL
/* (500ms) */
#define TELEMETRY_INTERVALS_PER_SEC 2
static int parse_ptype;
enum appmode {
APP_MODE_DEFAULT = 0,
APP_MODE_LEGACY,
APP_MODE_TELEMETRY,
APP_MODE_INTERRUPT,
APP_MODE_PMD_MGMT
};
enum appmode app_mode;
static enum rte_power_pmd_mgmt_type pmgmt_type;
bool baseline_enabled;
enum freq_scale_hint_t
{
FREQ_LOWER = -1,
FREQ_CURRENT = 0,
FREQ_HIGHER = 1,
FREQ_HIGHEST = 2
};
struct __rte_cache_aligned lcore_rx_queue {
uint16_t port_id;
uint16_t queue_id;
enum freq_scale_hint_t freq_up_hint;
uint32_t zero_rx_packet_count;
uint32_t idle_hint;
};
#define MAX_RX_QUEUE_PER_LCORE 16
#define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS
#define MAX_RX_QUEUE_PER_PORT 128
#define MAX_RX_QUEUE_INTERRUPT_PER_PORT 16
struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
static struct lcore_params lcore_params_array_default[] = {
{0, 0, 2},
{0, 1, 2},
{0, 2, 2},
{1, 0, 2},
{1, 1, 2},
{1, 2, 2},
{2, 0, 2},
{3, 0, 3},
{3, 1, 3},
};
struct lcore_params *lcore_params = lcore_params_array_default;
uint16_t nb_lcore_params = RTE_DIM(lcore_params_array_default);
static struct rte_eth_conf port_conf = {
.rxmode = {
.offloads = RTE_ETH_RX_OFFLOAD_CHECKSUM,
},
.rx_adv_conf = {
.rss_conf = {
.rss_key = NULL,
.rss_hf = RTE_ETH_RSS_UDP,
},
},
.txmode = {
.mq_mode = RTE_ETH_MQ_TX_NONE,
}
};
static uint32_t max_pkt_len;
static uint32_t max_empty_polls = 512;
static uint32_t pause_duration = 1;
static uint32_t scale_freq_min;
static uint32_t scale_freq_max;
static int cpu_resume_latency = -1;
static int resume_latency_bk[RTE_MAX_LCORE];
static struct rte_mempool * pktmbuf_pool[NB_SOCKETS];
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
#ifdef RTE_ARCH_X86
#include <rte_hash_crc.h>
#define DEFAULT_HASH_FUNC rte_hash_crc
#else
#include <rte_jhash.h>
#define DEFAULT_HASH_FUNC rte_jhash
#endif
struct ipv4_5tuple {
uint32_t ip_dst;
uint32_t ip_src;
uint16_t port_dst;
uint16_t port_src;
uint8_t proto;
struct ipv6_5tuple {
uint8_t ip_dst[IPV6_ADDR_LEN];
uint8_t ip_src[IPV6_ADDR_LEN];
uint16_t port_dst;
uint16_t port_src;
uint8_t proto;
struct ipv4_l3fwd_route {
struct ipv4_5tuple key;
uint8_t if_out;
};
struct ipv6_l3fwd_route {
struct ipv6_5tuple key;
uint8_t if_out;
};
static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
{{RTE_IPV4(100,10,0,1), RTE_IPV4(200,10,0,1), 101, 11, IPPROTO_TCP}, 0},
{{RTE_IPV4(100,20,0,2), RTE_IPV4(200,20,0,2), 102, 12, IPPROTO_TCP}, 1},
{{RTE_IPV4(100,30,0,3), RTE_IPV4(200,30,0,3), 103, 13, IPPROTO_TCP}, 2},
{{RTE_IPV4(100,40,0,4), RTE_IPV4(200,40,0,4), 104, 14, IPPROTO_TCP}, 3},
};
static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
{
{
{0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
{0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x02, 0x1e, 0x67, 0xff, 0xfe, 0x0d, 0xb6, 0x0a},
1, 10, IPPROTO_UDP
}, 4
},
};
typedef struct rte_hash lookup_struct_t;
static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
#define L3FWD_HASH_ENTRIES 1024
static alignas(RTE_CACHE_LINE_SIZE) uint16_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES];
static alignas(RTE_CACHE_LINE_SIZE) uint16_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES];
#endif
#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
struct ipv4_l3fwd_route {
uint32_t ip;
uint8_t depth;
uint8_t if_out;
};
static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
{RTE_IPV4(1,1,1,0), 24, 0},
{RTE_IPV4(2,1,1,0), 24, 1},
{RTE_IPV4(3,1,1,0), 24, 2},
{RTE_IPV4(4,1,1,0), 24, 3},
{RTE_IPV4(5,1,1,0), 24, 4},
{RTE_IPV4(6,1,1,0), 24, 5},
{RTE_IPV4(7,1,1,0), 24, 6},
{RTE_IPV4(8,1,1,0), 24, 7},
};
#define IPV4_L3FWD_LPM_MAX_RULES 1024
typedef struct rte_lpm lookup_struct_t;
static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
#endif
struct __rte_cache_aligned lcore_conf {
uint16_t n_rx_queue;
struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
uint16_t n_tx_port;
uint16_t tx_port_id[RTE_MAX_ETHPORTS];
uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
struct rte_eth_dev_tx_buffer *tx_buffer[RTE_MAX_ETHPORTS];
lookup_struct_t * ipv4_lookup_struct;
lookup_struct_t * ipv6_lookup_struct;
};
struct __rte_cache_aligned lcore_stats {
/* total sleep time in ms since last frequency scaling down */
uint32_t sleep_time;
/* number of long sleep recently */
uint32_t nb_long_sleep;
/* freq. scaling up trend */
uint32_t trend;
/* total packet processed recently */
uint64_t nb_rx_processed;
/* total iterations looped recently */
uint64_t nb_iteration_looped;
/*
* Represents empty and non empty polls
* of rte_eth_rx_burst();
* ep_nep[0] holds non empty polls
* i.e. 0 < nb_rx <= MAX_BURST
* ep_nep[1] holds empty polls.
* i.e. nb_rx == 0
*/
uint64_t ep_nep[2];
/*
* Represents full and empty+partial
* polls of rte_eth_rx_burst();
* ep_nep[0] holds empty+partial polls.
* i.e. 0 <= nb_rx < MAX_BURST
* ep_nep[1] holds full polls
* i.e. nb_rx == MAX_BURST
*/
uint64_t fp_nfp[2];
enum busy_rate br;
rte_spinlock_t telemetry_lock;
};
static alignas(RTE_CACHE_LINE_SIZE) struct lcore_conf lcore_conf[RTE_MAX_LCORE];
static alignas(RTE_CACHE_LINE_SIZE) struct lcore_stats stats[RTE_MAX_LCORE];
static struct rte_timer power_timers[RTE_MAX_LCORE];
static inline uint32_t power_idle_heuristic(uint32_t zero_rx_packet_count);
static inline enum freq_scale_hint_t power_freq_scaleup_heuristic( \
unsigned int lcore_id, uint16_t port_id, uint16_t queue_id);
static int is_done(void)
{
return quit_signal;
}
/* exit signal handler */
static void
signal_exit_now(int sigtype)
{
if (sigtype == SIGINT)
quit_signal = true;
}
/* Frequency scale down timer callback */
static void
power_timer_cb(__rte_unused struct rte_timer *tim,
{
uint64_t hz;
float sleep_time_ratio;
unsigned lcore_id = rte_lcore_id();
/* accumulate total execution time in us when callback is invoked */
sleep_time_ratio = (float)(stats[lcore_id].sleep_time) /
(float)SCALING_PERIOD;
if (sleep_time_ratio >= SCALING_DOWN_TIME_RATIO_THRESHOLD) {
}
else if ( (unsigned)(stats[lcore_id].nb_rx_processed /
stats[lcore_id].nb_iteration_looped) < MAX_PKT_BURST) {
}
rte_timer_reset(&power_timers[lcore_id], hz/TIMER_NUMBER_PER_SECOND,
SINGLE, lcore_id, power_timer_cb, NULL);
stats[lcore_id].nb_rx_processed = 0;
stats[lcore_id].nb_iteration_looped = 0;
stats[lcore_id].sleep_time = 0;
}
/* Enqueue a single packet, and send burst if queue is filled */
static inline int
send_single_packet(struct rte_mbuf *m, uint16_t port)
{
uint32_t lcore_id;
struct lcore_conf *qconf;
lcore_id = rte_lcore_id();
qconf = &lcore_conf[lcore_id];
rte_eth_tx_buffer(port, qconf->tx_queue_id[port],
qconf->tx_buffer[port], m);
return 0;
}
#ifdef DO_RFC_1812_CHECKS
static inline int
is_valid_ipv4_pkt(struct rte_ipv4_hdr *pkt, uint32_t link_len)
{
/* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */
/*
* 1. The packet length reported by the Link Layer must be large
* enough to hold the minimum length legal IP datagram (20 bytes).
*/
if (link_len < sizeof(struct rte_ipv4_hdr))
return -1;
/* 2. The IP checksum must be correct. */
/* if this is not checked in H/W, check it. */
if ((port_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_IPV4_CKSUM) == 0) {
uint16_t actual_cksum, expected_cksum;
actual_cksum = pkt->hdr_checksum;
pkt->hdr_checksum = 0;
expected_cksum = rte_ipv4_cksum(pkt);
if (actual_cksum != expected_cksum)
return -2;
}
/*
* 3. The IP version number must be 4. If the version number is not 4
* then the packet may be another version of IP, such as IPng or
* ST-II.
*/
if (((pkt->version_ihl) >> 4) != 4)
return -3;
/*
* 4. The IP header length field must be large enough to hold the
* minimum length legal IP datagram (20 bytes = 5 words).
*/
if ((pkt->version_ihl & 0xf) < 5)
return -4;
/*
* 5. The IP total length field must be large enough to hold the IP
* datagram header, whose length is specified in the IP header length
* field.
*/
if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct rte_ipv4_hdr))
return -5;
return 0;
}
#endif
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
static void
print_ipv4_key(struct ipv4_5tuple key)
{
printf("IP dst = %08x, IP src = %08x, port dst = %d, port src = %d, "
"proto = %d\n", (unsigned)key.ip_dst, (unsigned)key.ip_src,
key.port_dst, key.port_src, key.proto);
}
static void
print_ipv6_key(struct ipv6_5tuple key)
{
printf( "IP dst = " IPv6_BYTES_FMT ", IP src = " IPv6_BYTES_FMT ", "
"port dst = %d, port src = %d, proto = %d\n",
IPv6_BYTES(key.ip_dst), IPv6_BYTES(key.ip_src),
key.port_dst, key.port_src, key.proto);
}
static inline uint16_t
get_ipv4_dst_port(struct rte_ipv4_hdr *ipv4_hdr, uint16_t portid,
lookup_struct_t * ipv4_l3fwd_lookup_struct)
{
struct ipv4_5tuple key;
struct rte_tcp_hdr *tcp;
struct rte_udp_hdr *udp;
int ret = 0;
key.ip_dst = rte_be_to_cpu_32(ipv4_hdr->dst_addr);
key.ip_src = rte_be_to_cpu_32(ipv4_hdr->src_addr);
key.proto = ipv4_hdr->next_proto_id;
switch (ipv4_hdr->next_proto_id) {
case IPPROTO_TCP:
tcp = (struct rte_tcp_hdr *)((unsigned char *)ipv4_hdr +
sizeof(struct rte_ipv4_hdr));
key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
key.port_src = rte_be_to_cpu_16(tcp->src_port);
break;
case IPPROTO_UDP:
udp = (struct rte_udp_hdr *)((unsigned char *)ipv4_hdr +
sizeof(struct rte_ipv4_hdr));
key.port_dst = rte_be_to_cpu_16(udp->dst_port);
key.port_src = rte_be_to_cpu_16(udp->src_port);
break;
default:
key.port_dst = 0;
key.port_src = 0;
break;
}
/* Find destination port */
ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
return ((ret < 0) ? portid : ipv4_l3fwd_out_if[ret]);
}
static inline uint16_t
get_ipv6_dst_port(struct rte_ipv6_hdr *ipv6_hdr, uint16_t portid,
lookup_struct_t *ipv6_l3fwd_lookup_struct)
{
struct ipv6_5tuple key;
struct rte_tcp_hdr *tcp;
struct rte_udp_hdr *udp;
int ret = 0;
memcpy(key.ip_dst, ipv6_hdr->dst_addr, IPV6_ADDR_LEN);
memcpy(key.ip_src, ipv6_hdr->src_addr, IPV6_ADDR_LEN);
key.proto = ipv6_hdr->proto;
switch (ipv6_hdr->proto) {
case IPPROTO_TCP:
tcp = (struct rte_tcp_hdr *)((unsigned char *) ipv6_hdr +
sizeof(struct rte_ipv6_hdr));
key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
key.port_src = rte_be_to_cpu_16(tcp->src_port);
break;
case IPPROTO_UDP:
udp = (struct rte_udp_hdr *)((unsigned char *) ipv6_hdr +
sizeof(struct rte_ipv6_hdr));
key.port_dst = rte_be_to_cpu_16(udp->dst_port);
key.port_src = rte_be_to_cpu_16(udp->src_port);
break;
default:
key.port_dst = 0;
key.port_src = 0;
break;
}
/* Find destination port */
ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
return ((ret < 0) ? portid : ipv6_l3fwd_out_if[ret]);
}
#endif
#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
static inline uint16_t
get_ipv4_dst_port(struct rte_ipv4_hdr *ipv4_hdr, uint16_t portid,
lookup_struct_t *ipv4_l3fwd_lookup_struct)
{
uint32_t next_hop;
return ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct,
rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)?
next_hop : portid);
}
#endif
static inline void
parse_ptype_one(struct rte_mbuf *m)
{
struct rte_ether_hdr *eth_hdr;
uint32_t packet_type = RTE_PTYPE_UNKNOWN;
uint16_t ether_type;
eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
ether_type = eth_hdr->ether_type;
m->packet_type = packet_type;
}
static uint16_t
cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused,
struct rte_mbuf *pkts[], uint16_t nb_pkts,
uint16_t max_pkts __rte_unused,
void *user_param __rte_unused)
{
unsigned int i;
for (i = 0; i < nb_pkts; ++i)
parse_ptype_one(pkts[i]);
return nb_pkts;
}
static int
add_cb_parse_ptype(uint16_t portid, uint16_t queueid)
{
printf("Port %d: softly parse packet type info\n", portid);
if (rte_eth_add_rx_callback(portid, queueid, cb_parse_ptype, NULL))
return 0;
printf("Failed to add rx callback: port=%d\n", portid);
return -1;
}
static inline void
l3fwd_simple_forward(struct rte_mbuf *m, uint16_t portid,
struct lcore_conf *qconf)
{
struct rte_ether_hdr *eth_hdr;
struct rte_ipv4_hdr *ipv4_hdr;
void *d_addr_bytes;
uint16_t dst_port;
eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
/* Handle IPv4 headers.*/
ipv4_hdr =
rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
sizeof(struct rte_ether_hdr));
#ifdef DO_RFC_1812_CHECKS
/* Check to make sure the packet is valid (RFC1812) */
if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) {
return;
}
#endif
dst_port = get_ipv4_dst_port(ipv4_hdr, portid,
qconf->ipv4_lookup_struct);
if (dst_port >= RTE_MAX_ETHPORTS ||
(enabled_port_mask & 1 << dst_port) == 0)
dst_port = portid;
/* 02:00:00:00:00:xx */
d_addr_bytes = &eth_hdr->dst_addr.addr_bytes[0];
*((uint64_t *)d_addr_bytes) =
0x000000000002 + ((uint64_t)dst_port << 40);
#ifdef DO_RFC_1812_CHECKS
/* Update time to live and header checksum */
--(ipv4_hdr->time_to_live);
++(ipv4_hdr->hdr_checksum);
#endif
/* src addr */
rte_ether_addr_copy(&ports_eth_addr[dst_port],
&eth_hdr->src_addr);
send_single_packet(m, dst_port);
} else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
/* Handle IPv6 headers.*/
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
struct rte_ipv6_hdr *ipv6_hdr;
ipv6_hdr =
rte_pktmbuf_mtod_offset(m, struct rte_ipv6_hdr *,
sizeof(struct rte_ether_hdr));
dst_port = get_ipv6_dst_port(ipv6_hdr, portid,
qconf->ipv6_lookup_struct);
if (dst_port >= RTE_MAX_ETHPORTS ||
(enabled_port_mask & 1 << dst_port) == 0)
dst_port = portid;
/* 02:00:00:00:00:xx */
d_addr_bytes = &eth_hdr->dst_addr.addr_bytes[0];
*((uint64_t *)d_addr_bytes) =
0x000000000002 + ((uint64_t)dst_port << 40);
/* src addr */
rte_ether_addr_copy(&ports_eth_addr[dst_port],
&eth_hdr->src_addr);
send_single_packet(m, dst_port);
#else
/* We don't currently handle IPv6 packets in LPM mode. */
#endif
} else
}
#define MINIMUM_SLEEP_TIME 1
#define SUSPEND_THRESHOLD 300
static inline uint32_t
power_idle_heuristic(uint32_t zero_rx_packet_count)
{
/* If zero count is less than 100, sleep 1us */
if (zero_rx_packet_count < SUSPEND_THRESHOLD)
return MINIMUM_SLEEP_TIME;
/* If zero count is less than 1000, sleep 100 us which is the
minimum latency switching from C3/C6 to C0
*/
else
return SUSPEND_THRESHOLD;
}
static inline enum freq_scale_hint_t
power_freq_scaleup_heuristic(unsigned lcore_id,
uint16_t port_id,
uint16_t queue_id)
{
uint32_t rxq_count = rte_eth_rx_queue_count(port_id, queue_id);
#define FREQ_GEAR1_RX_PACKET_THRESHOLD MAX_PKT_BURST
#define FREQ_GEAR2_RX_PACKET_THRESHOLD (MAX_PKT_BURST*2)
#define FREQ_GEAR3_RX_PACKET_THRESHOLD (MAX_PKT_BURST*3)
#define FREQ_UP_TREND1_ACC 1
#define FREQ_UP_TREND2_ACC 100
#define FREQ_UP_THRESHOLD 10000
if (likely(rxq_count > FREQ_GEAR3_RX_PACKET_THRESHOLD)) {
stats[lcore_id].trend = 0;
return FREQ_HIGHEST;
} else if (likely(rxq_count > FREQ_GEAR2_RX_PACKET_THRESHOLD))
stats[lcore_id].trend += FREQ_UP_TREND2_ACC;
else if (likely(rxq_count > FREQ_GEAR1_RX_PACKET_THRESHOLD))
stats[lcore_id].trend += FREQ_UP_TREND1_ACC;
if (likely(stats[lcore_id].trend > FREQ_UP_THRESHOLD)) {
stats[lcore_id].trend = 0;
return FREQ_HIGHER;
}
return FREQ_CURRENT;
}
static int
sleep_until_rx_interrupt(int num, int lcore)
{
/*
* we want to track when we are woken up by traffic so that we can go
* back to sleep again without log spamming. Avoid cache line sharing
* to prevent threads stepping on each others' toes.
*/
static alignas(RTE_CACHE_LINE_SIZE) struct {
bool wakeup;
} status[RTE_MAX_LCORE];
struct rte_epoll_event event[num];
int n, i;
uint16_t port_id;
uint16_t queue_id;
void *data;
if (status[lcore].wakeup) {
RTE_LOG(INFO, L3FWD_POWER,
"lcore %u sleeps until interrupt triggers\n",
}
n = rte_epoll_wait(RTE_EPOLL_PER_THREAD, event, num, 10);
for (i = 0; i < n; i++) {
data = event[i].epdata.data;
port_id = ((uintptr_t)data) >> (sizeof(uint16_t) * CHAR_BIT);
queue_id = ((uintptr_t)data) &
RTE_LEN2MASK((sizeof(uint16_t) * CHAR_BIT), uint16_t);
RTE_LOG(INFO, L3FWD_POWER,
"lcore %u is waked up from rx interrupt on"
" port %d queue %d\n",
rte_lcore_id(), port_id, queue_id);
}
status[lcore].wakeup = n != 0;
return 0;
}
static void turn_on_off_intr(struct lcore_conf *qconf, bool on)
{
int i;
struct lcore_rx_queue *rx_queue;
uint16_t queue_id;
uint16_t port_id;
for (i = 0; i < qconf->n_rx_queue; ++i) {
rx_queue = &(qconf->rx_queue_list[i]);
port_id = rx_queue->port_id;
queue_id = rx_queue->queue_id;
rte_spinlock_lock(&(locks[port_id]));
if (on)
rte_eth_dev_rx_intr_enable(port_id, queue_id);
else
rte_eth_dev_rx_intr_disable(port_id, queue_id);
rte_spinlock_unlock(&(locks[port_id]));
}
}
static int event_register(struct lcore_conf *qconf)
{
struct lcore_rx_queue *rx_queue;
uint16_t queueid;
uint16_t portid;
uint32_t data;
int ret;
int i;
for (i = 0; i < qconf->n_rx_queue; ++i) {
rx_queue = &(qconf->rx_queue_list[i]);
portid = rx_queue->port_id;
queueid = rx_queue->queue_id;
data = portid << (sizeof(uint16_t) * CHAR_BIT) | queueid;
ret = rte_eth_dev_rx_intr_ctl_q(portid, queueid,
RTE_INTR_EVENT_ADD,
(void *)((uintptr_t)data));
if (ret)
return ret;
}
return 0;
}
/* Main processing loop. 8< */
static int main_intr_loop(__rte_unused void *dummy)
{
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
unsigned int lcore_id;
uint64_t prev_tsc, diff_tsc, cur_tsc;
int i, j, nb_rx;
uint16_t portid, queueid;
struct lcore_conf *qconf;
struct lcore_rx_queue *rx_queue;
uint32_t lcore_rx_idle_count = 0;
uint32_t lcore_idle_hint = 0;
int intr_en = 0;
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
US_PER_S * BURST_TX_DRAIN_US;
prev_tsc = 0;
lcore_id = rte_lcore_id();
qconf = &lcore_conf[lcore_id];
if (qconf->n_rx_queue == 0) {
RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n",
lcore_id);
return 0;
}
RTE_LOG(INFO, L3FWD_POWER, "entering main interrupt loop on lcore %u\n",
lcore_id);
for (i = 0; i < qconf->n_rx_queue; i++) {
portid = qconf->rx_queue_list[i].port_id;
queueid = qconf->rx_queue_list[i].queue_id;
RTE_LOG(INFO, L3FWD_POWER,
" -- lcoreid=%u portid=%u rxqueueid=%" PRIu16 "\n",
lcore_id, portid, queueid);
}
/* add into event wait list */
if (event_register(qconf) == 0)
intr_en = 1;
else
RTE_LOG(INFO, L3FWD_POWER, "RX interrupt won't enable.\n");
while (!is_done()) {
stats[lcore_id].nb_iteration_looped++;
cur_tsc = rte_rdtsc();
/*
* TX burst queue drain
*/
diff_tsc = cur_tsc - prev_tsc;
if (unlikely(diff_tsc > drain_tsc)) {
for (i = 0; i < qconf->n_tx_port; ++i) {
portid = qconf->tx_port_id[i];
qconf->tx_queue_id[portid],
qconf->tx_buffer[portid]);
}
prev_tsc = cur_tsc;
}
start_rx:
/*
* Read packet from RX queues
*/
lcore_rx_idle_count = 0;
for (i = 0; i < qconf->n_rx_queue; ++i) {
rx_queue = &(qconf->rx_queue_list[i]);
rx_queue->idle_hint = 0;
portid = rx_queue->port_id;
queueid = rx_queue->queue_id;
nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
MAX_PKT_BURST);
stats[lcore_id].nb_rx_processed += nb_rx;
if (unlikely(nb_rx == 0)) {
rx_queue->zero_rx_packet_count++;
if (rx_queue->zero_rx_packet_count <=
MIN_ZERO_POLL_COUNT)
continue;
rx_queue->idle_hint = power_idle_heuristic(
rx_queue->zero_rx_packet_count);
lcore_rx_idle_count++;
} else {
rx_queue->zero_rx_packet_count = 0;
}
/* Prefetch first packets */
for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
pkts_burst[j], void *));
}
/* Prefetch and forward already prefetched packets */
for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
pkts_burst[j + PREFETCH_OFFSET],
void *));
l3fwd_simple_forward(
pkts_burst[j], portid, qconf);
}
/* Forward remaining prefetched packets */
for (; j < nb_rx; j++) {
l3fwd_simple_forward(
pkts_burst[j], portid, qconf);
}
}
if (unlikely(lcore_rx_idle_count == qconf->n_rx_queue)) {
for (i = 1,
lcore_idle_hint = qconf->rx_queue_list[0].idle_hint;
i < qconf->n_rx_queue; ++i) {
rx_queue = &(qconf->rx_queue_list[i]);
if (rx_queue->idle_hint < lcore_idle_hint)
lcore_idle_hint = rx_queue->idle_hint;
}
if (lcore_idle_hint < SUSPEND_THRESHOLD)
rte_delay_us(lcore_idle_hint);
else {
/* suspend until rx interrupt triggers */
if (intr_en) {
turn_on_off_intr(qconf, 1);
sleep_until_rx_interrupt(
qconf->n_rx_queue,
lcore_id);
turn_on_off_intr(qconf, 0);
if (likely(!is_done()))
goto start_rx;
}
}
stats[lcore_id].sleep_time += lcore_idle_hint;
}
}
return 0;
}
/* >8 End of main processing loop. */
/* main processing loop */
static int
main_telemetry_loop(__rte_unused void *dummy)
{
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
unsigned int lcore_id;
uint64_t prev_tsc, diff_tsc, cur_tsc, prev_tel_tsc;
int i, j, nb_rx;
uint16_t portid, queueid;
struct lcore_conf *qconf;
struct lcore_rx_queue *rx_queue;
uint64_t ep_nep[2] = {0}, fp_nfp[2] = {0};
uint64_t poll_count;
enum busy_rate br;
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
US_PER_S * BURST_TX_DRAIN_US;
poll_count = 0;
prev_tsc = 0;
prev_tel_tsc = 0;
lcore_id = rte_lcore_id();
qconf = &lcore_conf[lcore_id];
if (qconf->n_rx_queue == 0) {
RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n",
lcore_id);
return 0;
}
RTE_LOG(INFO, L3FWD_POWER, "entering main telemetry loop on lcore %u\n",
lcore_id);
for (i = 0; i < qconf->n_rx_queue; i++) {
portid = qconf->rx_queue_list[i].port_id;
queueid = qconf->rx_queue_list[i].queue_id;
RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%u "
"rxqueueid=%" PRIu16 "\n", lcore_id, portid, queueid);
}
while (!is_done()) {
cur_tsc = rte_rdtsc();
/*
* TX burst queue drain
*/
diff_tsc = cur_tsc - prev_tsc;
if (unlikely(diff_tsc > drain_tsc)) {
for (i = 0; i < qconf->n_tx_port; ++i) {
portid = qconf->tx_port_id[i];
qconf->tx_queue_id[portid],
qconf->tx_buffer[portid]);
}
prev_tsc = cur_tsc;
}
/*
* Read packet from RX queues
*/
for (i = 0; i < qconf->n_rx_queue; ++i) {
rx_queue = &(qconf->rx_queue_list[i]);
portid = rx_queue->port_id;
queueid = rx_queue->queue_id;
nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
MAX_PKT_BURST);
ep_nep[nb_rx == 0]++;
fp_nfp[nb_rx == MAX_PKT_BURST]++;
poll_count++;
if (unlikely(nb_rx == 0))
continue;
/* Prefetch first packets */
for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
pkts_burst[j], void *));
}
/* Prefetch and forward already prefetched packets */
for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
j + PREFETCH_OFFSET], void *));
l3fwd_simple_forward(pkts_burst[j], portid,
qconf);
}
/* Forward remaining prefetched packets */
for (; j < nb_rx; j++) {
l3fwd_simple_forward(pkts_burst[j], portid,
qconf);
}
}
if (unlikely(poll_count >= DEFAULT_COUNT)) {
diff_tsc = cur_tsc - prev_tel_tsc;
if (diff_tsc >= MAX_CYCLES) {
br = FULL;
} else if (diff_tsc > MIN_CYCLES &&
diff_tsc < MAX_CYCLES) {
br = (diff_tsc * 100) / MAX_CYCLES;
} else {
br = ZERO;
}
poll_count = 0;
prev_tel_tsc = cur_tsc;
/* update stats for telemetry */
rte_spinlock_lock(&stats[lcore_id].telemetry_lock);
stats[lcore_id].ep_nep[0] = ep_nep[0];
stats[lcore_id].ep_nep[1] = ep_nep[1];
stats[lcore_id].fp_nfp[0] = fp_nfp[0];
stats[lcore_id].fp_nfp[1] = fp_nfp[1];
stats[lcore_id].br = br;
rte_spinlock_unlock(&stats[lcore_id].telemetry_lock);
}
}
return 0;
}
/* main processing loop */
static int
main_legacy_loop(__rte_unused void *dummy)
{
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
unsigned lcore_id;
uint64_t prev_tsc, diff_tsc, cur_tsc, tim_res_tsc, hz;
uint64_t prev_tsc_power = 0, cur_tsc_power, diff_tsc_power;
int i, j, nb_rx;
uint16_t portid, queueid;
struct lcore_conf *qconf;
struct lcore_rx_queue *rx_queue;
enum freq_scale_hint_t lcore_scaleup_hint;
uint32_t lcore_rx_idle_count = 0;
uint32_t lcore_idle_hint = 0;
int intr_en = 0;
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
prev_tsc = 0;
tim_res_tsc = hz/TIMER_NUMBER_PER_SECOND;
lcore_id = rte_lcore_id();
qconf = &lcore_conf[lcore_id];
if (qconf->n_rx_queue == 0) {
RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n", lcore_id);
return 0;
}
RTE_LOG(INFO, L3FWD_POWER, "entering main loop on lcore %u\n", lcore_id);
for (i = 0; i < qconf->n_rx_queue; i++) {
portid = qconf->rx_queue_list[i].port_id;
queueid = qconf->rx_queue_list[i].queue_id;
RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%u "
"rxqueueid=%" PRIu16 "\n", lcore_id, portid, queueid);
}
/* add into event wait list */
if (event_register(qconf) == 0)
intr_en = 1;
else
RTE_LOG(INFO, L3FWD_POWER, "RX interrupt won't enable.\n");
while (!is_done()) {
stats[lcore_id].nb_iteration_looped++;
cur_tsc = rte_rdtsc();
cur_tsc_power = cur_tsc;
/*
* TX burst queue drain
*/
diff_tsc = cur_tsc - prev_tsc;
if (unlikely(diff_tsc > drain_tsc)) {
for (i = 0; i < qconf->n_tx_port; ++i) {
portid = qconf->tx_port_id[i];
qconf->tx_queue_id[portid],
qconf->tx_buffer[portid]);
}
prev_tsc = cur_tsc;
}
diff_tsc_power = cur_tsc_power - prev_tsc_power;
if (diff_tsc_power > tim_res_tsc) {
prev_tsc_power = cur_tsc_power;
}
start_rx:
/*
* Read packet from RX queues
*/
lcore_scaleup_hint = FREQ_CURRENT;
lcore_rx_idle_count = 0;
for (i = 0; i < qconf->n_rx_queue; ++i) {
rx_queue = &(qconf->rx_queue_list[i]);
rx_queue->idle_hint = 0;
portid = rx_queue->port_id;
queueid = rx_queue->queue_id;
nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
MAX_PKT_BURST);
stats[lcore_id].nb_rx_processed += nb_rx;
if (unlikely(nb_rx == 0)) {
rx_queue->zero_rx_packet_count++;
if (rx_queue->zero_rx_packet_count <=
MIN_ZERO_POLL_COUNT)
continue;
rx_queue->idle_hint = power_idle_heuristic(\
rx_queue->zero_rx_packet_count);
lcore_rx_idle_count++;
} else {
rx_queue->zero_rx_packet_count = 0;
rx_queue->freq_up_hint =
power_freq_scaleup_heuristic(lcore_id,
portid, queueid);
}
/* Prefetch first packets */
for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
pkts_burst[j], void *));
}
/* Prefetch and forward already prefetched packets */
for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
j + PREFETCH_OFFSET], void *));
l3fwd_simple_forward(pkts_burst[j], portid,
qconf);
}
/* Forward remaining prefetched packets */
for (; j < nb_rx; j++) {
l3fwd_simple_forward(pkts_burst[j], portid,
qconf);
}
}
if (likely(lcore_rx_idle_count != qconf->n_rx_queue)) {
for (i = 1, lcore_scaleup_hint =
qconf->rx_queue_list[0].freq_up_hint;
i < qconf->n_rx_queue; ++i) {
rx_queue = &(qconf->rx_queue_list[i]);
if (rx_queue->freq_up_hint >
lcore_scaleup_hint)
lcore_scaleup_hint =
rx_queue->freq_up_hint;
}
if (lcore_scaleup_hint == FREQ_HIGHEST) {
rte_power_freq_max(lcore_id);
} else if (lcore_scaleup_hint == FREQ_HIGHER) {
rte_power_freq_up(lcore_id);
}
} else {
for (i = 1, lcore_idle_hint =
qconf->rx_queue_list[0].idle_hint;
i < qconf->n_rx_queue; ++i) {
rx_queue = &(qconf->rx_queue_list[i]);
if (rx_queue->idle_hint < lcore_idle_hint)
lcore_idle_hint = rx_queue->idle_hint;
}
if (lcore_idle_hint < SUSPEND_THRESHOLD)
rte_delay_us(lcore_idle_hint);
else {
/* suspend until rx interrupt triggers */
if (intr_en) {
turn_on_off_intr(qconf, 1);
sleep_until_rx_interrupt(
qconf->n_rx_queue,
lcore_id);
turn_on_off_intr(qconf, 0);
if (likely(!is_done()))
goto start_rx;
}
}
stats[lcore_id].sleep_time += lcore_idle_hint;
}
}
return 0;
}
static int
check_lcore_params(void)
{
uint16_t queue, i;
uint32_t lcore;
int socketid;
for (i = 0; i < nb_lcore_params; ++i) {
queue = lcore_params[i].queue_id;
if (queue >= MAX_RX_QUEUE_PER_PORT) {
printf("invalid queue number: %" PRIu16 "\n", queue);
return -1;
}
lcore = lcore_params[i].lcore_id;
if (!rte_lcore_is_enabled(lcore)) {
printf("error: lcore %u is not enabled in lcore "
"mask\n", lcore);
return -1;
}
if ((socketid = rte_lcore_to_socket_id(lcore) != 0) &&
(numa_on == 0)) {
printf("warning: lcore %u is on socket %d with numa "
"off\n", lcore, socketid);
}
if (app_mode == APP_MODE_TELEMETRY && lcore == rte_lcore_id()) {
printf("cannot enable main core %d in config for telemetry mode\n",
return -1;
}
}
return 0;
}
static int
check_port_config(void)
{
unsigned portid;
uint16_t i;
for (i = 0; i < nb_lcore_params; ++i) {
portid = lcore_params[i].port_id;
if ((enabled_port_mask & (1 << portid)) == 0) {
printf("port %u is not enabled in port mask\n",
portid);
return -1;
}
if (!rte_eth_dev_is_valid_port(portid)) {
printf("port %u is not present on the board\n",
portid);
return -1;
}
}
return 0;
}
static uint16_t
get_port_n_rx_queues(const uint16_t port)
{
int queue = -1;
uint16_t i;
for (i = 0; i < nb_lcore_params; ++i) {
if (lcore_params[i].port_id == port &&
lcore_params[i].queue_id > queue)
queue = lcore_params[i].queue_id;
}
return (uint16_t)(++queue);
}
static int
init_lcore_rx_queues(void)
{
uint16_t i, nb_rx_queue;
uint32_t lcore;
for (i = 0; i < nb_lcore_params; ++i) {
lcore = lcore_params[i].lcore_id;
nb_rx_queue = lcore_conf[lcore].n_rx_queue;
if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
printf("error: too many queues (%u) for lcore: %u\n",
(unsigned int)nb_rx_queue + 1, lcore);
return -1;
} else {
lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
lcore_params[i].port_id;
lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
lcore_params[i].queue_id;
lcore_conf[lcore].n_rx_queue++;
}
}
return 0;
}
/* display usage */
static void
print_usage(const char *prgname)
{
printf ("%s [EAL options] -- -p PORTMASK -P"
" [--config (port,queue,lcore)[,(port,queue,lcore]]"
" [--high-perf-cores CORELIST"
" [--perf-config (port,queue,hi_perf,lcore_index)[,(port,queue,hi_perf,lcore_index]]"
" [--max-pkt-len PKTLEN]\n"
" -p PORTMASK: hexadecimal bitmask of ports to configure\n"
" -P: enable promiscuous mode\n"
" -u: set min/max frequency for uncore to minimum value\n"
" -U: set min/max frequency for uncore to maximum value\n"
" -i (frequency index): set min/max frequency for uncore to specified frequency index\n"
" --config (port,queue,lcore): rx queues configuration\n"
" --cpu-resume-latency LATENCY: set CPU resume latency to control C-state selection,"
" 0 : just allow to enter C0-state\n"
" --high-perf-cores CORELIST: list of high performance cores\n"
" --perf-config: similar as config, cores specified as indices"
" for bins containing high or regular performance cores\n"
" --no-numa: optional, disable numa awareness\n"
" --max-pkt-len PKTLEN: maximum packet length in decimal (64-9600)\n"
" --parse-ptype: parse packet type by software\n"
" --legacy: use legacy interrupt-based scaling\n"
" --telemetry: enable telemetry mode, to update"
" empty polls, full polls, and core busyness to telemetry\n"
" --interrupt-only: enable interrupt-only mode\n"
" --pmd-mgmt MODE: enable PMD power management mode. "
"Currently supported modes: baseline, monitor, pause, scale\n"
" --max-empty-polls MAX_EMPTY_POLLS: number of empty polls to"
" wait before entering sleep state\n"
" --pause-duration DURATION: set the duration, in microseconds,"
" of the pause callback\n"
" --scale-freq-min FREQ_MIN: set minimum frequency for scaling mode for"
" all application lcores (FREQ_MIN must be in kHz, in increments of 100MHz)\n"
" --scale-freq-max FREQ_MAX: set maximum frequency for scaling mode for"
" all application lcores (FREQ_MAX must be in kHz, in increments of 100MHz)\n",
prgname);
}
/*
* Caller must give the right upper limit so as to ensure receiver variable
* doesn't overflow.
*/
static int
parse_uint(const char *opt, uint32_t max, uint32_t *res)
{
char *end = NULL;
unsigned long val;
/* parse integer string */
val = strtoul(opt, &end, 10);
if ((opt[0] == '\0') || (end == NULL) || (*end != '\0'))
return -1;
if (val > max) {
RTE_LOG(ERR, L3FWD_POWER, "%s parameter shouldn't exceed %u.\n",
opt, max);
return -1;
}
*res = val;
return 0;
}
static int
parse_uncore_options(enum uncore_choice choice, const char *argument)
{
unsigned int die, pkg, max_pkg, max_die;
int ret = 0;
ret = rte_power_set_uncore_env(RTE_UNCORE_PM_ENV_AUTO_DETECT);
if (ret < 0) {
RTE_LOG(INFO, L3FWD_POWER, "Failed to set uncore env\n");
return ret;
}
if (max_pkg == 0)
return -1;
for (pkg = 0; pkg < max_pkg; pkg++) {
if (max_die == 0)
return -1;
for (die = 0; die < max_die; die++) {
ret = rte_power_uncore_init(pkg, die);
if (ret == -1) {
RTE_LOG(INFO, L3FWD_POWER, "Unable to initialize uncore for pkg %02u die %02u\n"
, pkg, die);
return ret;
}
if (choice == UNCORE_MIN) {
ret = rte_power_uncore_freq_min(pkg, die);
if (ret == -1) {
RTE_LOG(INFO, L3FWD_POWER,
"Unable to set the uncore min/max to minimum uncore frequency value for pkg %02u die %02u\n"
, pkg, die);
return ret;
}
} else if (choice == UNCORE_MAX) {
ret = rte_power_uncore_freq_max(pkg, die);
if (ret == -1) {
RTE_LOG(INFO, L3FWD_POWER,
"Unable to set uncore min/max to maximum uncore frequency value for pkg %02u die %02u\n"
, pkg, die);
return ret;
}
} else if (choice == UNCORE_IDX) {
char *ptr = NULL;
int frequency_index = strtol(argument, &ptr, 10);
if (argument == ptr) {
RTE_LOG(INFO, L3FWD_POWER, "Index given is not a valid number.");
return -1;
}
int freq_array_len = rte_power_uncore_get_num_freqs(pkg, die);
if (frequency_index > freq_array_len - 1) {
RTE_LOG(INFO, L3FWD_POWER,
"Frequency index given out of range, please choose a value from 0 to %d.\n",
freq_array_len);
return -1;
}
ret = rte_power_set_uncore_freq(pkg, die, frequency_index);
if (ret == -1) {
RTE_LOG(INFO, L3FWD_POWER,
"Unable to set min/max uncore index value for pkg %02u die %02u\n",
pkg, die);
return ret;
}
} else {
RTE_LOG(INFO, L3FWD_POWER, "Uncore choice provided invalid\n");
return -1;
}
}
}
RTE_LOG(INFO, L3FWD_POWER, "Successfully set max/min/index uncore frequency.\n");
return ret;
}
static int
parse_portmask(const char *portmask)
{
char *end = NULL;
unsigned long pm;
/* parse hexadecimal string */
pm = strtoul(portmask, &end, 16);
if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
return 0;
return pm;
}
static int
parse_config(const char *q_arg)
{
char s[256];
const char *p, *p0 = q_arg;
char *end;
enum fieldnames {
FLD_PORT = 0,
FLD_QUEUE,
FLD_LCORE,
_NUM_FLD
};
unsigned long int_fld[_NUM_FLD];
char *str_fld[_NUM_FLD];
int i;
unsigned size;
unsigned int max_fld[_NUM_FLD] = {
RTE_MAX_ETHPORTS,
RTE_MAX_QUEUES_PER_PORT,
RTE_MAX_LCORE
};
nb_lcore_params = 0;
while ((p = strchr(p0,'(')) != NULL) {
++p;
if((p0 = strchr(p,')')) == NULL)
return -1;
size = p0 - p;
if(size >= sizeof(s))
return -1;
snprintf(s, sizeof(s), "%.*s", size, p);
if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
_NUM_FLD)
return -1;
for (i = 0; i < _NUM_FLD; i++){
errno = 0;
int_fld[i] = strtoul(str_fld[i], &end, 0);
if (errno != 0 || end == str_fld[i] || int_fld[i] > max_fld[i])
return -1;
}
if (nb_lcore_params >= MAX_LCORE_PARAMS) {
printf("exceeded max number of lcore params: %hu\n",
nb_lcore_params);
return -1;
}
lcore_params_array[nb_lcore_params].port_id =
(uint16_t)int_fld[FLD_PORT];
lcore_params_array[nb_lcore_params].queue_id =
(uint16_t)int_fld[FLD_QUEUE];
lcore_params_array[nb_lcore_params].lcore_id =
(uint32_t)int_fld[FLD_LCORE];
++nb_lcore_params;
}
lcore_params = lcore_params_array;
return 0;
}
static int
parse_pmd_mgmt_config(const char *name)
{
#define PMD_MGMT_MONITOR "monitor"
#define PMD_MGMT_PAUSE "pause"
#define PMD_MGMT_SCALE "scale"
#define PMD_MGMT_BASELINE "baseline"
if (strncmp(PMD_MGMT_MONITOR, name, sizeof(PMD_MGMT_MONITOR)) == 0) {
return 0;
}
if (strncmp(PMD_MGMT_PAUSE, name, sizeof(PMD_MGMT_PAUSE)) == 0) {
return 0;
}
if (strncmp(PMD_MGMT_SCALE, name, sizeof(PMD_MGMT_SCALE)) == 0) {
return 0;
}
if (strncmp(PMD_MGMT_BASELINE, name, sizeof(PMD_MGMT_BASELINE)) == 0) {
baseline_enabled = true;
return 0;
}
/* unknown PMD power management mode */
return -1;
}
#define CMD_LINE_OPT_PARSE_PTYPE "parse-ptype"
#define CMD_LINE_OPT_LEGACY "legacy"
#define CMD_LINE_OPT_INTERRUPT_ONLY "interrupt-only"
#define CMD_LINE_OPT_TELEMETRY "telemetry"
#define CMD_LINE_OPT_PMD_MGMT "pmd-mgmt"
#define CMD_LINE_OPT_MAX_PKT_LEN "max-pkt-len"
#define CMD_LINE_OPT_MAX_EMPTY_POLLS "max-empty-polls"
#define CMD_LINE_OPT_PAUSE_DURATION "pause-duration"
#define CMD_LINE_OPT_SCALE_FREQ_MIN "scale-freq-min"
#define CMD_LINE_OPT_SCALE_FREQ_MAX "scale-freq-max"
#define CMD_LINE_OPT_CPU_RESUME_LATENCY "cpu-resume-latency"
/* Parse the argument given in the command line of the application */
static int
parse_args(int argc, char **argv)
{
int opt, ret;
char **argvopt;
int option_index;
char *prgname = argv[0];
static struct option lgopts[] = {
{"config", 1, 0, 0},
{"perf-config", 1, 0, 0},
{"high-perf-cores", 1, 0, 0},
{"no-numa", 0, 0, 0},
{CMD_LINE_OPT_CPU_RESUME_LATENCY, 1, 0, 0},
{CMD_LINE_OPT_MAX_PKT_LEN, 1, 0, 0},
{CMD_LINE_OPT_PARSE_PTYPE, 0, 0, 0},
{CMD_LINE_OPT_LEGACY, 0, 0, 0},
{CMD_LINE_OPT_TELEMETRY, 0, 0, 0},
{CMD_LINE_OPT_INTERRUPT_ONLY, 0, 0, 0},
{CMD_LINE_OPT_PMD_MGMT, 1, 0, 0},
{CMD_LINE_OPT_MAX_EMPTY_POLLS, 1, 0, 0},
{CMD_LINE_OPT_PAUSE_DURATION, 1, 0, 0},
{CMD_LINE_OPT_SCALE_FREQ_MIN, 1, 0, 0},
{CMD_LINE_OPT_SCALE_FREQ_MAX, 1, 0, 0},
{NULL, 0, 0, 0}
};
argvopt = argv;
while ((opt = getopt_long(argc, argvopt, "p:PuUi:",
lgopts, &option_index)) != EOF) {
switch (opt) {
/* portmask */
case 'p':
enabled_port_mask = parse_portmask(optarg);
if (enabled_port_mask == 0) {
printf("invalid portmask\n");
print_usage(prgname);
return -1;
}
break;
case 'P':
printf("Promiscuous mode selected\n");
promiscuous_on = 1;
break;
case 'u':
enabled_uncore = parse_uncore_options(UNCORE_MIN, NULL);
if (enabled_uncore < 0) {
print_usage(prgname);
return -1;
}
break;
case 'U':
enabled_uncore = parse_uncore_options(UNCORE_MAX, NULL);
if (enabled_uncore < 0) {
print_usage(prgname);
return -1;
}
break;
case 'i':
enabled_uncore = parse_uncore_options(UNCORE_IDX, optarg);
if (enabled_uncore < 0) {
print_usage(prgname);
return -1;
}
break;
/* long options */
case 0:
if (!strncmp(lgopts[option_index].name, "config", 6)) {
ret = parse_config(optarg);
if (ret) {
printf("invalid config\n");
print_usage(prgname);
return -1;
}
}
if (!strncmp(lgopts[option_index].name,
"perf-config", 11)) {
ret = parse_perf_config(optarg);
if (ret) {
printf("invalid perf-config\n");
print_usage(prgname);
return -1;
}
}
if (!strncmp(lgopts[option_index].name,
"high-perf-cores", 15)) {
ret = parse_perf_core_list(optarg);
if (ret) {
printf("invalid high-perf-cores\n");
print_usage(prgname);
return -1;
}
}
if (!strncmp(lgopts[option_index].name,
"no-numa", 7)) {
printf("numa is disabled \n");
numa_on = 0;
}
if (!strncmp(lgopts[option_index].name,
CMD_LINE_OPT_LEGACY,
sizeof(CMD_LINE_OPT_LEGACY))) {
if (app_mode != APP_MODE_DEFAULT) {
printf(" legacy mode is mutually exclusive with other modes\n");
return -1;
}
app_mode = APP_MODE_LEGACY;
printf("legacy mode is enabled\n");
}
if (!strncmp(lgopts[option_index].name,
CMD_LINE_OPT_TELEMETRY,
sizeof(CMD_LINE_OPT_TELEMETRY))) {
if (app_mode != APP_MODE_DEFAULT) {
printf(" telemetry mode is mutually exclusive with other modes\n");
return -1;
}
app_mode = APP_MODE_TELEMETRY;
printf("telemetry mode is enabled\n");
}
if (!strncmp(lgopts[option_index].name,
CMD_LINE_OPT_PMD_MGMT,
sizeof(CMD_LINE_OPT_PMD_MGMT))) {
if (app_mode != APP_MODE_DEFAULT) {
printf(" power mgmt mode is mutually exclusive with other modes\n");
return -1;
}
if (parse_pmd_mgmt_config(optarg) < 0) {
printf(" Invalid PMD power management mode: %s\n",
optarg);
return -1;
}
app_mode = APP_MODE_PMD_MGMT;
printf("PMD power mgmt mode is enabled\n");
}
if (!strncmp(lgopts[option_index].name,
CMD_LINE_OPT_INTERRUPT_ONLY,
sizeof(CMD_LINE_OPT_INTERRUPT_ONLY))) {
if (app_mode != APP_MODE_DEFAULT) {
printf(" interrupt-only mode is mutually exclusive with other modes\n");
return -1;
}
app_mode = APP_MODE_INTERRUPT;
printf("interrupt-only mode is enabled\n");
}
if (!strncmp(lgopts[option_index].name,
CMD_LINE_OPT_MAX_PKT_LEN,
sizeof(CMD_LINE_OPT_MAX_PKT_LEN))) {
if (parse_uint(optarg, UINT32_MAX, &max_pkt_len) != 0)
return -1;
printf("Custom frame size is configured\n");
}
if (!strncmp(lgopts[option_index].name,
CMD_LINE_OPT_PARSE_PTYPE,
sizeof(CMD_LINE_OPT_PARSE_PTYPE))) {
printf("soft parse-ptype is enabled\n");
parse_ptype = 1;
}
if (!strncmp(lgopts[option_index].name,
CMD_LINE_OPT_MAX_EMPTY_POLLS,
sizeof(CMD_LINE_OPT_MAX_EMPTY_POLLS))) {
if (parse_uint(optarg, UINT32_MAX, &max_empty_polls) != 0)
return -1;
printf("Maximum empty polls configured\n");
}
if (!strncmp(lgopts[option_index].name,
CMD_LINE_OPT_PAUSE_DURATION,
sizeof(CMD_LINE_OPT_PAUSE_DURATION))) {
if (parse_uint(optarg, UINT32_MAX, &pause_duration) != 0)
return -1;
printf("Pause duration configured\n");
}
if (!strncmp(lgopts[option_index].name,
CMD_LINE_OPT_SCALE_FREQ_MIN,
sizeof(CMD_LINE_OPT_SCALE_FREQ_MIN))) {
if (parse_uint(optarg, UINT32_MAX, &scale_freq_min) != 0)
return -1;
printf("Scaling frequency minimum configured\n");
}
if (!strncmp(lgopts[option_index].name,
CMD_LINE_OPT_SCALE_FREQ_MAX,
sizeof(CMD_LINE_OPT_SCALE_FREQ_MAX))) {
if (parse_uint(optarg, UINT32_MAX, &scale_freq_max) != 0)
return -1;
printf("Scaling frequency maximum configured\n");
}
if (!strncmp(lgopts[option_index].name,
CMD_LINE_OPT_CPU_RESUME_LATENCY,
sizeof(CMD_LINE_OPT_CPU_RESUME_LATENCY))) {
if (parse_uint(optarg, INT_MAX,
(uint32_t *)&cpu_resume_latency) != 0)
return -1;
printf("PM QoS configured\n");
}
break;
default:
print_usage(prgname);
return -1;
}
}
if (optind >= 0)
argv[optind-1] = prgname;
ret = optind-1;
optind = 1; /* reset getopt lib */
return ret;
}
static void
print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
{
char buf[RTE_ETHER_ADDR_FMT_SIZE];
rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
printf("%s%s", name, buf);
}
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
static void
setup_hash(int socketid)
{
struct rte_hash_parameters ipv4_l3fwd_hash_params = {
.name = NULL,
.entries = L3FWD_HASH_ENTRIES,
.key_len = sizeof(struct ipv4_5tuple),
.hash_func = DEFAULT_HASH_FUNC,
.hash_func_init_val = 0,
};
struct rte_hash_parameters ipv6_l3fwd_hash_params = {
.name = NULL,
.entries = L3FWD_HASH_ENTRIES,
.key_len = sizeof(struct ipv6_5tuple),
.hash_func = DEFAULT_HASH_FUNC,
.hash_func_init_val = 0,
};
unsigned i;
int ret;
char s[64];
/* create ipv4 hash */
snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
ipv4_l3fwd_hash_params.name = s;
ipv4_l3fwd_hash_params.socket_id = socketid;
ipv4_l3fwd_lookup_struct[socketid] =
rte_hash_create(&ipv4_l3fwd_hash_params);
if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
"socket %d\n", socketid);
/* create ipv6 hash */
snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
ipv6_l3fwd_hash_params.name = s;
ipv6_l3fwd_hash_params.socket_id = socketid;
ipv6_l3fwd_lookup_struct[socketid] =
rte_hash_create(&ipv6_l3fwd_hash_params);
if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
"socket %d\n", socketid);
/* populate the ipv4 hash */
for (i = 0; i < RTE_DIM(ipv4_l3fwd_route_array); i++) {
ret = rte_hash_add_key (ipv4_l3fwd_lookup_struct[socketid],
(void *) &ipv4_l3fwd_route_array[i].key);
if (ret < 0) {
rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
"l3fwd hash on socket %d\n", i, socketid);
}
ipv4_l3fwd_out_if[ret] = ipv4_l3fwd_route_array[i].if_out;
printf("Hash: Adding key\n");
print_ipv4_key(ipv4_l3fwd_route_array[i].key);
}
/* populate the ipv6 hash */
for (i = 0; i < RTE_DIM(ipv6_l3fwd_route_array); i++) {
ret = rte_hash_add_key (ipv6_l3fwd_lookup_struct[socketid],
(void *) &ipv6_l3fwd_route_array[i].key);
if (ret < 0) {
rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
"l3fwd hash on socket %d\n", i, socketid);
}
ipv6_l3fwd_out_if[ret] = ipv6_l3fwd_route_array[i].if_out;
printf("Hash: Adding key\n");
print_ipv6_key(ipv6_l3fwd_route_array[i].key);
}
}
#endif
#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
static void
setup_lpm(int socketid)
{
unsigned i;
int ret;
char s[64];
/* create the LPM table */
struct rte_lpm_config lpm_ipv4_config;
lpm_ipv4_config.max_rules = IPV4_L3FWD_LPM_MAX_RULES;
lpm_ipv4_config.number_tbl8s = 256;
lpm_ipv4_config.flags = 0;
snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
ipv4_l3fwd_lookup_struct[socketid] =
rte_lpm_create(s, socketid, &lpm_ipv4_config);
if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
" on socket %d\n", socketid);
/* populate the LPM table */
for (i = 0; i < RTE_DIM(ipv4_l3fwd_route_array); i++) {
ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid],
ipv4_l3fwd_route_array[i].ip,
ipv4_l3fwd_route_array[i].depth,
ipv4_l3fwd_route_array[i].if_out);
if (ret < 0) {
rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
"l3fwd LPM table on socket %d\n",
i, socketid);
}
printf("LPM: Adding route 0x%08x / %d (%d)\n",
(unsigned)ipv4_l3fwd_route_array[i].ip,
ipv4_l3fwd_route_array[i].depth,
ipv4_l3fwd_route_array[i].if_out);
}
}
#endif
static int
init_mem(unsigned nb_mbuf)
{
struct lcore_conf *qconf;
int socketid;
unsigned lcore_id;
char s[64];
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;
if (numa_on)
socketid = rte_lcore_to_socket_id(lcore_id);
else
socketid = 0;
if (socketid >= NB_SOCKETS) {
rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is "
"out of range %d\n", socketid,
lcore_id, NB_SOCKETS);
}
if (pktmbuf_pool[socketid] == NULL) {
snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
pktmbuf_pool[socketid] =
MEMPOOL_CACHE_SIZE, 0,
RTE_MBUF_DEFAULT_BUF_SIZE,
socketid);
if (pktmbuf_pool[socketid] == NULL)
rte_exit(EXIT_FAILURE,
"Cannot init mbuf pool on socket %d\n",
socketid);
else
printf("Allocated mbuf pool on socket %d\n",
socketid);
#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
setup_lpm(socketid);
#else
setup_hash(socketid);
#endif
}
qconf = &lcore_conf[lcore_id];
qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid];
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid];
#endif
}
return 0;
}
/* Check the link status of all ports in up to 9s, and print them finally */
static void
check_all_ports_link_status(uint32_t port_mask)
{
#define CHECK_INTERVAL 100 /* 100ms */
#define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
uint8_t count, all_ports_up, print_flag = 0;
uint16_t portid;
struct rte_eth_link link;
int ret;
char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
printf("\nChecking link status");
fflush(stdout);
for (count = 0; count <= MAX_CHECK_TIME; count++) {
all_ports_up = 1;
if ((port_mask & (1 << portid)) == 0)
continue;
memset(&link, 0, sizeof(link));
ret = rte_eth_link_get_nowait(portid, &link);
if (ret < 0) {
all_ports_up = 0;
if (print_flag == 1)
printf("Port %u link get failed: %s\n",
portid, rte_strerror(-ret));
continue;
}
/* print link status if flag set */
if (print_flag == 1) {
rte_eth_link_to_str(link_status_text,
sizeof(link_status_text), &link);
printf("Port %d %s\n", portid,
link_status_text);
continue;
}
/* clear all_ports_up flag if any link down */
if (link.link_status == RTE_ETH_LINK_DOWN) {
all_ports_up = 0;
break;
}
}
/* after finally printing all link status, get out */
if (print_flag == 1)
break;
if (all_ports_up == 0) {
printf(".");
fflush(stdout);
rte_delay_ms(CHECK_INTERVAL);
}
/* set the print_flag if all ports up or timeout */
if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
print_flag = 1;
printf("done\n");
}
}
}
static int check_ptype(uint16_t portid)
{
int i, ret;
int ptype_l3_ipv4 = 0;
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
int ptype_l3_ipv6 = 0;
#endif
uint32_t ptype_mask = RTE_PTYPE_L3_MASK;
ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0);
if (ret <= 0)
return 0;
uint32_t ptypes[ret];
ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret);
for (i = 0; i < ret; ++i) {
if (ptypes[i] & RTE_PTYPE_L3_IPV4)
ptype_l3_ipv4 = 1;
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
if (ptypes[i] & RTE_PTYPE_L3_IPV6)
ptype_l3_ipv6 = 1;
#endif
}
if (ptype_l3_ipv4 == 0)
printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid);
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
if (ptype_l3_ipv6 == 0)
printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid);
#endif
#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
if (ptype_l3_ipv4)
#else /* APP_LOOKUP_EXACT_MATCH */
if (ptype_l3_ipv4 && ptype_l3_ipv6)
#endif
return 1;
return 0;
}
static int
init_power_library(void)
{
enum power_management_env env;
unsigned int lcore_id;
int ret = 0;
RTE_LCORE_FOREACH(lcore_id) {
/* init power management library */
ret = rte_power_init(lcore_id);
if (ret) {
RTE_LOG(ERR, L3FWD_POWER,
"Library initialization failed on core %u\n",
lcore_id);
return ret;
}
/* we're not supporting the VM channel mode */
if (env != PM_ENV_ACPI_CPUFREQ &&
env != PM_ENV_PSTATE_CPUFREQ &&
env != PM_ENV_AMD_PSTATE_CPUFREQ &&
env != PM_ENV_CPPC_CPUFREQ) {
RTE_LOG(ERR, L3FWD_POWER,
"Only ACPI and PSTATE mode are supported\n");
return -1;
}
}
if (cpu_resume_latency != -1) {
RTE_LCORE_FOREACH(lcore_id) {
/* Back old CPU resume latency. */
if (ret < 0) {
RTE_LOG(ERR, L3FWD_POWER,
"Failed to get cpu resume latency on lcore-%u, ret=%d.\n",
lcore_id, ret);
}
resume_latency_bk[lcore_id] = ret;
/*
* Set the cpu resume latency of the worker lcore based
* on user's request. If set strict latency (0), just
* allow the CPU to enter the shallowest idle state to
* improve performance.
*/
cpu_resume_latency);
if (ret != 0) {
RTE_LOG(ERR, L3FWD_POWER,
"Failed to set cpu resume latency on lcore-%u, ret=%d.\n",
lcore_id, ret);
return ret;
}
}
}
return ret;
}
static int
deinit_power_library(void)
{
unsigned int lcore_id, max_pkg, max_die, die, pkg;
int ret = 0;
RTE_LCORE_FOREACH(lcore_id) {
/* deinit power management library */
ret = rte_power_exit(lcore_id);
if (ret) {
RTE_LOG(ERR, L3FWD_POWER,
"Library deinitialization failed on core %u\n",
lcore_id);
return ret;
}
}
/* if uncore option was set */
if (enabled_uncore == 0) {
if (max_pkg == 0)
return -1;
for (pkg = 0; pkg < max_pkg; pkg++) {
if (max_die == 0)
return -1;
for (die = 0; die < max_die; die++) {
ret = rte_power_uncore_exit(pkg, die);
if (ret < 0) {
RTE_LOG(ERR, L3FWD_POWER, "Failed to exit uncore deinit successfully for pkg %02u die %02u\n"
, pkg, die);
return -1;
}
}
}
}
if (cpu_resume_latency != -1) {
RTE_LCORE_FOREACH(lcore_id) {
/* Restore the original value. */
resume_latency_bk[lcore_id]);
}
}
return ret;
}
static void
get_current_stat_values(uint64_t *values)
{
unsigned int lcore_id = rte_lcore_id();
struct lcore_conf *qconf;
uint64_t app_eps = 0, app_fps = 0, app_br = 0;
uint64_t count = 0;
qconf = &lcore_conf[lcore_id];
if (qconf->n_rx_queue == 0)
continue;
count++;
rte_spinlock_lock(&stats[lcore_id].telemetry_lock);
app_eps += stats[lcore_id].ep_nep[1];
app_fps += stats[lcore_id].fp_nfp[1];
app_br += stats[lcore_id].br;
rte_spinlock_unlock(&stats[lcore_id].telemetry_lock);
}
if (count > 0) {
values[0] = app_eps/count;
values[1] = app_fps/count;
values[2] = app_br/count;
} else
memset(values, 0, sizeof(uint64_t) * NUM_TELSTATS);
}
static void
update_telemetry(__rte_unused struct rte_timer *tim,
__rte_unused void *arg)
{
int ret;
uint64_t values[NUM_TELSTATS] = {0};
get_current_stat_values(values);
values, RTE_DIM(values));
if (ret < 0)
RTE_LOG(WARNING, L3FWD_POWER, "failed to update metrics\n");
}
static int
handle_app_stats(const char *cmd __rte_unused,
const char *params __rte_unused,
struct rte_tel_data *d)
{
uint64_t values[NUM_TELSTATS] = {0};
uint32_t i;
get_current_stat_values(values);
for (i = 0; i < NUM_TELSTATS; i++)
rte_tel_data_add_dict_uint(d, telstats_strings[i].name,
values[i]);
return 0;
}
static void
telemetry_setup_timer(void)
{
int lcore_id = rte_lcore_id();
uint64_t hz = rte_get_timer_hz();
uint64_t ticks;
ticks = hz / TELEMETRY_INTERVALS_PER_SEC;
rte_timer_reset_sync(&telemetry_timer,
ticks,
PERIODICAL,
lcore_id,
update_telemetry,
NULL);
}
static int
launch_timer(unsigned int lcore_id)
{
int64_t prev_tsc = 0, cur_tsc, diff_tsc, cycles_10ms;
RTE_SET_USED(lcore_id);
if (rte_get_main_lcore() != lcore_id) {
rte_panic("timer on lcore:%d which is not main core:%d\n",
lcore_id,
}
RTE_LOG(INFO, L3FWD_POWER, "Bring up the Timer\n");
telemetry_setup_timer();
cycles_10ms = rte_get_timer_hz() / 100;
while (!is_done()) {
cur_tsc = rte_rdtsc();
diff_tsc = cur_tsc - prev_tsc;
if (diff_tsc > cycles_10ms) {
prev_tsc = cur_tsc;
cycles_10ms = rte_get_timer_hz() / 100;
}
}
RTE_LOG(INFO, L3FWD_POWER, "Timer_subsystem is done\n");
return 0;
}
static int
autodetect_mode(void)
{
RTE_LOG(NOTICE, L3FWD_POWER, "Operating mode not specified, probing frequency scaling support...\n");
/*
* Empty poll and telemetry modes have to be specifically requested to
* be enabled, but we can auto-detect between interrupt mode with or
* without frequency scaling. Any of ACPI, pstate and CPPC can be used.
*/
if (rte_power_check_env_supported(PM_ENV_ACPI_CPUFREQ))
return APP_MODE_LEGACY;
if (rte_power_check_env_supported(PM_ENV_PSTATE_CPUFREQ))
return APP_MODE_LEGACY;
if (rte_power_check_env_supported(PM_ENV_AMD_PSTATE_CPUFREQ))
return APP_MODE_LEGACY;
if (rte_power_check_env_supported(PM_ENV_CPPC_CPUFREQ))
return APP_MODE_LEGACY;
RTE_LOG(NOTICE, L3FWD_POWER, "Frequency scaling not supported, selecting interrupt-only mode\n");
return APP_MODE_INTERRUPT;
}
static const char *
mode_to_str(enum appmode mode)
{
switch (mode) {
case APP_MODE_LEGACY:
return "legacy";
case APP_MODE_TELEMETRY:
return "telemetry";
case APP_MODE_INTERRUPT:
return "interrupt-only";
case APP_MODE_PMD_MGMT:
return "pmd mgmt";
default:
return "invalid";
}
}
static uint32_t
eth_dev_get_overhead_len(uint32_t max_rx_pktlen, uint16_t max_mtu)
{
uint32_t overhead_len;
if (max_mtu != UINT16_MAX && max_rx_pktlen > max_mtu)
overhead_len = max_rx_pktlen - max_mtu;
else
return overhead_len;
}
static int
config_port_max_pkt_len(struct rte_eth_conf *conf,
struct rte_eth_dev_info *dev_info)
{
uint32_t overhead_len;
if (max_pkt_len == 0)
return 0;
if (max_pkt_len < RTE_ETHER_MIN_LEN || max_pkt_len > MAX_JUMBO_PKT_LEN)
return -1;
overhead_len = eth_dev_get_overhead_len(dev_info->max_rx_pktlen,
dev_info->max_mtu);
conf->rxmode.mtu = max_pkt_len - overhead_len;
if (conf->rxmode.mtu > RTE_ETHER_MTU)
return 0;
}
/* Power library initialized in the main routine. 8< */
int
main(int argc, char **argv)
{
struct lcore_conf *qconf;
struct rte_eth_dev_info dev_info;
struct rte_eth_txconf *txconf;
int ret;
uint16_t nb_ports;
uint16_t queueid;
unsigned lcore_id;
uint64_t hz;
uint32_t n_tx_queue, nb_lcores;
uint32_t dev_rxq_num, dev_txq_num;
uint8_t socketid;
uint16_t portid, nb_rx_queue, queue;
const char *ptr_strings[NUM_TELSTATS];
/* init EAL */
ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
argc -= ret;
argv += ret;
/* catch SIGINT and restore cpufreq governor to ondemand */
signal(SIGINT, signal_exit_now);
/* init RTE timer library to be used late */
/* if we're running pmd-mgmt mode, don't default to baseline mode */
baseline_enabled = false;
/* parse application arguments (after the EAL ones) */
ret = parse_args(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n");
if (app_mode == APP_MODE_DEFAULT)
app_mode = autodetect_mode();
RTE_LOG(INFO, L3FWD_POWER, "Selected operation mode: %s\n",
mode_to_str(app_mode));
/* only legacy mode relies on power library */
if ((app_mode == APP_MODE_LEGACY) && init_power_library())
rte_exit(EXIT_FAILURE, "init_power_library failed\n");
if (update_lcore_params() < 0)
rte_exit(EXIT_FAILURE, "update_lcore_params failed\n");
if (check_lcore_params() < 0)
rte_exit(EXIT_FAILURE, "check_lcore_params failed\n");
ret = init_lcore_rx_queues();
if (ret < 0)
rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
if (check_port_config() < 0)
rte_exit(EXIT_FAILURE, "check_port_config failed\n");
nb_lcores = rte_lcore_count();
/* initialize all ports */
struct rte_eth_conf local_port_conf = port_conf;
/* not all app modes need interrupts */
bool need_intr = app_mode == APP_MODE_LEGACY ||
app_mode == APP_MODE_INTERRUPT;
/* skip ports that are not enabled */
if ((enabled_port_mask & (1 << portid)) == 0) {
printf("\nSkipping disabled port %d\n", portid);
continue;
}
/* init port */
printf("Initializing port %d ... ", portid );
fflush(stdout);
ret = rte_eth_dev_info_get(portid, &dev_info);
if (ret != 0)
rte_exit(EXIT_FAILURE,
"Error during getting device (port %u) info: %s\n",
portid, strerror(-ret));
dev_rxq_num = dev_info.max_rx_queues;
dev_txq_num = dev_info.max_tx_queues;
nb_rx_queue = get_port_n_rx_queues(portid);
if (nb_rx_queue > dev_rxq_num)
rte_exit(EXIT_FAILURE,
"Cannot configure not existed rxq: "
"port=%d\n", portid);
n_tx_queue = nb_lcores;
if (n_tx_queue > dev_txq_num)
n_tx_queue = dev_txq_num;
printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
nb_rx_queue, (unsigned)n_tx_queue );
/* If number of Rx queue is 0, no need to enable Rx interrupt */
if (nb_rx_queue == 0)
need_intr = false;
if (need_intr)
local_port_conf.intr_conf.rxq = 1;
ret = rte_eth_dev_info_get(portid, &dev_info);
if (ret != 0)
rte_exit(EXIT_FAILURE,
"Error during getting device (port %u) info: %s\n",
portid, strerror(-ret));
ret = config_port_max_pkt_len(&local_port_conf, &dev_info);
if (ret != 0)
rte_exit(EXIT_FAILURE,
"Invalid max packet length: %u (port %u)\n",
max_pkt_len, portid);
local_port_conf.txmode.offloads |=
local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
printf("Port %u modified RSS hash function based on hardware support,"
"requested:%#"PRIx64" configured:%#"PRIx64"\n",
portid,
local_port_conf.rx_adv_conf.rss_conf.rss_hf);
}
if (local_port_conf.rx_adv_conf.rss_conf.rss_hf == 0)
local_port_conf.rxmode.mq_mode = RTE_ETH_MQ_RX_NONE;
local_port_conf.rxmode.offloads &= dev_info.rx_offload_capa;
port_conf.rxmode.offloads = local_port_conf.rxmode.offloads;
ret = rte_eth_dev_configure(portid, nb_rx_queue,
(uint16_t)n_tx_queue, &local_port_conf);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Cannot configure device: "
"err=%d, port=%d\n", ret, portid);
ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
&nb_txd);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Cannot adjust number of descriptors: err=%d, port=%d\n",
ret, portid);
ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Cannot get MAC address: err=%d, port=%d\n",
ret, portid);
print_ethaddr(" Address:", &ports_eth_addr[portid]);
printf(", ");
/* init memory */
ret = init_mem(NB_MBUF);
if (ret < 0)
rte_exit(EXIT_FAILURE, "init_mem failed\n");
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;
/* Initialize TX buffers */
qconf = &lcore_conf[lcore_id];
qconf->tx_buffer[portid] = rte_zmalloc_socket("tx_buffer",
RTE_ETH_TX_BUFFER_SIZE(MAX_PKT_BURST), 0,
if (qconf->tx_buffer[portid] == NULL)
rte_exit(EXIT_FAILURE, "Can't allocate tx buffer for port %u\n",
portid);
rte_eth_tx_buffer_init(qconf->tx_buffer[portid], MAX_PKT_BURST);
}
/* init one TX queue per couple (lcore,port) */
queueid = 0;
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;
if (queueid >= dev_txq_num)
continue;
if (numa_on)
socketid = \
(uint8_t)rte_lcore_to_socket_id(lcore_id);
else
socketid = 0;
printf("txq=%u,%d,%d ", lcore_id, queueid, socketid);
fflush(stdout);
txconf = &dev_info.default_txconf;
txconf->offloads = local_port_conf.txmode.offloads;
ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
socketid, txconf);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"rte_eth_tx_queue_setup: err=%d, "
"port=%d\n", ret, portid);
qconf = &lcore_conf[lcore_id];
qconf->tx_queue_id[portid] = queueid;
queueid++;
qconf->tx_port_id[qconf->n_tx_port] = portid;
qconf->n_tx_port++;
}
printf("\n");
}
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;
if (app_mode == APP_MODE_LEGACY) {
/* init timer structures for each enabled lcore */
rte_timer_init(&power_timers[lcore_id]);
rte_timer_reset(&power_timers[lcore_id],
hz/TIMER_NUMBER_PER_SECOND,
SINGLE, lcore_id,
power_timer_cb, NULL);
}
qconf = &lcore_conf[lcore_id];
printf("\nInitializing rx queues on lcore %u ... ", lcore_id );
fflush(stdout);
/* init RX queues */
for(queue = 0; queue < qconf->n_rx_queue; ++queue) {
struct rte_eth_rxconf rxq_conf;
portid = qconf->rx_queue_list[queue].port_id;
queueid = qconf->rx_queue_list[queue].queue_id;
if (numa_on)
socketid = \
(uint8_t)rte_lcore_to_socket_id(lcore_id);
else
socketid = 0;
printf("rxq=%d,%d,%d ", portid, queueid, socketid);
fflush(stdout);
ret = rte_eth_dev_info_get(portid, &dev_info);
if (ret != 0)
rte_exit(EXIT_FAILURE,
"Error during getting device (port %u) info: %s\n",
portid, strerror(-ret));
rxq_conf = dev_info.default_rxconf;
rxq_conf.offloads = port_conf.rxmode.offloads;
ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
socketid, &rxq_conf,
pktmbuf_pool[socketid]);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"rte_eth_rx_queue_setup: err=%d, "
"port=%d\n", ret, portid);
if (parse_ptype) {
if (add_cb_parse_ptype(portid, queueid) < 0)
rte_exit(EXIT_FAILURE,
"Fail to add ptype cb\n");
}
if (app_mode == APP_MODE_PMD_MGMT && !baseline_enabled) {
/* Set power_pmd_mgmt configs passed by user */
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Error setting pause_duration: err=%d, lcore=%d\n",
ret, lcore_id);
scale_freq_min);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Error setting scaling freq min: err=%d, lcore=%d\n",
ret, lcore_id);
scale_freq_max);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Error setting scaling freq max: err=%d, lcore %d\n",
ret, lcore_id);
lcore_id, portid, queueid,
pmgmt_type);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"rte_power_ethdev_pmgmt_queue_enable: err=%d, port=%d\n",
ret, portid);
}
}
}
/* >8 End of power library initialization. */
printf("\n");
/* start ports */
if ((enabled_port_mask & (1 << portid)) == 0) {
continue;
}
/* Start device */
ret = rte_eth_dev_start(portid);
if (ret < 0)
rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, "
"port=%d\n", ret, portid);
/*
* If enabled, put device in promiscuous mode.
* This allows IO forwarding mode to forward packets
* to itself through 2 cross-connected ports of the
* target machine.
*/
if (promiscuous_on) {
if (ret != 0)
rte_exit(EXIT_FAILURE,
"rte_eth_promiscuous_enable: err=%s, port=%u\n",
rte_strerror(-ret), portid);
}
/* initialize spinlock for each port */
rte_spinlock_init(&(locks[portid]));
if (!parse_ptype)
if (!check_ptype(portid))
rte_exit(EXIT_FAILURE,
"PMD can not provide needed ptypes\n");
}
check_all_ports_link_status(enabled_port_mask);
/* launch per-lcore init on every lcore */
if (app_mode == APP_MODE_LEGACY) {
rte_eal_mp_remote_launch(main_legacy_loop, NULL, CALL_MAIN);
} else if (app_mode == APP_MODE_TELEMETRY) {
unsigned int i;
/* Init metrics library */
for (i = 0; i < NUM_TELSTATS; i++)
ptr_strings[i] = telstats_strings[i].name;
ret = rte_metrics_reg_names(ptr_strings, NUM_TELSTATS);
if (ret >= 0)
telstats_index = ret;
else
rte_exit(EXIT_FAILURE, "failed to register metrics names");
rte_spinlock_init(&stats[lcore_id].telemetry_lock);
}
rte_timer_init(&telemetry_timer);
rte_telemetry_register_cmd("/l3fwd-power/stats",
handle_app_stats,
"Returns global power stats. Parameters: None");
rte_eal_mp_remote_launch(main_telemetry_loop, NULL,
} else if (app_mode == APP_MODE_INTERRUPT) {
rte_eal_mp_remote_launch(main_intr_loop, NULL, CALL_MAIN);
} else if (app_mode == APP_MODE_PMD_MGMT) {
/* reuse telemetry loop for PMD power management mode */
rte_eal_mp_remote_launch(main_telemetry_loop, NULL, CALL_MAIN);
}
if (app_mode == APP_MODE_TELEMETRY)
launch_timer(rte_lcore_id());
if (rte_eal_wait_lcore(lcore_id) < 0)
return -1;
}
if (app_mode == APP_MODE_PMD_MGMT) {
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;
qconf = &lcore_conf[lcore_id];
for (queue = 0; queue < qconf->n_rx_queue; ++queue) {
portid = qconf->rx_queue_list[queue].port_id;
queueid = qconf->rx_queue_list[queue].queue_id;
portid, queueid);
}
}
}
{
if ((enabled_port_mask & (1 << portid)) == 0)
continue;
ret = rte_eth_dev_stop(portid);
if (ret != 0)
RTE_LOG(ERR, L3FWD_POWER, "rte_eth_dev_stop: err=%d, port=%u\n",
ret, portid);
}
if ((app_mode == APP_MODE_LEGACY) && deinit_power_library())
rte_exit(EXIT_FAILURE, "deinit_power_library failed\n");
if (rte_eal_cleanup() < 0)
RTE_LOG(ERR, L3FWD_POWER, "EAL cleanup failed\n");
return 0;
}
#define likely(x)
#define unlikely(x)
static uint16_t rte_be_to_cpu_16(rte_be16_t x)
static uint32_t rte_be_to_cpu_32(rte_be32_t x)
static rte_be16_t rte_cpu_to_be_16(uint16_t x)
#define __rte_packed
Definition: rte_common.h:108
#define RTE_LEN2MASK(ln, tp)
Definition: rte_common.h:789
#define RTE_SET_USED(x)
Definition: rte_common.h:187
__rte_noreturn void rte_exit(int exit_code, const char *format,...) __rte_format_printf(2
#define RTE_DIM(a)
Definition: rte_common.h:793
#define __rte_cache_aligned
Definition: rte_common.h:627
#define __rte_unused
Definition: rte_common.h:171
static uint64_t rte_get_timer_hz(void)
Definition: rte_cycles.h:119
void(* rte_delay_us)(unsigned int us)
uint64_t rte_get_tsc_hz(void)
static void rte_delay_ms(unsigned ms)
Definition: rte_cycles.h:151
#define rte_panic(...)
Definition: rte_debug.h:43
int rte_eal_init(int argc, char **argv)
int rte_eal_cleanup(void)
#define RTE_EPOLL_PER_THREAD
Definition: rte_epoll.h:48
int rte_epoll_wait(int epfd, struct rte_epoll_event *events, int maxevents, int timeout)
const char * rte_strerror(int errnum)
static __rte_always_inline uint16_t rte_eth_tx_buffer(uint16_t port_id, uint16_t queue_id, struct rte_eth_dev_tx_buffer *buffer, struct rte_mbuf *tx_pkt)
Definition: rte_ethdev.h:6853
int rte_eth_dev_configure(uint16_t port_id, uint16_t nb_rx_queue, uint16_t nb_tx_queue, const struct rte_eth_conf *eth_conf)
int rte_eth_dev_rx_intr_ctl_q(uint16_t port_id, uint16_t queue_id, int epfd, int op, void *data)
int rte_eth_dev_is_valid_port(uint16_t port_id)
#define RTE_ETH_LINK_DOWN
Definition: rte_ethdev.h:353
int rte_eth_rx_queue_setup(uint16_t port_id, uint16_t rx_queue_id, uint16_t nb_rx_desc, unsigned int socket_id, const struct rte_eth_rxconf *rx_conf, struct rte_mempool *mb_pool)
static uint16_t rte_eth_rx_burst(uint16_t port_id, uint16_t queue_id, struct rte_mbuf **rx_pkts, const uint16_t nb_pkts)
Definition: rte_ethdev.h:6262
#define RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE
Definition: rte_ethdev.h:1618
const struct rte_eth_rxtx_callback * rte_eth_add_rx_callback(uint16_t port_id, uint16_t queue_id, rte_rx_callback_fn fn, void *user_param)
int rte_eth_dev_info_get(uint16_t port_id, struct rte_eth_dev_info *dev_info) __rte_warn_unused_result
@ RTE_ETH_MQ_TX_NONE
Definition: rte_ethdev.h:418
@ RTE_ETH_MQ_RX_NONE
Definition: rte_ethdev.h:393
@ RTE_ETH_MQ_RX_RSS
Definition: rte_ethdev.h:396
int rte_eth_link_get_nowait(uint16_t port_id, struct rte_eth_link *link) __rte_warn_unused_result
int rte_eth_promiscuous_enable(uint16_t port_id)
__rte_experimental int rte_eth_link_to_str(char *str, size_t len, const struct rte_eth_link *eth_link)
int rte_eth_dev_stop(uint16_t port_id)
int rte_eth_tx_queue_setup(uint16_t port_id, uint16_t tx_queue_id, uint16_t nb_tx_desc, unsigned int socket_id, const struct rte_eth_txconf *tx_conf)
#define RTE_ETH_LINK_MAX_STR_LEN
Definition: rte_ethdev.h:357
int rte_eth_dev_rx_intr_disable(uint16_t port_id, uint16_t queue_id)
int rte_eth_dev_rx_intr_enable(uint16_t port_id, uint16_t queue_id)
int rte_eth_macaddr_get(uint16_t port_id, struct rte_ether_addr *mac_addr)
int rte_eth_dev_get_supported_ptypes(uint16_t port_id, uint32_t ptype_mask, uint32_t *ptypes, int num) __rte_warn_unused_result
uint16_t rte_eth_dev_count_avail(void)
int rte_eth_dev_close(uint16_t port_id)
int rte_eth_tx_buffer_init(struct rte_eth_dev_tx_buffer *buffer, uint16_t size)
static uint16_t rte_eth_tx_buffer_flush(uint16_t port_id, uint16_t queue_id, struct rte_eth_dev_tx_buffer *buffer)
Definition: rte_ethdev.h:6800
int rte_eth_dev_socket_id(uint16_t port_id)
int rte_eth_dev_adjust_nb_rx_tx_desc(uint16_t port_id, uint16_t *nb_rx_desc, uint16_t *nb_tx_desc)
#define RTE_ETH_FOREACH_DEV(p)
Definition: rte_ethdev.h:2177
#define RTE_ETH_XSTATS_NAME_SIZE
Definition: rte_ethdev.h:1932
#define RTE_ETH_TX_OFFLOAD_MULTI_SEGS
Definition: rte_ethdev.h:1612
static int rte_eth_rx_queue_count(uint16_t port_id, uint16_t queue_id)
Definition: rte_ethdev.h:6338
int rte_eth_dev_start(uint16_t port_id)
#define RTE_ETH_TX_BUFFER_SIZE(sz)
Definition: rte_ethdev.h:3851
#define RTE_ETHER_TYPE_IPV4
Definition: rte_ether.h:329
#define RTE_ETHER_MTU
Definition: rte_ether.h:35
#define RTE_ETHER_HDR_LEN
Definition: rte_ether.h:30
#define RTE_ETHER_CRC_LEN
Definition: rte_ether.h:29
#define RTE_ETHER_TYPE_IPV6
Definition: rte_ether.h:330
void rte_ether_format_addr(char *buf, uint16_t size, const struct rte_ether_addr *eth_addr)
static void rte_ether_addr_copy(const struct rte_ether_addr *__restrict ea_from, struct rte_ether_addr *__restrict ea_to)
Definition: rte_ether.h:239
int32_t rte_hash_add_key(const struct rte_hash *h, const void *key)
int32_t rte_hash_lookup(const struct rte_hash *h, const void *key)
struct rte_hash * rte_hash_create(const struct rte_hash_parameters *params)
static uint16_t rte_ipv4_cksum(const struct rte_ipv4_hdr *ipv4_hdr)
Definition: rte_ip4.h:161
#define RTE_IPV4(a, b, c, d)
Definition: rte_ip4.h:68
@ CALL_MAIN
Definition: rte_launch.h:75
@ SKIP_MAIN
Definition: rte_launch.h:74
int rte_eal_mp_remote_launch(lcore_function_t *f, void *arg, enum rte_rmt_call_main_t call_main)
int rte_eal_wait_lcore(unsigned worker_id)
unsigned int rte_lcore_to_socket_id(unsigned int lcore_id)
#define RTE_LCORE_FOREACH(i)
Definition: rte_lcore.h:217
unsigned int rte_lcore_count(void)
int rte_lcore_is_enabled(unsigned int lcore_id)
unsigned int rte_get_main_lcore(void)
unsigned int rte_socket_id(void)
#define RTE_LCORE_FOREACH_WORKER(i)
Definition: rte_lcore.h:225
static unsigned rte_lcore_id(void)
Definition: rte_lcore.h:78
#define RTE_LOG(l, t,...)
Definition: rte_log.h:332
#define RTE_LOG_REGISTER(type, name, level)
Definition: rte_log.h:501
int rte_lpm_add(struct rte_lpm *lpm, uint32_t ip, uint8_t depth, uint32_t next_hop)
struct rte_lpm * rte_lpm_create(const char *name, int socket_id, const struct rte_lpm_config *config)
static int rte_lpm_lookup(const struct rte_lpm *lpm, uint32_t ip, uint32_t *next_hop)
Definition: rte_lpm.h:279
void * rte_zmalloc_socket(const char *type, size_t size, unsigned align, int socket) __rte_alloc_size(2) __rte_alloc_align(3) __rte_malloc __rte_dealloc_free
static void rte_pktmbuf_free(struct rte_mbuf *m)
Definition: rte_mbuf.h:1415
struct rte_mempool * rte_pktmbuf_pool_create(const char *name, unsigned n, unsigned cache_size, uint16_t priv_size, uint16_t data_room_size, int socket_id)
#define rte_pktmbuf_mtod(m, t)
#define rte_pktmbuf_mtod_offset(m, t, o)
#define RTE_PTYPE_L3_IPV6_EXT_UNKNOWN
#define RTE_PTYPE_L3_IPV6
#define RTE_ETH_IS_IPV6_HDR(ptype)
#define RTE_PTYPE_L3_IPV4_EXT_UNKNOWN
#define RTE_ETH_IS_IPV4_HDR(ptype)
#define RTE_PTYPE_L3_MASK
#define RTE_PTYPE_UNKNOWN
#define RTE_PTYPE_L3_IPV4
#define RTE_METRICS_GLOBAL
Definition: rte_metrics.h:46
int rte_metrics_reg_names(const char *const *names, uint16_t cnt_names)
int rte_metrics_init(int socket_id)
int rte_metrics_update_values(int port_id, uint16_t key, const uint64_t *values, uint32_t count)
int rte_power_freq_down(unsigned int lcore_id)
int rte_power_freq_max(unsigned int lcore_id)
int rte_power_check_env_supported(enum power_management_env env)
int rte_power_init(unsigned int lcore_id)
int rte_power_freq_up(unsigned int lcore_id)
enum power_management_env rte_power_get_env(void)
int rte_power_exit(unsigned int lcore_id)
int rte_power_pmd_mgmt_set_pause_duration(unsigned int duration)
int rte_power_ethdev_pmgmt_queue_enable(unsigned int lcore_id, uint16_t port_id, uint16_t queue_id, enum rte_power_pmd_mgmt_type mode)
rte_power_pmd_mgmt_type
@ RTE_POWER_MGMT_TYPE_MONITOR
@ RTE_POWER_MGMT_TYPE_PAUSE
@ RTE_POWER_MGMT_TYPE_SCALE
int rte_power_pmd_mgmt_set_scaling_freq_max(unsigned int lcore, unsigned int max)
void rte_power_pmd_mgmt_set_emptypoll_max(unsigned int max)
int rte_power_pmd_mgmt_set_scaling_freq_min(unsigned int lcore, unsigned int min)
int rte_power_ethdev_pmgmt_queue_disable(unsigned int lcore_id, uint16_t port_id, uint16_t queue_id)
__rte_experimental int rte_power_qos_get_cpu_resume_latency(uint16_t lcore_id)
__rte_experimental int rte_power_qos_set_cpu_resume_latency(uint16_t lcore_id, int latency)
unsigned int rte_power_uncore_get_num_dies(unsigned int pkg)
__rte_experimental int rte_power_set_uncore_env(enum rte_uncore_power_mgmt_env env)
int rte_power_uncore_freq_max(unsigned int pkg, unsigned int die)
int rte_power_uncore_init(unsigned int pkg, unsigned int die)
int rte_power_uncore_exit(unsigned int pkg, unsigned int die)
unsigned int rte_power_uncore_get_num_pkgs(void)
int rte_power_uncore_freq_min(unsigned int pkg, unsigned int die)
int rte_power_set_uncore_freq(unsigned int pkg, unsigned int die, uint32_t index)
int rte_power_uncore_get_num_freqs(unsigned int pkg, unsigned int die)
static void rte_prefetch0(const volatile void *p)
static void rte_spinlock_unlock(rte_spinlock_t *sl)
static void rte_spinlock_lock(rte_spinlock_t *sl)
static void rte_spinlock_init(rte_spinlock_t *sl)
Definition: rte_spinlock.h:51
int rte_strsplit(char *string, int stringlen, char **tokens, int maxtokens, char delim)
int rte_telemetry_register_cmd(const char *cmd, telemetry_cb fn, const char *help)
int rte_tel_data_add_dict_uint(struct rte_tel_data *d, const char *name, uint64_t val)
int rte_tel_data_start_dict(struct rte_tel_data *d)
void rte_timer_reset_sync(struct rte_timer *tim, uint64_t ticks, enum rte_timer_type type, unsigned tim_lcore, rte_timer_cb_t fct, void *arg)
void rte_timer_init(struct rte_timer *tim)
int rte_timer_reset(struct rte_timer *tim, uint64_t ticks, enum rte_timer_type type, unsigned tim_lcore, rte_timer_cb_t fct, void *arg)
int rte_timer_manage(void)
int rte_timer_subsystem_init(void)
uint32_t status
Definition: rte_epoll.h:42
struct rte_eth_intr_conf intr_conf
Definition: rte_ethdev.h:1546
struct rte_eth_txmode txmode
Definition: rte_ethdev.h:1520
struct rte_eth_rxmode rxmode
Definition: rte_ethdev.h:1519
struct rte_eth_rss_conf rss_conf
Definition: rte_ethdev.h:1527
struct rte_eth_conf::@149 rx_adv_conf
uint16_t max_rx_queues
Definition: rte_ethdev.h:1793
uint16_t max_tx_queues
Definition: rte_ethdev.h:1794
struct rte_eth_txconf default_txconf
Definition: rte_ethdev.h:1816
struct rte_eth_rxconf default_rxconf
Definition: rte_ethdev.h:1815
uint32_t max_rx_pktlen
Definition: rte_ethdev.h:1790
uint16_t max_mtu
Definition: rte_ethdev.h:1779
uint64_t flow_type_rss_offloads
Definition: rte_ethdev.h:1814
uint64_t tx_offload_capa
Definition: rte_ethdev.h:1804
uint64_t rx_offload_capa
Definition: rte_ethdev.h:1802
uint64_t rss_hf
Definition: rte_ethdev.h:513
uint64_t offloads
Definition: rte_ethdev.h:1144
uint32_t mtu
Definition: rte_ethdev.h:430
uint64_t offloads
Definition: rte_ethdev.h:438
enum rte_eth_rx_mq_mode mq_mode
Definition: rte_ethdev.h:429
uint64_t offloads
Definition: rte_ethdev.h:1195
uint64_t offloads
Definition: rte_ethdev.h:1017
rte_be16_t ether_type
Definition: rte_ether.h:303
struct rte_ether_addr src_addr
Definition: rte_ether.h:302
struct rte_ether_addr dst_addr
Definition: rte_ether.h:301
const char * name
Definition: rte_hash.h:82
uint32_t max_rules
Definition: rte_lpm.h:114
uint32_t pkt_len
uint32_t packet_type
rte_be16_t dst_port
Definition: rte_tcp.h:26
rte_be16_t src_port
Definition: rte_tcp.h:25
void * arg
Definition: rte_timer.h:105
rte_be16_t dst_port
Definition: rte_udp.h:26
rte_be16_t src_port
Definition: rte_udp.h:25