DPDK 24.11.1
examples/dma/dmafwd.c
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2019-2021 Intel Corporation
*/
#include <stdint.h>
#include <stdlib.h>
#include <signal.h>
#include <stdbool.h>
#include <unistd.h>
#include <rte_argparse.h>
#include <rte_malloc.h>
#include <rte_ethdev.h>
#include <rte_dmadev.h>
/* size of ring used for software copying between rx and tx. */
#define RTE_LOGTYPE_DMA RTE_LOGTYPE_USER1
#define MAX_PKT_BURST 32
#define MEMPOOL_CACHE_SIZE 512
#define MIN_POOL_SIZE 65536U
#define CMD_LINE_OPT_PORTMASK_INDEX 1
#define CMD_LINE_OPT_COPY_TYPE_INDEX 2
/* configurable number of RX/TX ring descriptors */
#define RX_DEFAULT_RINGSIZE 1024
#define TX_DEFAULT_RINGSIZE 1024
/* max number of RX queues per port */
#define MAX_RX_QUEUES_COUNT 8
struct rxtx_port_config {
/* common config */
uint16_t rxtx_port;
uint16_t nb_queues;
/* for software copy mode */
struct rte_ring *rx_to_tx_ring;
/* for dmadev HW copy mode */
uint16_t dmadev_ids[MAX_RX_QUEUES_COUNT];
};
/* Configuring ports and number of assigned lcores in struct. 8< */
struct rxtx_transmission_config {
struct rxtx_port_config ports[RTE_MAX_ETHPORTS];
uint16_t nb_ports;
uint16_t nb_lcores;
};
/* >8 End of configuration of ports and number of assigned lcores. */
/* per-port statistics struct */
struct dma_port_statistics {
uint64_t rx[RTE_MAX_ETHPORTS];
uint64_t tx[RTE_MAX_ETHPORTS];
uint64_t tx_dropped[RTE_MAX_ETHPORTS];
uint64_t copy_dropped[RTE_MAX_ETHPORTS];
};
struct dma_port_statistics port_statistics;
struct total_statistics {
uint64_t total_packets_dropped;
uint64_t total_packets_tx;
uint64_t total_packets_rx;
uint64_t total_submitted;
uint64_t total_completed;
uint64_t total_failed;
};
typedef enum copy_mode_t {
#define COPY_MODE_SW "sw"
COPY_MODE_SW_NUM,
#define COPY_MODE_DMA "hw"
COPY_MODE_DMA_NUM,
COPY_MODE_INVALID_NUM,
COPY_MODE_SIZE_NUM = COPY_MODE_INVALID_NUM
} copy_mode_t;
/* mask of enabled ports */
static uint32_t dma_enabled_port_mask;
/* number of RX queues per port */
static uint16_t nb_queues = 1;
/* MAC updating enabled by default. */
static int mac_updating = 1;
/* hardware copy mode enabled by default. */
static copy_mode_t copy_mode = COPY_MODE_DMA_NUM;
/* size of descriptor ring for hardware copy mode or
* rte_ring for software copy mode
*/
static uint16_t ring_size = 2048;
/* interval, in seconds, between stats prints */
static uint16_t stats_interval = 1;
/* global mbuf arrays for tracking DMA bufs */
#define MBUF_RING_SIZE 2048
#define MBUF_RING_MASK (MBUF_RING_SIZE - 1)
struct dma_bufs {
struct rte_mbuf *bufs[MBUF_RING_SIZE];
struct rte_mbuf *copies[MBUF_RING_SIZE];
uint16_t sent;
};
static struct dma_bufs dma_bufs[RTE_DMADEV_DEFAULT_MAX];
/* global transmission config */
struct rxtx_transmission_config cfg;
/* configurable number of RX/TX ring descriptors */
static uint16_t nb_rxd = RX_DEFAULT_RINGSIZE;
static uint16_t nb_txd = TX_DEFAULT_RINGSIZE;
static volatile bool force_quit;
static uint32_t dma_batch_sz = MAX_PKT_BURST;
static uint32_t max_frame_size;
static uint32_t force_min_copy_size;
/* ethernet addresses of ports */
static struct rte_ether_addr dma_ports_eth_addr[RTE_MAX_ETHPORTS];
struct rte_mempool *dma_pktmbuf_pool;
/* Print out statistics for one port. */
static void
print_port_stats(uint16_t port_id)
{
printf("\nStatistics for port %u ------------------------------"
"\nPackets sent: %34"PRIu64
"\nPackets received: %30"PRIu64
"\nPackets dropped on tx: %25"PRIu64
"\nPackets dropped on copy: %23"PRIu64,
port_id,
port_statistics.tx[port_id],
port_statistics.rx[port_id],
port_statistics.tx_dropped[port_id],
port_statistics.copy_dropped[port_id]);
}
/* Print out statistics for one dmadev device. */
static void
print_dmadev_stats(uint32_t dev_id, struct rte_dma_stats stats)
{
printf("\nDMA channel %u", dev_id);
printf("\n\t Total submitted ops: %"PRIu64"", stats.submitted);
printf("\n\t Total completed ops: %"PRIu64"", stats.completed);
printf("\n\t Total failed ops: %"PRIu64"", stats.errors);
}
static void
print_total_stats(struct total_statistics *ts)
{
printf("\nAggregate statistics ==============================="
"\nTotal packets Tx: %22"PRIu64" [pkt/s]"
"\nTotal packets Rx: %22"PRIu64" [pkt/s]"
"\nTotal packets dropped: %17"PRIu64" [pkt/s]",
ts->total_packets_tx / stats_interval,
ts->total_packets_rx / stats_interval,
ts->total_packets_dropped / stats_interval);
if (copy_mode == COPY_MODE_DMA_NUM) {
printf("\nTotal submitted ops: %19"PRIu64" [ops/s]"
"\nTotal completed ops: %19"PRIu64" [ops/s]"
"\nTotal failed ops: %22"PRIu64" [ops/s]",
ts->total_submitted / stats_interval,
ts->total_completed / stats_interval,
ts->total_failed / stats_interval);
}
printf("\n====================================================\n");
}
/* Print out statistics on packets dropped. */
static void
print_stats(char *prgname)
{
struct total_statistics ts, delta_ts;
struct rte_dma_stats stats = {0};
uint32_t i, port_id, dev_id;
char status_string[255]; /* to print at the top of the output */
int status_strlen;
const char clr[] = { 27, '[', '2', 'J', '\0' };
const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' };
status_strlen = snprintf(status_string, sizeof(status_string),
"%s, ", prgname);
status_strlen += snprintf(status_string + status_strlen,
sizeof(status_string) - status_strlen,
"Worker Threads = %d, ",
rte_lcore_count() > 2 ? 2 : 1);
status_strlen += snprintf(status_string + status_strlen,
sizeof(status_string) - status_strlen,
"Copy Mode = %s,\n", copy_mode == COPY_MODE_SW_NUM ?
COPY_MODE_SW : COPY_MODE_DMA);
status_strlen += snprintf(status_string + status_strlen,
sizeof(status_string) - status_strlen,
"Updating MAC = %s, ", mac_updating ?
"enabled" : "disabled");
status_strlen += snprintf(status_string + status_strlen,
sizeof(status_string) - status_strlen,
"Rx Queues = %d, ", nb_queues);
status_strlen += snprintf(status_string + status_strlen,
sizeof(status_string) - status_strlen,
"Ring Size = %d\n", ring_size);
status_strlen += snprintf(status_string + status_strlen,
sizeof(status_string) - status_strlen,
"Force Min Copy Size = %u Packet Data Room Size = %u",
force_min_copy_size,
rte_pktmbuf_data_room_size(dma_pktmbuf_pool) -
RTE_PKTMBUF_HEADROOM);
memset(&ts, 0, sizeof(struct total_statistics));
while (!force_quit) {
/* Sleep for "stats_interval" seconds each round - init sleep allows reading
* messages from app startup.
*/
sleep(stats_interval);
/* Clear screen and move to top left */
printf("%s%s", clr, topLeft);
memset(&delta_ts, 0, sizeof(struct total_statistics));
printf("%s\n", status_string);
for (i = 0; i < cfg.nb_ports; i++) {
port_id = cfg.ports[i].rxtx_port;
print_port_stats(port_id);
delta_ts.total_packets_dropped +=
port_statistics.tx_dropped[port_id]
+ port_statistics.copy_dropped[port_id];
delta_ts.total_packets_tx +=
port_statistics.tx[port_id];
delta_ts.total_packets_rx +=
port_statistics.rx[port_id];
if (copy_mode == COPY_MODE_DMA_NUM) {
uint32_t j;
for (j = 0; j < cfg.ports[i].nb_queues; j++) {
dev_id = cfg.ports[i].dmadev_ids[j];
rte_dma_stats_get(dev_id, 0, &stats);
print_dmadev_stats(dev_id, stats);
delta_ts.total_submitted += stats.submitted;
delta_ts.total_completed += stats.completed;
delta_ts.total_failed += stats.errors;
}
}
}
delta_ts.total_packets_tx -= ts.total_packets_tx;
delta_ts.total_packets_rx -= ts.total_packets_rx;
delta_ts.total_packets_dropped -= ts.total_packets_dropped;
delta_ts.total_submitted -= ts.total_submitted;
delta_ts.total_completed -= ts.total_completed;
delta_ts.total_failed -= ts.total_failed;
printf("\n");
print_total_stats(&delta_ts);
fflush(stdout);
ts.total_packets_tx += delta_ts.total_packets_tx;
ts.total_packets_rx += delta_ts.total_packets_rx;
ts.total_packets_dropped += delta_ts.total_packets_dropped;
ts.total_submitted += delta_ts.total_submitted;
ts.total_completed += delta_ts.total_completed;
ts.total_failed += delta_ts.total_failed;
}
}
static void
update_mac_addrs(struct rte_mbuf *m, uint32_t dest_portid)
{
struct rte_ether_hdr *eth;
void *tmp;
eth = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
/* 02:00:00:00:00:xx - overwriting 2 bytes of source address but
* it's acceptable cause it gets overwritten by rte_ether_addr_copy
*/
tmp = &eth->dst_addr.addr_bytes[0];
*((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dest_portid << 40);
/* src addr */
rte_ether_addr_copy(&dma_ports_eth_addr[dest_portid], &eth->src_addr);
}
/* Perform packet copy there is a user-defined function. 8< */
static inline void
pktmbuf_metadata_copy(const struct rte_mbuf *src, struct rte_mbuf *dst)
{
dst->data_off = src->data_off;
memcpy(&dst->rx_descriptor_fields1, &src->rx_descriptor_fields1,
offsetof(struct rte_mbuf, buf_len) -
offsetof(struct rte_mbuf, rx_descriptor_fields1));
}
/* Copy packet data */
static inline void
pktmbuf_sw_copy(struct rte_mbuf *src, struct rte_mbuf *dst)
{
rte_pktmbuf_mtod(src, char *),
RTE_MAX(src->data_len, force_min_copy_size));
}
/* >8 End of perform packet copy there is a user-defined function. */
static uint32_t
dma_enqueue_packets(struct rte_mbuf *pkts[], struct rte_mbuf *pkts_copy[],
uint32_t nb_rx, uint16_t dev_id)
{
struct dma_bufs *dma = &dma_bufs[dev_id];
int ret;
uint32_t i;
for (i = 0; i < nb_rx; i++) {
/* Perform data copy */
ret = rte_dma_copy(dev_id, 0,
rte_pktmbuf_iova(pkts[i]),
rte_pktmbuf_iova(pkts_copy[i]),
force_min_copy_size),
0);
if (ret < 0)
break;
dma->bufs[ret & MBUF_RING_MASK] = pkts[i];
dma->copies[ret & MBUF_RING_MASK] = pkts_copy[i];
}
ret = i;
return ret;
}
static inline uint32_t
dma_enqueue(struct rte_mbuf *pkts[], struct rte_mbuf *pkts_copy[],
uint32_t num, uint32_t step, uint16_t dev_id)
{
uint32_t i, k, m, n;
k = 0;
for (i = 0; i < num; i += m) {
m = RTE_MIN(step, num - i);
n = dma_enqueue_packets(pkts + i, pkts_copy + i, m, dev_id);
k += n;
if (n > 0)
rte_dma_submit(dev_id, 0);
/* don't try to enqueue more if HW queue is full */
if (n != m)
break;
}
return k;
}
static inline uint32_t
dma_dequeue(struct rte_mbuf *src[], struct rte_mbuf *dst[], uint32_t num,
uint16_t dev_id)
{
struct dma_bufs *dma = &dma_bufs[dev_id];
uint16_t nb_dq, filled;
/* Dequeue the mbufs from DMA device. Since all memory
* is DPDK pinned memory and therefore all addresses should
* be valid, we don't check for copy errors
*/
nb_dq = rte_dma_completed(dev_id, 0, num, NULL, NULL);
/* Return early if no work to do */
if (unlikely(nb_dq == 0))
return nb_dq;
/* Populate pkts_copy with the copies bufs from dma->copies for tx */
for (filled = 0; filled < nb_dq; filled++) {
src[filled] = dma->bufs[(dma->sent + filled) & MBUF_RING_MASK];
dst[filled] = dma->copies[(dma->sent + filled) & MBUF_RING_MASK];
}
dma->sent += nb_dq;
return filled;
}
/* Receive packets on one port and enqueue to dmadev or rte_ring. 8< */
static void
dma_rx_port(struct rxtx_port_config *rx_config)
{
int32_t ret;
uint32_t nb_rx, nb_enq, i, j;
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
struct rte_mbuf *pkts_burst_copy[MAX_PKT_BURST];
for (i = 0; i < rx_config->nb_queues; i++) {
nb_rx = rte_eth_rx_burst(rx_config->rxtx_port, i,
pkts_burst, MAX_PKT_BURST);
if (nb_rx == 0) {
if (copy_mode == COPY_MODE_DMA_NUM &&
(nb_rx = dma_dequeue(pkts_burst, pkts_burst_copy,
MAX_PKT_BURST, rx_config->dmadev_ids[i])) > 0)
goto handle_tx;
continue;
}
port_statistics.rx[rx_config->rxtx_port] += nb_rx;
ret = rte_mempool_get_bulk(dma_pktmbuf_pool,
(void *)pkts_burst_copy, nb_rx);
if (unlikely(ret < 0))
rte_exit(EXIT_FAILURE,
"Unable to allocate memory.\n");
for (j = 0; j < nb_rx; j++)
pktmbuf_metadata_copy(pkts_burst[j],
pkts_burst_copy[j]);
if (copy_mode == COPY_MODE_DMA_NUM) {
/* enqueue packets for hardware copy */
nb_enq = dma_enqueue(pkts_burst, pkts_burst_copy,
nb_rx, dma_batch_sz, rx_config->dmadev_ids[i]);
/* free any not enqueued packets. */
rte_mempool_put_bulk(dma_pktmbuf_pool,
(void *)&pkts_burst[nb_enq],
nb_rx - nb_enq);
rte_mempool_put_bulk(dma_pktmbuf_pool,
(void *)&pkts_burst_copy[nb_enq],
nb_rx - nb_enq);
port_statistics.copy_dropped[rx_config->rxtx_port] +=
(nb_rx - nb_enq);
/* get completed copies */
nb_rx = dma_dequeue(pkts_burst, pkts_burst_copy,
MAX_PKT_BURST, rx_config->dmadev_ids[i]);
} else {
/* Perform packet software copy, free source packets */
for (j = 0; j < nb_rx; j++)
pktmbuf_sw_copy(pkts_burst[j],
pkts_burst_copy[j]);
}
handle_tx:
rte_mempool_put_bulk(dma_pktmbuf_pool,
(void *)pkts_burst, nb_rx);
nb_enq = rte_ring_enqueue_burst(rx_config->rx_to_tx_ring,
(void *)pkts_burst_copy, nb_rx, NULL);
/* Free any not enqueued packets. */
rte_mempool_put_bulk(dma_pktmbuf_pool,
(void *)&pkts_burst_copy[nb_enq],
nb_rx - nb_enq);
port_statistics.copy_dropped[rx_config->rxtx_port] +=
(nb_rx - nb_enq);
}
}
/* >8 End of receive packets on one port and enqueue to dmadev or rte_ring. */
/* Transmit packets from dmadev/rte_ring for one port. 8< */
static void
dma_tx_port(struct rxtx_port_config *tx_config)
{
uint32_t i, j, nb_dq, nb_tx;
struct rte_mbuf *mbufs[MAX_PKT_BURST];
for (i = 0; i < tx_config->nb_queues; i++) {
/* Dequeue the mbufs from rx_to_tx_ring. */
nb_dq = rte_ring_dequeue_burst(tx_config->rx_to_tx_ring,
(void *)mbufs, MAX_PKT_BURST, NULL);
if (nb_dq == 0)
continue;
/* Update macs if enabled */
if (mac_updating) {
for (j = 0; j < nb_dq; j++)
update_mac_addrs(mbufs[j],
tx_config->rxtx_port);
}
nb_tx = rte_eth_tx_burst(tx_config->rxtx_port, 0,
(void *)mbufs, nb_dq);
port_statistics.tx[tx_config->rxtx_port] += nb_tx;
if (unlikely(nb_tx < nb_dq)) {
port_statistics.tx_dropped[tx_config->rxtx_port] +=
(nb_dq - nb_tx);
/* Free any unsent packets. */
rte_mempool_put_bulk(dma_pktmbuf_pool,
(void *)&mbufs[nb_tx], nb_dq - nb_tx);
}
}
}
/* >8 End of transmitting packets from dmadev. */
/* Main rx processing loop for dmadev. */
static void
rx_main_loop(void)
{
uint16_t i;
uint16_t nb_ports = cfg.nb_ports;
RTE_LOG(INFO, DMA, "Entering main rx loop for copy on lcore %u\n",
while (!force_quit)
for (i = 0; i < nb_ports; i++)
dma_rx_port(&cfg.ports[i]);
}
/* Main tx processing loop for hardware copy. */
static void
tx_main_loop(void)
{
uint16_t i;
uint16_t nb_ports = cfg.nb_ports;
RTE_LOG(INFO, DMA, "Entering main tx loop for copy on lcore %u\n",
while (!force_quit)
for (i = 0; i < nb_ports; i++)
dma_tx_port(&cfg.ports[i]);
}
/* Main rx and tx loop if only one worker lcore available */
static void
rxtx_main_loop(void)
{
uint16_t i;
uint16_t nb_ports = cfg.nb_ports;
RTE_LOG(INFO, DMA, "Entering main rx and tx loop for copy on"
" lcore %u\n", rte_lcore_id());
while (!force_quit)
for (i = 0; i < nb_ports; i++) {
dma_rx_port(&cfg.ports[i]);
dma_tx_port(&cfg.ports[i]);
}
}
/* Start processing for each lcore. 8< */
static void start_forwarding_cores(void)
{
uint32_t lcore_id = rte_lcore_id();
RTE_LOG(INFO, DMA, "Entering %s on lcore %u\n",
__func__, rte_lcore_id());
if (cfg.nb_lcores == 1) {
lcore_id = rte_get_next_lcore(lcore_id, true, true);
NULL, lcore_id);
} else if (cfg.nb_lcores > 1) {
lcore_id = rte_get_next_lcore(lcore_id, true, true);
NULL, lcore_id);
lcore_id = rte_get_next_lcore(lcore_id, true, true);
rte_eal_remote_launch((lcore_function_t *)tx_main_loop, NULL,
lcore_id);
}
}
/* >8 End of starting to process for each lcore. */
static int
dma_parse_portmask(const char *portmask)
{
char *end = NULL;
unsigned long pm;
/* Parse hexadecimal string */
pm = strtoul(portmask, &end, 16);
if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
return 0;
return pm;
}
static copy_mode_t
dma_parse_copy_mode(const char *copy_mode)
{
if (strcmp(copy_mode, COPY_MODE_SW) == 0)
return COPY_MODE_SW_NUM;
else if (strcmp(copy_mode, COPY_MODE_DMA) == 0)
return COPY_MODE_DMA_NUM;
return COPY_MODE_INVALID_NUM;
}
static int
dma_parse_args_cb(uint32_t index, const char *value, void *opaque)
{
int port_mask;
RTE_SET_USED(opaque);
if (index == CMD_LINE_OPT_PORTMASK_INDEX) {
port_mask = dma_parse_portmask(value);
if (port_mask & ~dma_enabled_port_mask || port_mask <= 0) {
printf("Invalid portmask, %s, suggest 0x%x\n",
value, dma_enabled_port_mask);
return -1;
}
dma_enabled_port_mask = port_mask;
} else if (index == CMD_LINE_OPT_COPY_TYPE_INDEX) {
copy_mode = dma_parse_copy_mode(value);
if (copy_mode == COPY_MODE_INVALID_NUM) {
printf("Invalid copy type. Use: sw, hw\n");
return -1;
}
} else {
printf("Invalid index %u\n", index);
return -1;
}
return 0;
}
/* Parse the argument given in the command line of the application */
static int
dma_parse_args(int argc, char **argv, unsigned int nb_ports)
{
static struct rte_argparse obj = {
.prog_name = "dma",
.usage = "[EAL options] -- [optional parameters]",
.descriptor = NULL,
.epilog = NULL,
.exit_on_error = false,
.callback = dma_parse_args_cb,
.opaque = NULL,
.args = {
{ "--mac-updating", NULL, "Enable MAC addresses updating",
&mac_updating, (void *)1,
},
{ "--no-mac-updating", NULL, "Disable MAC addresses updating",
&mac_updating, (void *)0,
},
{ "--portmask", "-p", "hexadecimal bitmask of ports to configure",
NULL, (void *)CMD_LINE_OPT_PORTMASK_INDEX,
},
{ "--nb-queue", "-q", "number of RX queues per port (default is 1)",
&nb_queues, NULL,
},
{ "--copy-type", "-c", "type of copy: sw|hw",
NULL, (void *)CMD_LINE_OPT_COPY_TYPE_INDEX,
},
{ "--ring-size", "-s", "size of dmadev descriptor ring for hardware copy mode or rte_ring for software copy mode",
&ring_size, NULL,
},
{ "--dma-batch-size", "-b", "number of requests per DMA batch",
&dma_batch_sz, NULL,
},
{ "--max-frame-size", "-f", "max frame size",
&max_frame_size, NULL,
},
{ "--force-min-copy-size", "-m", "force a minimum copy length, even for smaller packets",
&force_min_copy_size, NULL,
},
{ "--stats-interval", "-i", "interval, in seconds, between stats prints (default is 1)",
&stats_interval, NULL,
},
ARGPARSE_ARG_END(),
},
};
const unsigned int default_port_mask = (1 << nb_ports) - 1;
int ret;
dma_enabled_port_mask = default_port_mask;
ret = rte_argparse_parse(&obj, argc, argv);
if (ret != 0)
return ret;
/* check argument's value which parsing by autosave. */
if (dma_batch_sz == 0 || dma_batch_sz > MAX_PKT_BURST) {
printf("Invalid dma batch size, %d.\n", dma_batch_sz);
return -1;
}
if (max_frame_size > RTE_ETHER_MAX_JUMBO_FRAME_LEN) {
printf("Invalid max frame size, %d.\n", max_frame_size);
return -1;
}
if (nb_queues == 0 || nb_queues > MAX_RX_QUEUES_COUNT) {
printf("Invalid RX queues number %d. Max %u\n",
nb_queues, MAX_RX_QUEUES_COUNT);
return -1;
}
if (ring_size == 0) {
printf("Invalid ring size, %d.\n", ring_size);
return -1;
}
if (ring_size > MBUF_RING_SIZE) {
printf("Max ring_size is %d, setting ring_size to max",
MBUF_RING_SIZE);
ring_size = MBUF_RING_SIZE;
}
if (stats_interval == 0) {
printf("Invalid stats interval, setting to 1\n");
stats_interval = 1; /* set to default */
}
return 0;
}
/* check link status, return true if at least one port is up */
static int
check_link_status(uint32_t port_mask)
{
uint16_t portid;
struct rte_eth_link link;
int ret, link_status = 0;
char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
printf("\nChecking link status\n");
if ((port_mask & (1 << portid)) == 0)
continue;
memset(&link, 0, sizeof(link));
ret = rte_eth_link_get(portid, &link);
if (ret < 0) {
printf("Port %u link get failed: err=%d\n",
portid, ret);
continue;
}
/* Print link status */
rte_eth_link_to_str(link_status_text,
sizeof(link_status_text), &link);
printf("Port %d %s\n", portid, link_status_text);
if (link.link_status)
}
return link_status;
}
/* Configuration of device. 8< */
static void
configure_dmadev_queue(uint32_t dev_id)
{
struct rte_dma_info info;
struct rte_dma_conf dev_config = { .nb_vchans = 1 };
struct rte_dma_vchan_conf qconf = {
.nb_desc = ring_size
};
uint16_t vchan = 0;
if (rte_dma_configure(dev_id, &dev_config) != 0)
rte_exit(EXIT_FAILURE, "Error with rte_dma_configure()\n");
if (rte_dma_vchan_setup(dev_id, vchan, &qconf) != 0) {
printf("Error with queue configuration\n");
}
rte_dma_info_get(dev_id, &info);
if (info.nb_vchans != 1) {
printf("Error, no configured queues reported on device id %u\n", dev_id);
}
if (rte_dma_start(dev_id) != 0)
rte_exit(EXIT_FAILURE, "Error with rte_dma_start()\n");
}
/* >8 End of configuration of device. */
/* Using dmadev API functions. 8< */
static void
assign_dmadevs(void)
{
uint16_t nb_dmadev = 0;
int16_t dev_id = rte_dma_next_dev(0);
uint32_t i, j;
for (i = 0; i < cfg.nb_ports; i++) {
for (j = 0; j < cfg.ports[i].nb_queues; j++) {
if (dev_id == -1)
goto end;
cfg.ports[i].dmadev_ids[j] = dev_id;
configure_dmadev_queue(cfg.ports[i].dmadev_ids[j]);
dev_id = rte_dma_next_dev(dev_id + 1);
++nb_dmadev;
}
}
end:
if (nb_dmadev < cfg.nb_ports * cfg.ports[0].nb_queues)
rte_exit(EXIT_FAILURE,
"Not enough dmadevs (%u) for all queues (%u).\n",
nb_dmadev, cfg.nb_ports * cfg.ports[0].nb_queues);
RTE_LOG(INFO, DMA, "Number of used dmadevs: %u.\n", nb_dmadev);
}
/* >8 End of using dmadev API functions. */
/* Assign ring structures for packet exchanging. 8< */
static void
assign_rings(void)
{
uint32_t i;
for (i = 0; i < cfg.nb_ports; i++) {
char ring_name[RTE_RING_NAMESIZE];
snprintf(ring_name, sizeof(ring_name), "rx_to_tx_ring_%u", i);
/* Create ring for inter core communication */
cfg.ports[i].rx_to_tx_ring = rte_ring_create(
ring_name, ring_size,
if (cfg.ports[i].rx_to_tx_ring == NULL)
rte_exit(EXIT_FAILURE, "Ring create failed: %s\n",
}
}
/* >8 End of assigning ring structures for packet exchanging. */
static uint32_t
eth_dev_get_overhead_len(uint32_t max_rx_pktlen, uint16_t max_mtu)
{
uint32_t overhead_len;
if (max_mtu != UINT16_MAX && max_rx_pktlen > max_mtu)
overhead_len = max_rx_pktlen - max_mtu;
else
return overhead_len;
}
static int
config_port_max_pkt_len(struct rte_eth_conf *conf,
struct rte_eth_dev_info *dev_info)
{
uint32_t overhead_len;
if (max_frame_size == 0)
return 0;
if (max_frame_size < RTE_ETHER_MIN_LEN)
return -1;
overhead_len = eth_dev_get_overhead_len(dev_info->max_rx_pktlen,
dev_info->max_mtu);
conf->rxmode.mtu = max_frame_size - overhead_len;
return 0;
}
/*
* Initializes a given port using global settings and with the RX buffers
* coming from the mbuf_pool passed as a parameter.
*/
static inline void
port_init(uint16_t portid, struct rte_mempool *mbuf_pool, uint16_t nb_queues)
{
/* Configuring port to use RSS for multiple RX queues. 8< */
static const struct rte_eth_conf port_conf = {
.rxmode = {
},
.rx_adv_conf = {
.rss_conf = {
.rss_key = NULL,
}
}
};
/* >8 End of configuring port to use RSS for multiple RX queues. */
struct rte_eth_rxconf rxq_conf;
struct rte_eth_txconf txq_conf;
struct rte_eth_conf local_port_conf = port_conf;
struct rte_eth_dev_info dev_info;
int ret, i;
/* Skip ports that are not enabled */
if ((dma_enabled_port_mask & (1 << portid)) == 0) {
printf("Skipping disabled port %u\n", portid);
return;
}
/* Init port */
printf("Initializing port %u... ", portid);
fflush(stdout);
ret = rte_eth_dev_info_get(portid, &dev_info);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Cannot get device info: %s, port=%u\n",
rte_strerror(-ret), portid);
ret = config_port_max_pkt_len(&local_port_conf, &dev_info);
if (ret != 0)
rte_exit(EXIT_FAILURE,
"Invalid max frame size: %u (port %u)\n",
max_frame_size, portid);
local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
ret = rte_eth_dev_configure(portid, nb_queues, 1, &local_port_conf);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Cannot configure device:"
" err=%d, port=%u\n", ret, portid);
ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
&nb_txd);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Cannot adjust number of descriptors: err=%d, port=%u\n",
ret, portid);
rte_eth_macaddr_get(portid, &dma_ports_eth_addr[portid]);
/* Init RX queues */
rxq_conf = dev_info.default_rxconf;
rxq_conf.offloads = local_port_conf.rxmode.offloads;
for (i = 0; i < nb_queues; i++) {
ret = rte_eth_rx_queue_setup(portid, i, nb_rxd,
rte_eth_dev_socket_id(portid), &rxq_conf,
mbuf_pool);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"rte_eth_rx_queue_setup:err=%d,port=%u, queue_id=%u\n",
ret, portid, i);
}
/* Init one TX queue on each port */
txq_conf = dev_info.default_txconf;
txq_conf.offloads = local_port_conf.txmode.offloads;
ret = rte_eth_tx_queue_setup(portid, 0, nb_txd,
&txq_conf);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"rte_eth_tx_queue_setup:err=%d,port=%u\n",
ret, portid);
/* Start device. 8< */
ret = rte_eth_dev_start(portid);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"rte_eth_dev_start:err=%d, port=%u\n",
ret, portid);
/* >8 End of starting device. */
/* RX port is set in promiscuous mode. 8< */
/* >8 End of RX port is set in promiscuous mode. */
printf("Port %u, MAC address: " RTE_ETHER_ADDR_PRT_FMT "\n\n",
portid,
RTE_ETHER_ADDR_BYTES(&dma_ports_eth_addr[portid]));
cfg.ports[cfg.nb_ports].rxtx_port = portid;
cfg.ports[cfg.nb_ports++].nb_queues = nb_queues;
}
/* Get a device dump for each device being used by the application */
static void
dmadev_dump(void)
{
uint32_t i, j;
if (copy_mode != COPY_MODE_DMA_NUM)
return;
for (i = 0; i < cfg.nb_ports; i++)
for (j = 0; j < cfg.ports[i].nb_queues; j++)
rte_dma_dump(cfg.ports[i].dmadev_ids[j], stdout);
}
static void
signal_handler(int signum)
{
if (signum == SIGINT || signum == SIGTERM) {
printf("\n\nSignal %d received, preparing to exit...\n",
signum);
force_quit = true;
} else if (signum == SIGUSR1) {
dmadev_dump();
}
}
int
main(int argc, char **argv)
{
int ret;
uint16_t nb_ports, portid;
uint32_t i;
unsigned int nb_mbufs;
size_t sz;
/* Init EAL. 8< */
ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");
/* >8 End of init EAL. */
argc -= ret;
argv += ret;
force_quit = false;
signal(SIGINT, signal_handler);
signal(SIGTERM, signal_handler);
signal(SIGUSR1, signal_handler);
if (nb_ports == 0)
rte_exit(EXIT_FAILURE, "No Ethernet ports - bye\n");
/* Parse application arguments (after the EAL ones) */
ret = dma_parse_args(argc, argv, nb_ports);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid DMA arguments\n");
/* Allocates mempool to hold the mbufs. 8< */
nb_mbufs = RTE_MAX(nb_ports * (nb_queues * (nb_rxd + nb_txd +
4 * MAX_PKT_BURST + ring_size) + ring_size +
rte_lcore_count() * MEMPOOL_CACHE_SIZE),
MIN_POOL_SIZE);
/* Create the mbuf pool */
sz = max_frame_size + RTE_PKTMBUF_HEADROOM;
sz = RTE_MAX(sz, (size_t)RTE_MBUF_DEFAULT_BUF_SIZE);
dma_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", nb_mbufs,
MEMPOOL_CACHE_SIZE, 0, sz, rte_socket_id());
if (dma_pktmbuf_pool == NULL)
rte_exit(EXIT_FAILURE, "Cannot init mbuf pool\n");
/* >8 End of allocates mempool to hold the mbufs. */
if (force_min_copy_size >
(uint32_t)(rte_pktmbuf_data_room_size(dma_pktmbuf_pool) -
RTE_PKTMBUF_HEADROOM))
rte_exit(EXIT_FAILURE,
"Force min copy size > packet mbuf size\n");
/* Initialize each port. 8< */
cfg.nb_ports = 0;
port_init(portid, dma_pktmbuf_pool, nb_queues);
/* >8 End of initializing each port. */
/* Initialize port xstats */
memset(&port_statistics, 0, sizeof(port_statistics));
/* Assigning each port resources. 8< */
while (!check_link_status(dma_enabled_port_mask) && !force_quit)
sleep(1);
/* Check if there is enough lcores for all ports. */
cfg.nb_lcores = rte_lcore_count() - 1;
if (cfg.nb_lcores < 1)
rte_exit(EXIT_FAILURE,
"There should be at least one worker lcore.\n");
if (copy_mode == COPY_MODE_DMA_NUM)
assign_dmadevs();
assign_rings();
/* >8 End of assigning each port resources. */
start_forwarding_cores();
/* main core prints stats while other cores forward */
print_stats(argv[0]);
/* force_quit is true when we get here */
uint32_t j;
for (i = 0; i < cfg.nb_ports; i++) {
printf("Closing port %d\n", cfg.ports[i].rxtx_port);
ret = rte_eth_dev_stop(cfg.ports[i].rxtx_port);
if (ret != 0)
RTE_LOG(ERR, DMA, "rte_eth_dev_stop: err=%s, port=%u\n",
rte_strerror(-ret), cfg.ports[i].rxtx_port);
rte_eth_dev_close(cfg.ports[i].rxtx_port);
if (copy_mode == COPY_MODE_DMA_NUM) {
for (j = 0; j < cfg.ports[i].nb_queues; j++) {
printf("Stopping dmadev %d\n",
cfg.ports[i].dmadev_ids[j]);
rte_dma_stop(cfg.ports[i].dmadev_ids[j]);
}
} else /* copy_mode == COPY_MODE_SW_NUM */
rte_ring_free(cfg.ports[i].rx_to_tx_ring);
}
/* clean up the EAL */
printf("Bye...\n");
return 0;
}
#define RTE_ARGPARSE_ARG_VALUE_INT
Definition: rte_argparse.h:54
#define RTE_ARGPARSE_ARG_NO_VALUE
Definition: rte_argparse.h:48
#define RTE_ARGPARSE_ARG_REQUIRED_VALUE
Definition: rte_argparse.h:50
#define RTE_ARGPARSE_ARG_VALUE_U32
Definition: rte_argparse.h:60
__rte_experimental int rte_argparse_parse(struct rte_argparse *obj, int argc, char **argv)
#define RTE_ARGPARSE_ARG_VALUE_U16
Definition: rte_argparse.h:58
#define unlikely(x)
#define offsetof(TYPE, MEMBER)
Definition: rte_common.h:724
#define RTE_MIN(a, b)
Definition: rte_common.h:683
#define RTE_MAX(a, b)
Definition: rte_common.h:703
#define RTE_SET_USED(x)
Definition: rte_common.h:187
__rte_noreturn void rte_exit(int exit_code, const char *format,...) __rte_format_printf(2
#define rte_panic(...)
Definition: rte_debug.h:43
#define RTE_DMADEV_DEFAULT_MAX
Definition: rte_dmadev.h:157
@ RTE_DMA_DIR_MEM_TO_MEM
Definition: rte_dmadev.h:424
int rte_dma_start(int16_t dev_id)
int rte_dma_info_get(int16_t dev_id, struct rte_dma_info *dev_info)
static int rte_dma_copy(int16_t dev_id, uint16_t vchan, rte_iova_t src, rte_iova_t dst, uint32_t length, uint64_t flags)
Definition: rte_dmadev.h:863
int rte_dma_configure(int16_t dev_id, const struct rte_dma_conf *dev_conf)
int rte_dma_stop(int16_t dev_id)
static uint16_t rte_dma_completed(int16_t dev_id, uint16_t vchan, const uint16_t nb_cpls, uint16_t *last_idx, bool *has_error)
Definition: rte_dmadev.h:1039
int rte_dma_dump(int16_t dev_id, FILE *f)
int rte_dma_vchan_setup(int16_t dev_id, uint16_t vchan, const struct rte_dma_vchan_conf *conf)
int16_t rte_dma_next_dev(int16_t start_dev_id)
static int rte_dma_submit(int16_t dev_id, uint16_t vchan)
Definition: rte_dmadev.h:998
int rte_dma_stats_get(int16_t dev_id, uint16_t vchan, struct rte_dma_stats *stats)
int rte_eal_init(int argc, char **argv)
int rte_eal_cleanup(void)
const char * rte_strerror(int errnum)
#define rte_errno
Definition: rte_errno.h:29
int rte_eth_dev_configure(uint16_t port_id, uint16_t nb_rx_queue, uint16_t nb_tx_queue, const struct rte_eth_conf *eth_conf)
int rte_eth_rx_queue_setup(uint16_t port_id, uint16_t rx_queue_id, uint16_t nb_rx_desc, unsigned int socket_id, const struct rte_eth_rxconf *rx_conf, struct rte_mempool *mb_pool)
static uint16_t rte_eth_rx_burst(uint16_t port_id, uint16_t queue_id, struct rte_mbuf **rx_pkts, const uint16_t nb_pkts)
Definition: rte_ethdev.h:6262
int rte_eth_dev_info_get(uint16_t port_id, struct rte_eth_dev_info *dev_info) __rte_warn_unused_result
@ RTE_ETH_MQ_RX_RSS
Definition: rte_ethdev.h:396
int rte_eth_promiscuous_enable(uint16_t port_id)
__rte_experimental int rte_eth_link_to_str(char *str, size_t len, const struct rte_eth_link *eth_link)
int rte_eth_dev_stop(uint16_t port_id)
int rte_eth_tx_queue_setup(uint16_t port_id, uint16_t tx_queue_id, uint16_t nb_tx_desc, unsigned int socket_id, const struct rte_eth_txconf *tx_conf)
#define RTE_ETH_LINK_MAX_STR_LEN
Definition: rte_ethdev.h:357
static uint16_t rte_eth_tx_burst(uint16_t port_id, uint16_t queue_id, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
Definition: rte_ethdev.h:6605
int rte_eth_macaddr_get(uint16_t port_id, struct rte_ether_addr *mac_addr)
#define RTE_ETH_RSS_PROTO_MASK
Definition: rte_ethdev.h:816
uint16_t rte_eth_dev_count_avail(void)
int rte_eth_link_get(uint16_t port_id, struct rte_eth_link *link) __rte_warn_unused_result
int rte_eth_dev_close(uint16_t port_id)
int rte_eth_dev_socket_id(uint16_t port_id)
int rte_eth_dev_adjust_nb_rx_tx_desc(uint16_t port_id, uint16_t *nb_rx_desc, uint16_t *nb_tx_desc)
#define RTE_ETH_FOREACH_DEV(p)
Definition: rte_ethdev.h:2177
int rte_eth_dev_start(uint16_t port_id)
#define RTE_ETHER_MAX_JUMBO_FRAME_LEN
Definition: rte_ether.h:44
#define RTE_ETHER_ADDR_PRT_FMT
Definition: rte_ether.h:248
#define RTE_ETHER_HDR_LEN
Definition: rte_ether.h:30
#define RTE_ETHER_ADDR_BYTES(mac_addrs)
Definition: rte_ether.h:252
#define RTE_ETHER_CRC_LEN
Definition: rte_ether.h:29
#define RTE_ETHER_MIN_LEN
Definition: rte_ether.h:33
static void rte_ether_addr_copy(const struct rte_ether_addr *__restrict ea_from, struct rte_ether_addr *__restrict ea_to)
Definition: rte_ether.h:239
int() lcore_function_t(void *)
Definition: rte_launch.h:31
int rte_eal_remote_launch(lcore_function_t *f, void *arg, unsigned worker_id)
void rte_eal_mp_wait_lcore(void)
unsigned int rte_lcore_count(void)
unsigned int rte_socket_id(void)
unsigned int rte_get_next_lcore(unsigned int i, int skip_main, int wrap)
static unsigned rte_lcore_id(void)
Definition: rte_lcore.h:78
#define RTE_LOG(l, t,...)
Definition: rte_log.h:332
#define rte_pktmbuf_data_len(m)
Definition: rte_mbuf.h:1571
struct rte_mempool * rte_pktmbuf_pool_create(const char *name, unsigned n, unsigned cache_size, uint16_t priv_size, uint16_t data_room_size, int socket_id)
static uint16_t rte_pktmbuf_data_room_size(struct rte_mempool *mp)
Definition: rte_mbuf.h:825
#define rte_pktmbuf_iova(m)
#define rte_pktmbuf_mtod(m, t)
static void * rte_memcpy(void *dst, const void *src, size_t n)
static __rte_always_inline int rte_mempool_get_bulk(struct rte_mempool *mp, void **obj_table, unsigned int n)
Definition: rte_mempool.h:1679
static __rte_always_inline void rte_mempool_put_bulk(struct rte_mempool *mp, void *const *obj_table, unsigned int n)
Definition: rte_mempool.h:1465
void rte_ring_free(struct rte_ring *r)
static __rte_always_inline unsigned int rte_ring_enqueue_burst(struct rte_ring *r, void *const *obj_table, unsigned int n, unsigned int *free_space)
Definition: rte_ring.h:731
struct rte_ring * rte_ring_create(const char *name, unsigned int count, int socket_id, unsigned int flags)
static __rte_always_inline unsigned int rte_ring_dequeue_burst(struct rte_ring *r, void **obj_table, unsigned int n, unsigned int *available)
Definition: rte_ring.h:811
#define RING_F_SP_ENQ
#define RTE_RING_NAMESIZE
Definition: rte_ring_core.h:49
#define RING_F_SC_DEQ
const char * prog_name
Definition: rte_argparse.h:147
uint16_t nb_vchans
Definition: rte_dmadev.h:337
uint64_t submitted
Definition: rte_dmadev.h:628
uint64_t errors
Definition: rte_dmadev.h:634
uint64_t completed
Definition: rte_dmadev.h:632
enum rte_dma_direction direction
Definition: rte_dmadev.h:574
struct rte_eth_txmode txmode
Definition: rte_ethdev.h:1520
struct rte_eth_rxmode rxmode
Definition: rte_ethdev.h:1519
struct rte_eth_rss_conf rss_conf
Definition: rte_ethdev.h:1527
struct rte_eth_conf::@149 rx_adv_conf
struct rte_eth_txconf default_txconf
Definition: rte_ethdev.h:1816
struct rte_eth_rxconf default_rxconf
Definition: rte_ethdev.h:1815
uint32_t max_rx_pktlen
Definition: rte_ethdev.h:1790
uint16_t max_mtu
Definition: rte_ethdev.h:1779
uint64_t flow_type_rss_offloads
Definition: rte_ethdev.h:1814
uint64_t rss_hf
Definition: rte_ethdev.h:513
uint64_t offloads
Definition: rte_ethdev.h:1144
uint32_t mtu
Definition: rte_ethdev.h:430
uint64_t offloads
Definition: rte_ethdev.h:438
enum rte_eth_rx_mq_mode mq_mode
Definition: rte_ethdev.h:429
uint64_t offloads
Definition: rte_ethdev.h:1195
uint64_t offloads
Definition: rte_ethdev.h:1017
struct rte_ether_addr src_addr
Definition: rte_ether.h:302
struct rte_ether_addr dst_addr
Definition: rte_ether.h:301
uint16_t data_len