DPDK 24.11.1
examples/ip_reassembly/main.c
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <string.h>
#include <sys/queue.h>
#include <stdarg.h>
#include <errno.h>
#include <getopt.h>
#include <signal.h>
#include <sys/param.h>
#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_eal.h>
#include <rte_launch.h>
#include <rte_cycles.h>
#include <rte_prefetch.h>
#include <rte_lcore.h>
#include <rte_per_lcore.h>
#include <rte_interrupts.h>
#include <rte_random.h>
#include <rte_debug.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_malloc.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#include <rte_udp.h>
#include <rte_string_fns.h>
#include <rte_lpm.h>
#include <rte_lpm6.h>
#include <rte_ip_frag.h>
#define MAX_PKT_BURST 32
#define RTE_LOGTYPE_IP_RSMBL RTE_LOGTYPE_USER1
#define MAX_JUMBO_PKT_LEN 9600
#define BUF_SIZE RTE_MBUF_DEFAULT_DATAROOM
#define MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE
#define NB_MBUF 8192
#define MEMPOOL_CACHE_SIZE 256
/* allow max jumbo frame 9.5 KB */
#define JUMBO_FRAME_MAX_SIZE 0x2600
#define MAX_FLOW_NUM UINT16_MAX
#define MIN_FLOW_NUM 1
#define DEF_FLOW_NUM 0x1000
/* TTL numbers are in ms. */
#define MAX_FLOW_TTL (3600 * MS_PER_S)
#define MIN_FLOW_TTL 1
#define DEF_FLOW_TTL MS_PER_S
#define MAX_FRAG_NUM RTE_LIBRTE_IP_FRAG_MAX_FRAG
/* Should be power of two. */
#define IP_FRAG_TBL_BUCKET_ENTRIES 16
static uint32_t max_flow_num = DEF_FLOW_NUM;
static uint32_t max_flow_ttl = DEF_FLOW_TTL;
#define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
#define NB_SOCKETS 8
/* Configure how many packets ahead to prefetch, when reading packets */
#define PREFETCH_OFFSET 3
/*
* Configurable number of RX/TX ring descriptors
*/
#define RX_DESC_DEFAULT 1024
#define TX_DESC_DEFAULT 1024
static uint16_t nb_rxd = RX_DESC_DEFAULT;
static uint16_t nb_txd = TX_DESC_DEFAULT;
/* ethernet addresses of ports */
static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
#ifndef IPv4_BYTES
#define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8
#define IPv4_BYTES(addr) \
(uint8_t) (((addr) >> 24) & 0xFF),\
(uint8_t) (((addr) >> 16) & 0xFF),\
(uint8_t) (((addr) >> 8) & 0xFF),\
(uint8_t) ((addr) & 0xFF)
#endif
#ifndef IPv6_BYTES
#define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
"%02x%02x:%02x%02x:%02x%02x:%02x%02x"
#define IPv6_BYTES(addr) \
addr[0], addr[1], addr[2], addr[3], \
addr[4], addr[5], addr[6], addr[7], \
addr[8], addr[9], addr[10], addr[11],\
addr[12], addr[13],addr[14], addr[15]
#endif
#define IPV6_ADDR_LEN 16
/* mask of enabled ports */
static uint32_t enabled_port_mask = 0;
static int rx_queue_per_lcore = 1;
struct mbuf_table {
uint32_t len;
uint32_t head;
uint32_t tail;
struct rte_mbuf *m_table[];
};
struct rx_queue {
struct rte_ip_frag_tbl *frag_tbl;
struct rte_mempool *pool;
struct rte_lpm *lpm;
struct rte_lpm6 *lpm6;
uint16_t portid;
};
struct tx_lcore_stat {
uint64_t call;
uint64_t drop;
uint64_t queue;
uint64_t send;
};
#define MAX_RX_QUEUE_PER_LCORE 16
#define MAX_TX_QUEUE_PER_PORT 16
#define MAX_RX_QUEUE_PER_PORT 128
struct __rte_cache_aligned lcore_queue_conf {
uint16_t n_rx_queue;
struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
struct rte_ip_frag_death_row death_row;
struct mbuf_table *tx_mbufs[RTE_MAX_ETHPORTS];
struct tx_lcore_stat tx_stat;
};
static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
static struct rte_eth_conf port_conf = {
.rxmode = {
.mtu = JUMBO_FRAME_MAX_SIZE - RTE_ETHER_HDR_LEN -
.offloads = RTE_ETH_RX_OFFLOAD_CHECKSUM,
},
.rx_adv_conf = {
.rss_conf = {
.rss_key = NULL,
.rss_hf = RTE_ETH_RSS_IP,
},
},
.txmode = {
.mq_mode = RTE_ETH_MQ_TX_NONE,
.offloads = (RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
},
};
/*
* IPv4 forwarding table
*/
struct l3fwd_ipv4_route {
uint32_t ip;
uint8_t depth;
uint8_t if_out;
};
/* Default l3fwd_ipv4_route_array table. 8< */
struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {
{RTE_IPV4(100,10,0,0), 16, 0},
{RTE_IPV4(100,20,0,0), 16, 1},
{RTE_IPV4(100,30,0,0), 16, 2},
{RTE_IPV4(100,40,0,0), 16, 3},
{RTE_IPV4(100,50,0,0), 16, 4},
{RTE_IPV4(100,60,0,0), 16, 5},
{RTE_IPV4(100,70,0,0), 16, 6},
{RTE_IPV4(100,80,0,0), 16, 7},
};
/* >8 End of default l3fwd_ipv4_route_array table. */
/*
* IPv6 forwarding table
*/
struct l3fwd_ipv6_route {
struct rte_ipv6_addr ip;
uint8_t depth;
uint8_t if_out;
};
/* Default l3fwd_ipv6_route_array table. 8< */
static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {
{RTE_IPV6(0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101), 48, 0},
{RTE_IPV6(0x0201, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101), 48, 1},
{RTE_IPV6(0x0301, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101), 48, 2},
{RTE_IPV6(0x0401, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101), 48, 3},
{RTE_IPV6(0x0501, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101), 48, 4},
{RTE_IPV6(0x0601, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101), 48, 5},
{RTE_IPV6(0x0701, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101), 48, 6}
};
/* >8 End of default l3fwd_ipv6_route_array table. */
#define LPM_MAX_RULES 1024
#define LPM6_MAX_RULES 1024
#define LPM6_NUMBER_TBL8S (1 << 16)
struct rte_lpm6_config lpm6_config = {
.max_rules = LPM6_MAX_RULES,
.number_tbl8s = LPM6_NUMBER_TBL8S,
.flags = 0
};
static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES];
static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES];
#ifdef RTE_LIBRTE_IP_FRAG_TBL_STAT
#define TX_LCORE_STAT_UPDATE(s, f, v) ((s)->f += (v))
#else
#define TX_LCORE_STAT_UPDATE(s, f, v) do {} while (0)
#endif /* RTE_LIBRTE_IP_FRAG_TBL_STAT */
/*
* If number of queued packets reached given threshold, then
* send burst of packets on an output interface.
*/
static inline uint32_t
send_burst(struct lcore_queue_conf *qconf, uint32_t thresh, uint16_t port)
{
uint32_t fill, len, k, n;
struct mbuf_table *txmb;
txmb = qconf->tx_mbufs[port];
len = txmb->len;
if ((int32_t)(fill = txmb->head - txmb->tail) < 0)
fill += len;
if (fill >= thresh) {
n = RTE_MIN(len - txmb->tail, fill);
k = rte_eth_tx_burst(port, qconf->tx_queue_id[port],
txmb->m_table + txmb->tail, (uint16_t)n);
TX_LCORE_STAT_UPDATE(&qconf->tx_stat, call, 1);
TX_LCORE_STAT_UPDATE(&qconf->tx_stat, send, k);
fill -= k;
if ((txmb->tail += k) == len)
txmb->tail = 0;
}
return fill;
}
/* Enqueue a single packet, and send burst if queue is filled */
static inline int
send_single_packet(struct rte_mbuf *m, uint16_t port)
{
uint32_t fill, lcore_id, len;
struct lcore_queue_conf *qconf;
struct mbuf_table *txmb;
lcore_id = rte_lcore_id();
qconf = &lcore_queue_conf[lcore_id];
txmb = qconf->tx_mbufs[port];
len = txmb->len;
fill = send_burst(qconf, MAX_PKT_BURST, port);
if (fill == len - 1) {
TX_LCORE_STAT_UPDATE(&qconf->tx_stat, drop, 1);
rte_pktmbuf_free(txmb->m_table[txmb->tail]);
if (++txmb->tail == len)
txmb->tail = 0;
}
TX_LCORE_STAT_UPDATE(&qconf->tx_stat, queue, 1);
txmb->m_table[txmb->head] = m;
if(++txmb->head == len)
txmb->head = 0;
return 0;
}
static inline void
reassemble(struct rte_mbuf *m, uint16_t portid, uint32_t queue,
struct lcore_queue_conf *qconf, uint64_t tms)
{
struct rte_ether_hdr *eth_hdr;
struct rte_ip_frag_tbl *tbl;
struct rx_queue *rxq;
void *d_addr_bytes;
uint32_t next_hop;
uint16_t dst_port;
rxq = &qconf->rx_queue_list[queue];
eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
dst_port = portid;
/* if packet is IPv4 */
struct rte_ipv4_hdr *ip_hdr;
uint32_t ip_dst;
ip_hdr = (struct rte_ipv4_hdr *)(eth_hdr + 1);
/* if it is a fragmented packet, then try to reassemble. */
struct rte_mbuf *mo;
tbl = rxq->frag_tbl;
dr = &qconf->death_row;
/* prepare mbuf: setup l2_len/l3_len. */
m->l2_len = sizeof(*eth_hdr);
m->l3_len = sizeof(*ip_hdr);
/* process this fragment. */
mo = rte_ipv4_frag_reassemble_packet(tbl, dr, m, tms, ip_hdr);
if (mo == NULL)
/* no packet to send out. */
return;
/* we have our packet reassembled. */
if (mo != m) {
m = mo;
eth_hdr = rte_pktmbuf_mtod(m,
struct rte_ether_hdr *);
ip_hdr = (struct rte_ipv4_hdr *)(eth_hdr + 1);
}
/* update offloading flags */
}
ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr);
/* Find destination port */
if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 &&
(enabled_port_mask & 1 << next_hop) != 0) {
dst_port = next_hop;
}
} else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
/* if packet is IPv6 */
struct rte_ipv6_fragment_ext *frag_hdr;
struct rte_ipv6_hdr *ip_hdr;
ip_hdr = (struct rte_ipv6_hdr *)(eth_hdr + 1);
if (frag_hdr != NULL) {
struct rte_mbuf *mo;
tbl = rxq->frag_tbl;
dr = &qconf->death_row;
/* prepare mbuf: setup l2_len/l3_len. */
m->l2_len = sizeof(*eth_hdr);
m->l3_len = sizeof(*ip_hdr) + sizeof(*frag_hdr);
mo = rte_ipv6_frag_reassemble_packet(tbl, dr, m, tms, ip_hdr, frag_hdr);
if (mo == NULL)
return;
if (mo != m) {
m = mo;
eth_hdr = rte_pktmbuf_mtod(m,
struct rte_ether_hdr *);
ip_hdr = (struct rte_ipv6_hdr *)(eth_hdr + 1);
}
}
/* Find destination port */
if (rte_lpm6_lookup(rxq->lpm6, &ip_hdr->dst_addr,
&next_hop) == 0 &&
(enabled_port_mask & 1 << next_hop) != 0) {
dst_port = next_hop;
}
}
/* if packet wasn't IPv4 or IPv6, it's forwarded to the port it came from */
/* 02:00:00:00:00:xx */
d_addr_bytes = &eth_hdr->dst_addr.addr_bytes[0];
*((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)dst_port << 40);
/* src addr */
rte_ether_addr_copy(&ports_eth_addr[dst_port], &eth_hdr->src_addr);
send_single_packet(m, dst_port);
}
/* main processing loop */
static int
main_loop(__rte_unused void *dummy)
{
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
unsigned lcore_id;
uint64_t diff_tsc, cur_tsc, prev_tsc;
int i, j, nb_rx;
uint16_t portid;
struct lcore_queue_conf *qconf;
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
prev_tsc = 0;
lcore_id = rte_lcore_id();
qconf = &lcore_queue_conf[lcore_id];
if (qconf->n_rx_queue == 0) {
RTE_LOG(INFO, IP_RSMBL, "lcore %u has nothing to do\n", lcore_id);
return 0;
}
RTE_LOG(INFO, IP_RSMBL, "entering main loop on lcore %u\n", lcore_id);
for (i = 0; i < qconf->n_rx_queue; i++) {
portid = qconf->rx_queue_list[i].portid;
RTE_LOG(INFO, IP_RSMBL, " -- lcoreid=%u portid=%u\n", lcore_id,
portid);
}
while (1) {
cur_tsc = rte_rdtsc();
/*
* TX burst queue drain
*/
diff_tsc = cur_tsc - prev_tsc;
if (unlikely(diff_tsc > drain_tsc)) {
/*
* This could be optimized (use queueid instead of
* portid), but it is not called so often
*/
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
if ((enabled_port_mask & (1 << portid)) != 0)
send_burst(qconf, 1, portid);
}
prev_tsc = cur_tsc;
}
/*
* Read packet from RX queues
*/
for (i = 0; i < qconf->n_rx_queue; ++i) {
portid = qconf->rx_queue_list[i].portid;
nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
MAX_PKT_BURST);
/* Prefetch first packets */
for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
pkts_burst[j], void *));
}
/* Prefetch and forward already prefetched packets */
for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
j + PREFETCH_OFFSET], void *));
reassemble(pkts_burst[j], portid,
i, qconf, cur_tsc);
}
/* Forward remaining prefetched packets */
for (; j < nb_rx; j++) {
reassemble(pkts_burst[j], portid,
i, qconf, cur_tsc);
}
rte_ip_frag_free_death_row(&qconf->death_row,
PREFETCH_OFFSET);
}
}
}
/* display usage */
static void
print_usage(const char *prgname)
{
printf("%s [EAL options] -- -p PORTMASK [-q NQ]"
" [--maxflows=<flows>] [--flowttl=<ttl>[(s|ms)]]\n"
" -p PORTMASK: hexadecimal bitmask of ports to configure\n"
" -q NQ: number of RX queues per lcore\n"
" --maxflows=<flows>: optional, maximum number of flows "
"supported\n"
" --flowttl=<ttl>[(s|ms)]: optional, maximum TTL for each "
"flow\n",
prgname);
}
static uint32_t
parse_flow_num(const char *str, uint32_t min, uint32_t max, uint32_t *val)
{
char *end;
uint64_t v;
/* parse decimal string */
errno = 0;
v = strtoul(str, &end, 10);
if (errno != 0 || *end != '\0')
return -EINVAL;
if (v < min || v > max)
return -EINVAL;
*val = (uint32_t)v;
return 0;
}
static int
parse_flow_ttl(const char *str, uint32_t min, uint32_t max, uint32_t *val)
{
char *end;
uint64_t v;
static const char frmt_sec[] = "s";
static const char frmt_msec[] = "ms";
/* parse decimal string */
errno = 0;
v = strtoul(str, &end, 10);
if (errno != 0)
return -EINVAL;
if (*end != '\0') {
if (strncmp(frmt_sec, end, sizeof(frmt_sec)) == 0)
v *= MS_PER_S;
else if (strncmp(frmt_msec, end, sizeof (frmt_msec)) != 0)
return -EINVAL;
}
if (v < min || v > max)
return -EINVAL;
*val = (uint32_t)v;
return 0;
}
static int
parse_portmask(const char *portmask)
{
char *end = NULL;
unsigned long pm;
/* parse hexadecimal string */
pm = strtoul(portmask, &end, 16);
if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
return 0;
return pm;
}
static int
parse_nqueue(const char *q_arg)
{
char *end = NULL;
unsigned long n;
printf("%p\n", q_arg);
/* parse hexadecimal string */
n = strtoul(q_arg, &end, 10);
if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
return -1;
if (n == 0)
return -1;
if (n >= MAX_RX_QUEUE_PER_LCORE)
return -1;
return n;
}
/* Parse the argument given in the command line of the application */
static int
parse_args(int argc, char **argv)
{
int opt, ret;
char **argvopt;
int option_index;
char *prgname = argv[0];
static struct option lgopts[] = {
{"maxflows", 1, 0, 0},
{"flowttl", 1, 0, 0},
{NULL, 0, 0, 0}
};
argvopt = argv;
while ((opt = getopt_long(argc, argvopt, "p:q:",
lgopts, &option_index)) != EOF) {
switch (opt) {
/* portmask */
case 'p':
enabled_port_mask = parse_portmask(optarg);
if (enabled_port_mask == 0) {
printf("invalid portmask\n");
print_usage(prgname);
return -1;
}
break;
/* nqueue */
case 'q':
rx_queue_per_lcore = parse_nqueue(optarg);
if (rx_queue_per_lcore < 0) {
printf("invalid queue number\n");
print_usage(prgname);
return -1;
}
break;
/* long options */
case 0:
if (!strncmp(lgopts[option_index].name,
"maxflows", 8)) {
if ((ret = parse_flow_num(optarg, MIN_FLOW_NUM,
MAX_FLOW_NUM,
&max_flow_num)) != 0) {
printf("invalid value: \"%s\" for "
"parameter %s\n",
optarg,
lgopts[option_index].name);
print_usage(prgname);
return ret;
}
}
if (!strncmp(lgopts[option_index].name, "flowttl", 7)) {
if ((ret = parse_flow_ttl(optarg, MIN_FLOW_TTL,
MAX_FLOW_TTL,
&max_flow_ttl)) != 0) {
printf("invalid value: \"%s\" for "
"parameter %s\n",
optarg,
lgopts[option_index].name);
print_usage(prgname);
return ret;
}
}
break;
default:
print_usage(prgname);
return -1;
}
}
if (optind >= 0)
argv[optind-1] = prgname;
ret = optind-1;
optind = 1; /* reset getopt lib */
return ret;
}
static void
print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
{
char buf[RTE_ETHER_ADDR_FMT_SIZE];
rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
printf("%s%s", name, buf);
}
/* Check the link status of all ports in up to 9s, and print them finally */
static void
check_all_ports_link_status(uint32_t port_mask)
{
#define CHECK_INTERVAL 100 /* 100ms */
#define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
uint16_t portid;
uint8_t count, all_ports_up, print_flag = 0;
struct rte_eth_link link;
int ret;
char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
printf("\nChecking link status");
fflush(stdout);
for (count = 0; count <= MAX_CHECK_TIME; count++) {
all_ports_up = 1;
if ((port_mask & (1 << portid)) == 0)
continue;
memset(&link, 0, sizeof(link));
ret = rte_eth_link_get_nowait(portid, &link);
if (ret < 0) {
all_ports_up = 0;
if (print_flag == 1)
printf("Port %u link get failed: %s\n",
portid, rte_strerror(-ret));
continue;
}
/* print link status if flag set */
if (print_flag == 1) {
rte_eth_link_to_str(link_status_text,
sizeof(link_status_text), &link);
printf("Port %d %s\n", portid,
link_status_text);
continue;
}
/* clear all_ports_up flag if any link down */
if (link.link_status == RTE_ETH_LINK_DOWN) {
all_ports_up = 0;
break;
}
}
/* after finally printing all link status, get out */
if (print_flag == 1)
break;
if (all_ports_up == 0) {
printf(".");
fflush(stdout);
rte_delay_ms(CHECK_INTERVAL);
}
/* set the print_flag if all ports up or timeout */
if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
print_flag = 1;
printf("\ndone\n");
}
}
}
static int
init_routing_table(void)
{
struct rte_lpm *lpm;
struct rte_lpm6 *lpm6;
int socket, ret;
unsigned i;
for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
if (socket_lpm[socket]) {
lpm = socket_lpm[socket];
/* populate the LPM table */
for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) {
ret = rte_lpm_add(lpm,
l3fwd_ipv4_route_array[i].ip,
l3fwd_ipv4_route_array[i].depth,
l3fwd_ipv4_route_array[i].if_out);
if (ret < 0) {
RTE_LOG(ERR, IP_RSMBL, "Unable to add entry %i to the l3fwd "
"LPM table\n", i);
return -1;
}
RTE_LOG(INFO, IP_RSMBL, "Socket %i: adding route " IPv4_BYTES_FMT
"/%d (port %d)\n",
socket,
IPv4_BYTES(l3fwd_ipv4_route_array[i].ip),
l3fwd_ipv4_route_array[i].depth,
l3fwd_ipv4_route_array[i].if_out);
}
}
if (socket_lpm6[socket]) {
lpm6 = socket_lpm6[socket];
/* populate the LPM6 table */
for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) {
ret = rte_lpm6_add(lpm6,
&l3fwd_ipv6_route_array[i].ip,
l3fwd_ipv6_route_array[i].depth,
l3fwd_ipv6_route_array[i].if_out);
if (ret < 0) {
RTE_LOG(ERR, IP_RSMBL, "Unable to add entry %i to the l3fwd "
"LPM6 table\n", i);
return -1;
}
RTE_LOG(INFO, IP_RSMBL, "Socket %i: adding route " IPv6_BYTES_FMT
"/%d (port %d)\n",
socket,
IPv6_BYTES(l3fwd_ipv6_route_array[i].ip.a),
l3fwd_ipv6_route_array[i].depth,
l3fwd_ipv6_route_array[i].if_out);
}
}
}
return 0;
}
static int
setup_port_tbl(struct lcore_queue_conf *qconf, uint32_t lcore, int socket,
uint32_t port)
{
struct mbuf_table *mtb;
uint32_t n;
size_t sz;
n = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST);
sz = sizeof (*mtb) + sizeof (mtb->m_table[0]) * n;
if ((mtb = rte_zmalloc_socket(__func__, sz, RTE_CACHE_LINE_SIZE,
socket)) == NULL) {
RTE_LOG(ERR, IP_RSMBL, "%s() for lcore: %u, port: %u "
"failed to allocate %zu bytes\n",
__func__, lcore, port, sz);
return -1;
}
mtb->len = n;
qconf->tx_mbufs[port] = mtb;
return 0;
}
static int
setup_queue_tbl(struct rx_queue *rxq, uint32_t lcore, uint32_t queue)
{
int socket;
uint32_t nb_mbuf;
uint64_t frag_cycles;
char buf[RTE_MEMPOOL_NAMESIZE];
socket = rte_lcore_to_socket_id(lcore);
if (socket == SOCKET_ID_ANY)
socket = 0;
/* Each table entry holds information about packet fragmentation. 8< */
frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) / MS_PER_S *
max_flow_ttl;
if ((rxq->frag_tbl = rte_ip_frag_table_create(max_flow_num,
IP_FRAG_TBL_BUCKET_ENTRIES, max_flow_num, frag_cycles,
socket)) == NULL) {
RTE_LOG(ERR, IP_RSMBL, "ip_frag_tbl_create(%u) on "
"lcore: %u for queue: %u failed\n",
max_flow_num, lcore, queue);
return -1;
}
/* >8 End of holding packet fragmentation. */
/*
* At any given moment up to <max_flow_num * (MAX_FRAG_NUM)>
* mbufs could be stored in the fragment table.
* Plus, each TX queue can hold up to <max_flow_num> packets.
*/
/* mbufs stored in the fragment table. 8< */
nb_mbuf = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST) * MAX_FRAG_NUM;
nb_mbuf *= (port_conf.rxmode.mtu + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN
+ BUF_SIZE - 1) / BUF_SIZE;
nb_mbuf *= 2; /* ipv4 and ipv6 */
nb_mbuf += nb_rxd + nb_txd;
nb_mbuf = RTE_MAX(nb_mbuf, (uint32_t)NB_MBUF);
snprintf(buf, sizeof(buf), "mbuf_pool_%u_%u", lcore, queue);
rxq->pool = rte_pktmbuf_pool_create(buf, nb_mbuf, MEMPOOL_CACHE_SIZE, 0,
MBUF_DATA_SIZE, socket);
if (rxq->pool == NULL) {
RTE_LOG(ERR, IP_RSMBL,
"rte_pktmbuf_pool_create(%s) failed", buf);
return -1;
}
/* >8 End of mbufs stored in the fragmentation table. */
return 0;
}
static int
init_mem(void)
{
char buf[PATH_MAX];
struct rte_lpm *lpm;
struct rte_lpm6 *lpm6;
struct rte_lpm_config lpm_config;
int socket;
unsigned lcore_id;
/* traverse through lcores and initialize structures on each socket */
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;
socket = rte_lcore_to_socket_id(lcore_id);
if (socket == SOCKET_ID_ANY)
socket = 0;
if (socket_lpm[socket] == NULL) {
RTE_LOG(INFO, IP_RSMBL, "Creating LPM table on socket %i\n", socket);
snprintf(buf, sizeof(buf), "IP_RSMBL_LPM_%i", socket);
lpm_config.max_rules = LPM_MAX_RULES;
lpm_config.number_tbl8s = 256;
lpm_config.flags = 0;
lpm = rte_lpm_create(buf, socket, &lpm_config);
if (lpm == NULL) {
RTE_LOG(ERR, IP_RSMBL, "Cannot create LPM table\n");
return -1;
}
socket_lpm[socket] = lpm;
}
if (socket_lpm6[socket] == NULL) {
RTE_LOG(INFO, IP_RSMBL, "Creating LPM6 table on socket %i\n", socket);
snprintf(buf, sizeof(buf), "IP_RSMBL_LPM_%i", socket);
lpm6 = rte_lpm6_create(buf, socket, &lpm6_config);
if (lpm6 == NULL) {
RTE_LOG(ERR, IP_RSMBL, "Cannot create LPM table\n");
return -1;
}
socket_lpm6[socket] = lpm6;
}
}
return 0;
}
static void
queue_dump_stat(void)
{
uint32_t i, lcore;
const struct lcore_queue_conf *qconf;
for (lcore = 0; lcore < RTE_MAX_LCORE; lcore++) {
if (rte_lcore_is_enabled(lcore) == 0)
continue;
qconf = &lcore_queue_conf[lcore];
for (i = 0; i < qconf->n_rx_queue; i++) {
fprintf(stdout, " -- lcoreid=%u portid=%u "
"frag tbl stat:\n",
lcore, qconf->rx_queue_list[i].portid);
qconf->rx_queue_list[i].frag_tbl);
fprintf(stdout, "TX bursts:\t%" PRIu64 "\n"
"TX packets _queued:\t%" PRIu64 "\n"
"TX packets dropped:\t%" PRIu64 "\n"
"TX packets send:\t%" PRIu64 "\n",
qconf->tx_stat.call,
qconf->tx_stat.queue,
qconf->tx_stat.drop,
qconf->tx_stat.send);
}
}
}
static void
signal_handler(int signum)
{
queue_dump_stat();
if (signum != SIGUSR1)
rte_exit(0, "received signal: %d, exiting\n", signum);
}
int
main(int argc, char **argv)
{
struct lcore_queue_conf *qconf;
struct rte_eth_dev_info dev_info;
struct rte_eth_txconf *txconf;
struct rx_queue *rxq;
int ret, socket;
unsigned nb_ports;
uint16_t queueid;
unsigned lcore_id = 0, rx_lcore_id = 0;
uint32_t n_tx_queue, nb_lcores;
uint16_t portid;
/* init EAL */
ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
argc -= ret;
argv += ret;
/* parse application arguments (after the EAL ones) */
ret = parse_args(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid IP reassembly parameters\n");
if (nb_ports == 0)
rte_exit(EXIT_FAILURE, "No ports found!\n");
nb_lcores = rte_lcore_count();
/* initialize structures (mempools, lpm etc.) */
if (init_mem() < 0)
rte_panic("Cannot initialize memory structures!\n");
/* check if portmask has non-existent ports */
if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned)))
rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n");
/* initialize all ports */
struct rte_eth_rxconf rxq_conf;
struct rte_eth_conf local_port_conf = port_conf;
/* skip ports that are not enabled */
if ((enabled_port_mask & (1 << portid)) == 0) {
printf("\nSkipping disabled port %d\n", portid);
continue;
}
qconf = &lcore_queue_conf[rx_lcore_id];
/* limit the frame size to the maximum supported by NIC */
ret = rte_eth_dev_info_get(portid, &dev_info);
if (ret != 0)
rte_exit(EXIT_FAILURE,
"Error during getting device (port %u) info: %s\n",
portid, strerror(-ret));
local_port_conf.rxmode.mtu = RTE_MIN(
dev_info.max_mtu,
local_port_conf.rxmode.mtu);
/* get the lcore_id for this port */
while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
rx_lcore_id++;
if (rx_lcore_id >= RTE_MAX_LCORE)
rte_exit(EXIT_FAILURE, "Not enough cores\n");
qconf = &lcore_queue_conf[rx_lcore_id];
}
socket = rte_lcore_to_socket_id(portid);
if (socket == SOCKET_ID_ANY)
socket = 0;
queueid = qconf->n_rx_queue;
rxq = &qconf->rx_queue_list[queueid];
rxq->portid = portid;
rxq->lpm = socket_lpm[socket];
rxq->lpm6 = socket_lpm6[socket];
ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
&nb_txd);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Cannot adjust number of descriptors: err=%d, port=%d\n",
ret, portid);
if (setup_queue_tbl(rxq, rx_lcore_id, queueid) < 0)
rte_exit(EXIT_FAILURE, "Failed to set up queue table\n");
qconf->n_rx_queue++;
/* init port */
printf("Initializing port %d ... ", portid );
fflush(stdout);
n_tx_queue = nb_lcores;
if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
n_tx_queue = MAX_TX_QUEUE_PER_PORT;
if (dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE)
local_port_conf.txmode.offloads |=
local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
dev_info.flow_type_rss_offloads;
if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
printf("Port %u modified RSS hash function based on hardware support,"
"requested:%#"PRIx64" configured:%#"PRIx64"\n",
portid,
local_port_conf.rx_adv_conf.rss_conf.rss_hf);
}
ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
&local_port_conf);
if (ret < 0) {
printf("\n");
rte_exit(EXIT_FAILURE, "Cannot configure device: "
"err=%d, port=%d\n",
ret, portid);
}
/* init one RX queue */
rxq_conf = dev_info.default_rxconf;
rxq_conf.offloads = local_port_conf.rxmode.offloads;
ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
socket, &rxq_conf,
rxq->pool);
if (ret < 0) {
printf("\n");
rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: "
"err=%d, port=%d\n",
ret, portid);
}
ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
if (ret < 0) {
printf("\n");
rte_exit(EXIT_FAILURE,
"rte_eth_macaddr_get: err=%d, port=%d\n",
ret, portid);
}
print_ethaddr(" Address:", &ports_eth_addr[portid]);
printf("\n");
/* init one TX queue per couple (lcore,port) */
queueid = 0;
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;
socket = (int) rte_lcore_to_socket_id(lcore_id);
printf("txq=%u,%d,%d ", lcore_id, queueid, socket);
fflush(stdout);
txconf = &dev_info.default_txconf;
txconf->offloads = local_port_conf.txmode.offloads;
ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
socket, txconf);
if (ret < 0)
rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, "
"port=%d\n", ret, portid);
qconf = &lcore_queue_conf[lcore_id];
qconf->tx_queue_id[portid] = queueid;
setup_port_tbl(qconf, lcore_id, socket, portid);
queueid++;
}
printf("\n");
}
printf("\n");
/* start ports */
if ((enabled_port_mask & (1 << portid)) == 0) {
continue;
}
/* Start device */
ret = rte_eth_dev_start(portid);
if (ret < 0)
rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
ret, portid);
if (ret != 0)
rte_exit(EXIT_FAILURE,
"rte_eth_promiscuous_enable: err=%s, port=%d\n",
rte_strerror(-ret), portid);
}
if (init_routing_table() < 0)
rte_exit(EXIT_FAILURE, "Cannot init routing table\n");
check_all_ports_link_status(enabled_port_mask);
signal(SIGUSR1, signal_handler);
signal(SIGTERM, signal_handler);
signal(SIGINT, signal_handler);
/* launch per-lcore init on every lcore */
if (rte_eal_wait_lcore(lcore_id) < 0)
return -1;
}
/* clean up the EAL */
return 0;
}
#define unlikely(x)
static uint16_t rte_be_to_cpu_16(rte_be16_t x)
static uint32_t rte_be_to_cpu_32(rte_be32_t x)
#define RTE_MIN(a, b)
Definition: rte_common.h:683
#define RTE_LEN2MASK(ln, tp)
Definition: rte_common.h:789
#define RTE_MAX(a, b)
Definition: rte_common.h:703
__rte_noreturn void rte_exit(int exit_code, const char *format,...) __rte_format_printf(2
#define RTE_DIM(a)
Definition: rte_common.h:793
#define __rte_cache_aligned
Definition: rte_common.h:627
#define __rte_unused
Definition: rte_common.h:171
uint64_t rte_get_tsc_hz(void)
static void rte_delay_ms(unsigned ms)
Definition: rte_cycles.h:151
#define rte_panic(...)
Definition: rte_debug.h:43
int rte_eal_init(int argc, char **argv)
int rte_eal_cleanup(void)
const char * rte_strerror(int errnum)
int rte_eth_dev_configure(uint16_t port_id, uint16_t nb_rx_queue, uint16_t nb_tx_queue, const struct rte_eth_conf *eth_conf)
#define RTE_ETH_LINK_DOWN
Definition: rte_ethdev.h:353
int rte_eth_rx_queue_setup(uint16_t port_id, uint16_t rx_queue_id, uint16_t nb_rx_desc, unsigned int socket_id, const struct rte_eth_rxconf *rx_conf, struct rte_mempool *mb_pool)
static uint16_t rte_eth_rx_burst(uint16_t port_id, uint16_t queue_id, struct rte_mbuf **rx_pkts, const uint16_t nb_pkts)
Definition: rte_ethdev.h:6262
#define RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE
Definition: rte_ethdev.h:1618
int rte_eth_dev_info_get(uint16_t port_id, struct rte_eth_dev_info *dev_info) __rte_warn_unused_result
@ RTE_ETH_MQ_TX_NONE
Definition: rte_ethdev.h:418
@ RTE_ETH_MQ_RX_RSS
Definition: rte_ethdev.h:396
int rte_eth_link_get_nowait(uint16_t port_id, struct rte_eth_link *link) __rte_warn_unused_result
int rte_eth_promiscuous_enable(uint16_t port_id)
__rte_experimental int rte_eth_link_to_str(char *str, size_t len, const struct rte_eth_link *eth_link)
int rte_eth_tx_queue_setup(uint16_t port_id, uint16_t tx_queue_id, uint16_t nb_tx_desc, unsigned int socket_id, const struct rte_eth_txconf *tx_conf)
#define RTE_ETH_LINK_MAX_STR_LEN
Definition: rte_ethdev.h:357
static uint16_t rte_eth_tx_burst(uint16_t port_id, uint16_t queue_id, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
Definition: rte_ethdev.h:6605
int rte_eth_macaddr_get(uint16_t port_id, struct rte_ether_addr *mac_addr)
uint16_t rte_eth_dev_count_avail(void)
int rte_eth_dev_adjust_nb_rx_tx_desc(uint16_t port_id, uint16_t *nb_rx_desc, uint16_t *nb_tx_desc)
#define RTE_ETH_FOREACH_DEV(p)
Definition: rte_ethdev.h:2177
#define RTE_ETH_TX_OFFLOAD_MULTI_SEGS
Definition: rte_ethdev.h:1612
int rte_eth_dev_start(uint16_t port_id)
#define RTE_ETHER_TYPE_IPV4
Definition: rte_ether.h:329
#define RTE_ETHER_HDR_LEN
Definition: rte_ether.h:30
#define RTE_ETHER_CRC_LEN
Definition: rte_ether.h:29
#define RTE_ETHER_TYPE_IPV6
Definition: rte_ether.h:330
void rte_ether_format_addr(char *buf, uint16_t size, const struct rte_ether_addr *eth_addr)
static void rte_ether_addr_copy(const struct rte_ether_addr *__restrict ea_from, struct rte_ether_addr *__restrict ea_to)
Definition: rte_ether.h:239
#define RTE_IPV4(a, b, c, d)
Definition: rte_ip4.h:68
#define RTE_IPV6(a, b, c, d, e, f, g, h)
Definition: rte_ip6.h:179
static int rte_ipv4_frag_pkt_is_fragmented(const struct rte_ipv4_hdr *hdr)
Definition: rte_ip_frag.h:246
static struct rte_ipv6_fragment_ext * rte_ipv6_frag_get_ipv6_fragment_header(struct rte_ipv6_hdr *hdr)
Definition: rte_ip_frag.h:143
void rte_ip_frag_table_statistics_dump(FILE *f, const struct rte_ip_frag_tbl *tbl)
struct rte_mbuf * rte_ipv4_frag_reassemble_packet(struct rte_ip_frag_tbl *tbl, struct rte_ip_frag_death_row *dr, struct rte_mbuf *mb, uint64_t tms, struct rte_ipv4_hdr *ip_hdr)
struct rte_ip_frag_tbl * rte_ip_frag_table_create(uint32_t bucket_num, uint32_t bucket_entries, uint32_t max_entries, uint64_t max_cycles, int socket_id)
struct rte_mbuf * rte_ipv6_frag_reassemble_packet(struct rte_ip_frag_tbl *tbl, struct rte_ip_frag_death_row *dr, struct rte_mbuf *mb, uint64_t tms, struct rte_ipv6_hdr *ip_hdr, struct rte_ipv6_fragment_ext *frag_hdr)
void rte_ip_frag_free_death_row(struct rte_ip_frag_death_row *dr, uint32_t prefetch)
@ CALL_MAIN
Definition: rte_launch.h:75
int rte_eal_mp_remote_launch(lcore_function_t *f, void *arg, enum rte_rmt_call_main_t call_main)
int rte_eal_wait_lcore(unsigned worker_id)
unsigned int rte_lcore_to_socket_id(unsigned int lcore_id)
unsigned int rte_lcore_count(void)
int rte_lcore_is_enabled(unsigned int lcore_id)
#define RTE_LCORE_FOREACH_WORKER(i)
Definition: rte_lcore.h:225
static unsigned rte_lcore_id(void)
Definition: rte_lcore.h:78
#define RTE_LOG(l, t,...)
Definition: rte_log.h:332
struct rte_lpm6 * rte_lpm6_create(const char *name, int socket_id, const struct rte_lpm6_config *config)
int rte_lpm6_add(struct rte_lpm6 *lpm, const struct rte_ipv6_addr *ip, uint8_t depth, uint32_t next_hop)
int rte_lpm6_lookup(const struct rte_lpm6 *lpm, const struct rte_ipv6_addr *ip, uint32_t *next_hop)
int rte_lpm_add(struct rte_lpm *lpm, uint32_t ip, uint8_t depth, uint32_t next_hop)
struct rte_lpm * rte_lpm_create(const char *name, int socket_id, const struct rte_lpm_config *config)
static int rte_lpm_lookup(const struct rte_lpm *lpm, uint32_t ip, uint32_t *next_hop)
Definition: rte_lpm.h:279
void * rte_zmalloc_socket(const char *type, size_t size, unsigned align, int socket) __rte_alloc_size(2) __rte_alloc_align(3) __rte_malloc __rte_dealloc_free
static void rte_pktmbuf_free(struct rte_mbuf *m)
Definition: rte_mbuf.h:1415
struct rte_mempool * rte_pktmbuf_pool_create(const char *name, unsigned n, unsigned cache_size, uint16_t priv_size, uint16_t data_room_size, int socket_id)
#define rte_pktmbuf_mtod(m, t)
#define RTE_MBUF_F_TX_IP_CKSUM
#define RTE_MBUF_F_TX_IPV4
#define RTE_ETH_IS_IPV6_HDR(ptype)
#define RTE_ETH_IS_IPV4_HDR(ptype)
#define SOCKET_ID_ANY
Definition: rte_memory.h:39
static void rte_prefetch0(const volatile void *p)
struct rte_eth_txmode txmode
Definition: rte_ethdev.h:1520
struct rte_eth_rxmode rxmode
Definition: rte_ethdev.h:1519
struct rte_eth_rss_conf rss_conf
Definition: rte_ethdev.h:1527
struct rte_eth_conf::@149 rx_adv_conf
uint64_t rss_hf
Definition: rte_ethdev.h:513
uint32_t mtu
Definition: rte_ethdev.h:430
uint64_t offloads
Definition: rte_ethdev.h:438
enum rte_eth_rx_mq_mode mq_mode
Definition: rte_ethdev.h:429
uint64_t offloads
Definition: rte_ethdev.h:1195
uint64_t offloads
Definition: rte_ethdev.h:1017
rte_be16_t ether_type
Definition: rte_ether.h:303
struct rte_ether_addr src_addr
Definition: rte_ether.h:302
struct rte_ether_addr dst_addr
Definition: rte_ether.h:301
uint32_t max_rules
Definition: rte_lpm6.h:32
uint64_t ol_flags
uint64_t l3_len
uint32_t packet_type
uint64_t l2_len