DPDK 24.11.1
examples/ipsec-secgw/esp.c
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2016-2017 Intel Corporation
*/
#include <stdint.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <fcntl.h>
#include <unistd.h>
#include <rte_common.h>
#include <rte_crypto.h>
#include <rte_cryptodev.h>
#include <rte_random.h>
#include "ipsec.h"
#include "esp.h"
#include "ipip.h"
int
esp_inbound(struct rte_mbuf *m, struct ipsec_sa *sa,
struct rte_crypto_op *cop)
{
struct ip *ip4;
struct rte_crypto_sym_op *sym_cop;
int32_t payload_len, ip_hdr_len;
RTE_ASSERT(sa != NULL);
if (ipsec_get_action_type(sa) ==
return 0;
RTE_ASSERT(m != NULL);
RTE_ASSERT(cop != NULL);
ip4 = rte_pktmbuf_mtod(m, struct ip *);
if (likely(ip4->ip_v == IPVERSION))
ip_hdr_len = ip4->ip_hl * 4;
else if (ip4->ip_v == IP6_VERSION)
/* XXX No option headers supported */
ip_hdr_len = sizeof(struct ip6_hdr);
else {
RTE_LOG(ERR, IPSEC_ESP, "invalid IP packet type %d\n",
ip4->ip_v);
return -EINVAL;
}
payload_len = rte_pktmbuf_pkt_len(m) - ip_hdr_len -
sizeof(struct rte_esp_hdr) - sa->iv_len - sa->digest_len;
if ((payload_len & (sa->block_size - 1)) || (payload_len <= 0)) {
RTE_LOG_DP(DEBUG, IPSEC_ESP, "payload %d not multiple of %u\n",
payload_len, sa->block_size);
return -EINVAL;
}
sym_cop = get_sym_cop(cop);
sym_cop->m_src = m;
if (sa->aead_algo == RTE_CRYPTO_AEAD_AES_GCM) {
sym_cop->aead.data.offset =
ip_hdr_len + sizeof(struct rte_esp_hdr) + sa->iv_len;
sym_cop->aead.data.length = payload_len;
struct cnt_blk *icb;
uint8_t *aad;
uint8_t *iv = RTE_PTR_ADD(ip4, ip_hdr_len +
sizeof(struct rte_esp_hdr));
icb = get_cnt_blk(m);
icb->salt = sa->salt;
memcpy(&icb->iv, iv, 8);
icb->cnt = rte_cpu_to_be_32(1);
aad = get_aad(m);
memcpy(aad, iv - sizeof(struct rte_esp_hdr), 8);
sym_cop->aead.aad.data = aad;
aad - rte_pktmbuf_mtod(m, uint8_t *));
sym_cop->aead.digest.data = rte_pktmbuf_mtod_offset(m, void*,
rte_pktmbuf_pkt_len(m) - sa->digest_len);
rte_pktmbuf_pkt_len(m) - sa->digest_len);
} else {
sym_cop->cipher.data.offset = ip_hdr_len +
sizeof(struct rte_esp_hdr) +
sa->iv_len;
sym_cop->cipher.data.length = payload_len;
struct cnt_blk *icb;
uint8_t *iv = RTE_PTR_ADD(ip4, ip_hdr_len +
sizeof(struct rte_esp_hdr));
uint8_t *iv_ptr = rte_crypto_op_ctod_offset(cop,
uint8_t *, IV_OFFSET);
switch (sa->cipher_algo) {
/* Copy IV at the end of crypto operation */
rte_memcpy(iv_ptr, iv, sa->iv_len);
break;
icb = get_cnt_blk(m);
icb->salt = sa->salt;
memcpy(&icb->iv, iv, 8);
icb->cnt = rte_cpu_to_be_32(1);
break;
default:
RTE_LOG(ERR, IPSEC_ESP, "unsupported cipher algorithm %u\n",
sa->cipher_algo);
return -EINVAL;
}
switch (sa->auth_algo) {
sym_cop->auth.data.offset = ip_hdr_len;
sym_cop->auth.data.length = sizeof(struct rte_esp_hdr) +
sa->iv_len + payload_len;
break;
default:
RTE_LOG(ERR, IPSEC_ESP, "unsupported auth algorithm %u\n",
sa->auth_algo);
return -EINVAL;
}
sym_cop->auth.digest.data = rte_pktmbuf_mtod_offset(m, void*,
rte_pktmbuf_pkt_len(m) - sa->digest_len);
rte_pktmbuf_pkt_len(m) - sa->digest_len);
}
return 0;
}
int
esp_inbound_post(struct rte_mbuf *m, struct ipsec_sa *sa,
struct rte_crypto_op *cop)
{
struct ip *ip4, *ip;
struct ip6_hdr *ip6;
uint8_t *nexthdr, *pad_len;
uint8_t *padding;
uint16_t i;
struct rte_ipsec_session *ips;
RTE_ASSERT(m != NULL);
RTE_ASSERT(sa != NULL);
RTE_ASSERT(cop != NULL);
ips = ipsec_get_primary_session(sa);
else
} else
}
RTE_LOG(ERR, IPSEC_ESP, "%s() failed crypto op\n", __func__);
return -1;
}
ips->security.ol_flags & RTE_SECURITY_RX_HW_TRAILER_OFFLOAD) {
nexthdr = &m->inner_esp_next_proto;
} else {
nexthdr = rte_pktmbuf_mtod_offset(m, uint8_t*,
rte_pktmbuf_pkt_len(m) - sa->digest_len - 1);
pad_len = nexthdr - 1;
padding = pad_len - *pad_len;
for (i = 0; i < *pad_len; i++) {
if (padding[i] != i + 1) {
RTE_LOG(ERR, IPSEC_ESP, "invalid padding\n");
return -EINVAL;
}
}
if (rte_pktmbuf_trim(m, *pad_len + 2 + sa->digest_len)) {
RTE_LOG(ERR, IPSEC_ESP,
"failed to remove pad_len + digest\n");
return -EINVAL;
}
}
if (unlikely(IS_TRANSPORT(sa->flags))) {
ip = rte_pktmbuf_mtod(m, struct ip *);
ip4 = (struct ip *)rte_pktmbuf_adj(m,
sizeof(struct rte_esp_hdr) + sa->iv_len);
if (likely(ip->ip_v == IPVERSION)) {
memmove(ip4, ip, ip->ip_hl * 4);
ip4->ip_p = *nexthdr;
ip4->ip_len = htons(rte_pktmbuf_data_len(m));
} else {
ip6 = (struct ip6_hdr *)ip4;
/* XXX No option headers supported */
memmove(ip6, ip, sizeof(struct ip6_hdr));
ip6->ip6_nxt = *nexthdr;
ip6->ip6_plen = htons(rte_pktmbuf_data_len(m) -
sizeof(struct ip6_hdr));
}
} else
ipip_inbound(m, sizeof(struct rte_esp_hdr) + sa->iv_len);
return 0;
}
int
esp_outbound(struct rte_mbuf *m, struct ipsec_sa *sa,
struct rte_crypto_op *cop)
{
struct ip *ip4;
struct ip6_hdr *ip6;
struct rte_esp_hdr *esp = NULL;
uint8_t *padding = NULL, *new_ip, nlp;
struct rte_crypto_sym_op *sym_cop;
int32_t i;
uint16_t pad_payload_len, pad_len, ip_hdr_len;
struct rte_ipsec_session *ips;
RTE_ASSERT(m != NULL);
RTE_ASSERT(sa != NULL);
ips = ipsec_get_primary_session(sa);
ip_hdr_len = 0;
ip4 = rte_pktmbuf_mtod(m, struct ip *);
if (likely(ip4->ip_v == IPVERSION)) {
if (unlikely(IS_TRANSPORT(sa->flags))) {
ip_hdr_len = ip4->ip_hl * 4;
nlp = ip4->ip_p;
} else
nlp = IPPROTO_IPIP;
} else if (ip4->ip_v == IP6_VERSION) {
if (unlikely(IS_TRANSPORT(sa->flags))) {
/* XXX No option headers supported */
ip_hdr_len = sizeof(struct ip6_hdr);
ip6 = (struct ip6_hdr *)ip4;
nlp = ip6->ip6_nxt;
} else
nlp = IPPROTO_IPV6;
} else {
RTE_LOG(ERR, IPSEC_ESP, "invalid IP packet type %d\n",
ip4->ip_v);
return -EINVAL;
}
/* Padded payload length */
pad_payload_len = RTE_ALIGN_CEIL(rte_pktmbuf_pkt_len(m) -
ip_hdr_len + 2, sa->block_size);
pad_len = pad_payload_len + ip_hdr_len - rte_pktmbuf_pkt_len(m);
RTE_ASSERT(IS_TUNNEL(sa->flags) || IS_TRANSPORT(sa->flags));
if (likely(IS_IP4_TUNNEL(sa->flags)))
ip_hdr_len = sizeof(struct ip);
else if (IS_IP6_TUNNEL(sa->flags))
ip_hdr_len = sizeof(struct ip6_hdr);
else if (!IS_TRANSPORT(sa->flags)) {
RTE_LOG(ERR, IPSEC_ESP, "Unsupported SA flags: 0x%x\n",
sa->flags);
return -EINVAL;
}
/* Check maximum packet size */
if (unlikely(ip_hdr_len + sizeof(struct rte_esp_hdr) + sa->iv_len +
pad_payload_len + sa->digest_len > IP_MAXPACKET)) {
RTE_LOG(ERR, IPSEC_ESP, "ipsec packet is too big\n");
return -EINVAL;
}
/* Add trailer padding if it is not constructed by HW */
!(ips->security.ol_flags &
padding = (uint8_t *)rte_pktmbuf_append(m, pad_len +
sa->digest_len);
if (unlikely(padding == NULL)) {
RTE_LOG(ERR, IPSEC_ESP,
"not enough mbuf trailing space\n");
return -ENOSPC;
}
rte_prefetch0(padding);
}
switch (WITHOUT_TRANSPORT_VERSION(sa->flags)) {
case IP4_TUNNEL:
ip4 = ip4ip_outbound(m, sizeof(struct rte_esp_hdr) + sa->iv_len,
&sa->src, &sa->dst);
esp = (struct rte_esp_hdr *)(ip4 + 1);
break;
case IP6_TUNNEL:
ip6 = ip6ip_outbound(m, sizeof(struct rte_esp_hdr) + sa->iv_len,
&sa->src, &sa->dst);
esp = (struct rte_esp_hdr *)(ip6 + 1);
break;
case TRANSPORT:
new_ip = (uint8_t *)rte_pktmbuf_prepend(m,
sizeof(struct rte_esp_hdr) + sa->iv_len);
memmove(new_ip, ip4, ip_hdr_len);
esp = (struct rte_esp_hdr *)(new_ip + ip_hdr_len);
ip4 = (struct ip *)new_ip;
if (likely(ip4->ip_v == IPVERSION)) {
ip4->ip_p = IPPROTO_ESP;
ip4->ip_len = htons(rte_pktmbuf_data_len(m));
} else {
ip6 = (struct ip6_hdr *)new_ip;
ip6->ip6_nxt = IPPROTO_ESP;
ip6->ip6_plen = htons(rte_pktmbuf_data_len(m) -
sizeof(struct ip6_hdr));
}
}
sa->seq++;
esp->spi = rte_cpu_to_be_32(sa->spi);
esp->seq = rte_cpu_to_be_32((uint32_t)sa->seq);
/* set iv */
uint64_t *iv = (uint64_t *)(esp + 1);
if (sa->aead_algo == RTE_CRYPTO_AEAD_AES_GCM) {
*iv = rte_cpu_to_be_64(sa->seq);
} else {
switch (sa->cipher_algo) {
memset(iv, 0, sa->iv_len);
break;
*iv = rte_cpu_to_be_64(sa->seq);
break;
default:
RTE_LOG(ERR, IPSEC_ESP,
"unsupported cipher algorithm %u\n",
sa->cipher_algo);
return -EINVAL;
}
}
if (ips->security.ol_flags &
/* Set the inner esp next protocol for HW trailer */
} else {
padding[pad_len - 2] = pad_len - 2;
padding[pad_len - 1] = nlp;
}
goto done;
}
RTE_ASSERT(cop != NULL);
sym_cop = get_sym_cop(cop);
sym_cop->m_src = m;
if (sa->aead_algo == RTE_CRYPTO_AEAD_AES_GCM) {
uint8_t *aad;
sym_cop->aead.data.offset = ip_hdr_len +
sizeof(struct rte_esp_hdr) + sa->iv_len;
sym_cop->aead.data.length = pad_payload_len;
/* Fill pad_len using default sequential scheme */
for (i = 0; i < pad_len - 2; i++)
padding[i] = i + 1;
padding[pad_len - 2] = pad_len - 2;
padding[pad_len - 1] = nlp;
struct cnt_blk *icb = get_cnt_blk(m);
icb->salt = sa->salt;
icb->iv = rte_cpu_to_be_64(sa->seq);
icb->cnt = rte_cpu_to_be_32(1);
aad = get_aad(m);
memcpy(aad, esp, 8);
sym_cop->aead.aad.data = aad;
aad - rte_pktmbuf_mtod(m, uint8_t *));
sym_cop->aead.digest.data = rte_pktmbuf_mtod_offset(m, uint8_t *,
rte_pktmbuf_pkt_len(m) - sa->digest_len);
rte_pktmbuf_pkt_len(m) - sa->digest_len);
} else {
switch (sa->cipher_algo) {
sym_cop->cipher.data.offset = ip_hdr_len +
sizeof(struct rte_esp_hdr);
sym_cop->cipher.data.length = pad_payload_len + sa->iv_len;
break;
sym_cop->cipher.data.offset = ip_hdr_len +
sizeof(struct rte_esp_hdr) + sa->iv_len;
sym_cop->cipher.data.length = pad_payload_len;
break;
default:
RTE_LOG(ERR, IPSEC_ESP, "unsupported cipher algorithm %u\n",
sa->cipher_algo);
return -EINVAL;
}
/* Fill pad_len using default sequential scheme */
for (i = 0; i < pad_len - 2; i++)
padding[i] = i + 1;
padding[pad_len - 2] = pad_len - 2;
padding[pad_len - 1] = nlp;
struct cnt_blk *icb = get_cnt_blk(m);
icb->salt = sa->salt;
icb->iv = rte_cpu_to_be_64(sa->seq);
icb->cnt = rte_cpu_to_be_32(1);
switch (sa->auth_algo) {
sym_cop->auth.data.offset = ip_hdr_len;
sym_cop->auth.data.length = sizeof(struct rte_esp_hdr) +
sa->iv_len + pad_payload_len;
break;
default:
RTE_LOG(ERR, IPSEC_ESP, "unsupported auth algorithm %u\n",
sa->auth_algo);
return -EINVAL;
}
sym_cop->auth.digest.data = rte_pktmbuf_mtod_offset(m, uint8_t *,
rte_pktmbuf_pkt_len(m) - sa->digest_len);
rte_pktmbuf_pkt_len(m) - sa->digest_len);
}
done:
return 0;
}
int
esp_outbound_post(struct rte_mbuf *m,
struct ipsec_sa *sa,
struct rte_crypto_op *cop)
{
RTE_ASSERT(m != NULL);
RTE_ASSERT(sa != NULL);
type = ipsec_get_action_type(sa);
} else {
RTE_ASSERT(cop != NULL);
RTE_LOG(ERR, IPSEC_ESP, "%s() failed crypto op\n",
__func__);
return -1;
}
}
return 0;
}
#define likely(x)
#define unlikely(x)
static rte_be32_t rte_cpu_to_be_32(uint32_t x)
static rte_be64_t rte_cpu_to_be_64(uint64_t x)
#define RTE_ALIGN_CEIL(val, align)
Definition: rte_common.h:525
#define RTE_PTR_ADD(ptr, x)
Definition: rte_common.h:469
@ RTE_CRYPTO_OP_STATUS_SUCCESS
Definition: rte_crypto.h:39
@ RTE_CRYPTO_OP_STATUS_ERROR
Definition: rte_crypto.h:52
@ RTE_CRYPTO_OP_STATUS_NOT_PROCESSED
Definition: rte_crypto.h:41
@ RTE_CRYPTO_AUTH_AES_XCBC_MAC
@ RTE_CRYPTO_AUTH_SHA1_HMAC
@ RTE_CRYPTO_AUTH_NULL
@ RTE_CRYPTO_AUTH_SHA256_HMAC
@ RTE_CRYPTO_AEAD_AES_GCM
@ RTE_CRYPTO_CIPHER_DES_CBC
@ RTE_CRYPTO_CIPHER_AES_CTR
@ RTE_CRYPTO_CIPHER_NULL
@ RTE_CRYPTO_CIPHER_AES_CBC
@ RTE_CRYPTO_CIPHER_3DES_CBC
#define rte_crypto_op_ctod_offset(c, t, o)
Definition: rte_cryptodev.h:60
#define RTE_LOG(l, t,...)
Definition: rte_log.h:332
#define RTE_LOG_DP(l, t,...)
Definition: rte_log.h:356
#define rte_pktmbuf_data_len(m)
Definition: rte_mbuf.h:1571
static char * rte_pktmbuf_prepend(struct rte_mbuf *m, uint16_t len)
Definition: rte_mbuf.h:1588
static char * rte_pktmbuf_adj(struct rte_mbuf *m, uint16_t len)
Definition: rte_mbuf.h:1652
static char * rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len)
Definition: rte_mbuf.h:1621
#define rte_pktmbuf_pkt_len(m)
Definition: rte_mbuf.h:1561
static int rte_pktmbuf_trim(struct rte_mbuf *m, uint16_t len)
Definition: rte_mbuf.h:1682
#define rte_pktmbuf_iova_offset(m, o)
#define rte_pktmbuf_mtod(m, t)
#define RTE_MBUF_F_TX_SEC_OFFLOAD
#define RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED
#define RTE_MBUF_F_RX_SEC_OFFLOAD
#define rte_pktmbuf_mtod_offset(m, t, o)
#define RTE_PTYPE_TUNNEL_ESP
static void * rte_memcpy(void *dst, const void *src, size_t n)
static void rte_prefetch0(const volatile void *p)
rte_security_session_action_type
Definition: rte_security.h:731
@ RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL
Definition: rte_security.h:738
@ RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO
Definition: rte_security.h:734
#define RTE_SECURITY_RX_HW_TRAILER_OFFLOAD
#define RTE_SECURITY_TX_HW_TRAILER_OFFLOAD
uint8_t status
Definition: rte_crypto.h:99
struct rte_crypto_sym_op::@111::@113::@117 digest
struct rte_crypto_sym_op::@111::@113::@116 data
struct rte_crypto_sym_op::@111::@113::@118 aad
rte_iova_t phys_addr
struct rte_mbuf * m_src
rte_be32_t seq
Definition: rte_esp.h:21
rte_be32_t spi
Definition: rte_esp.h:20
struct rte_ipsec_sa * sa
Definition: rte_ipsec.h:83
enum rte_security_session_action_type type
Definition: rte_ipsec.h:85
uint64_t ol_flags
uint32_t packet_type
uint8_t inner_esp_next_proto