#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <string.h>
#include <sys/queue.h>
#include <stdarg.h>
#include <errno.h>
#include <getopt.h>
#include <signal.h>
#include <sys/param.h>
#define MAX_PKT_BURST 32
#define RTE_LOGTYPE_IP_RSMBL RTE_LOGTYPE_USER1
#define MAX_JUMBO_PKT_LEN 9600
#define BUF_SIZE RTE_MBUF_DEFAULT_DATAROOM
#define MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE
#define NB_MBUF 8192
#define MEMPOOL_CACHE_SIZE 256
#define JUMBO_FRAME_MAX_SIZE 0x2600
#define MAX_FLOW_NUM UINT16_MAX
#define MIN_FLOW_NUM 1
#define DEF_FLOW_NUM 0x1000
#define MAX_FLOW_TTL (3600 * MS_PER_S)
#define MIN_FLOW_TTL 1
#define DEF_FLOW_TTL MS_PER_S
#define MAX_FRAG_NUM RTE_LIBRTE_IP_FRAG_MAX_FRAG
#define IP_FRAG_TBL_BUCKET_ENTRIES 16
static uint32_t max_flow_num = DEF_FLOW_NUM;
static uint32_t max_flow_ttl = DEF_FLOW_TTL;
#define BURST_TX_DRAIN_US 100
#define NB_SOCKETS 8
#define PREFETCH_OFFSET 3
#define RX_DESC_DEFAULT 1024
#define TX_DESC_DEFAULT 1024
static uint16_t nb_rxd = RX_DESC_DEFAULT;
static uint16_t nb_txd = TX_DESC_DEFAULT;
static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
#ifndef IPv4_BYTES
#define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8
#define IPv4_BYTES(addr) \
(uint8_t) (((addr) >> 24) & 0xFF),\
(uint8_t) (((addr) >> 16) & 0xFF),\
(uint8_t) (((addr) >> 8) & 0xFF),\
(uint8_t) ((addr) & 0xFF)
#endif
#ifndef IPv6_BYTES
#define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
"%02x%02x:%02x%02x:%02x%02x:%02x%02x"
#define IPv6_BYTES(addr) \
addr[0], addr[1], addr[2], addr[3], \
addr[4], addr[5], addr[6], addr[7], \
addr[8], addr[9], addr[10], addr[11],\
addr[12], addr[13],addr[14], addr[15]
#endif
#define IPV6_ADDR_LEN 16
static uint32_t enabled_port_mask = 0;
static int rx_queue_per_lcore = 1;
struct mbuf_table {
uint32_t len;
uint32_t head;
uint32_t tail;
};
struct rx_queue {
struct rte_ip_frag_tbl *frag_tbl;
struct rte_lpm *lpm;
struct rte_lpm6 *lpm6;
uint16_t portid;
};
struct tx_lcore_stat {
uint64_t call;
uint64_t drop;
uint64_t queue;
uint64_t send;
};
#define MAX_RX_QUEUE_PER_LCORE 16
#define MAX_TX_QUEUE_PER_PORT 16
#define MAX_RX_QUEUE_PER_PORT 128
uint16_t n_rx_queue;
struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
struct mbuf_table *tx_mbufs[RTE_MAX_ETHPORTS];
struct tx_lcore_stat tx_stat;
};
static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
.offloads = RTE_ETH_RX_OFFLOAD_CHECKSUM,
},
.rx_adv_conf = {
.rss_conf = {
.rss_key = NULL,
.rss_hf = RTE_ETH_RSS_IP,
},
},
.txmode = {
.offloads = (RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
},
};
struct l3fwd_ipv4_route {
uint32_t ip;
uint8_t depth;
uint8_t if_out;
};
struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {
};
struct l3fwd_ipv6_route {
uint8_t ip[IPV6_ADDR_LEN];
uint8_t depth;
uint8_t if_out;
};
static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {
{{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0},
{{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1},
{{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2},
{{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3},
{{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4},
{{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5},
{{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6},
{{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7},
};
#define LPM_MAX_RULES 1024
#define LPM6_MAX_RULES 1024
#define LPM6_NUMBER_TBL8S (1 << 16)
.number_tbl8s = LPM6_NUMBER_TBL8S,
.flags = 0
};
static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES];
static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES];
#ifdef RTE_LIBRTE_IP_FRAG_TBL_STAT
#define TX_LCORE_STAT_UPDATE(s, f, v) ((s)->f += (v))
#else
#define TX_LCORE_STAT_UPDATE(s, f, v) do {} while (0)
#endif
static inline uint32_t
send_burst(struct lcore_queue_conf *qconf, uint32_t thresh, uint16_t port)
{
uint32_t fill, len, k, n;
struct mbuf_table *txmb;
txmb = qconf->tx_mbufs[port];
len = txmb->len;
if ((int32_t)(fill = txmb->head - txmb->tail) < 0)
fill += len;
if (fill >= thresh) {
n =
RTE_MIN(len - txmb->tail, fill);
txmb->m_table + txmb->tail, (uint16_t)n);
TX_LCORE_STAT_UPDATE(&qconf->tx_stat, call, 1);
TX_LCORE_STAT_UPDATE(&qconf->tx_stat, send, k);
fill -= k;
if ((txmb->tail += k) == len)
txmb->tail = 0;
}
return fill;
}
static inline int
send_single_packet(
struct rte_mbuf *m, uint16_t port)
{
uint32_t fill, lcore_id, len;
struct lcore_queue_conf *qconf;
struct mbuf_table *txmb;
qconf = &lcore_queue_conf[lcore_id];
txmb = qconf->tx_mbufs[port];
len = txmb->len;
fill = send_burst(qconf, MAX_PKT_BURST, port);
if (fill == len - 1) {
TX_LCORE_STAT_UPDATE(&qconf->tx_stat, drop, 1);
if (++txmb->tail == len)
txmb->tail = 0;
}
TX_LCORE_STAT_UPDATE(&qconf->tx_stat, queue, 1);
txmb->m_table[txmb->head] = m;
if(++txmb->head == len)
txmb->head = 0;
return 0;
}
static inline void
reassemble(
struct rte_mbuf *m, uint16_t portid, uint32_t queue,
struct lcore_queue_conf *qconf, uint64_t tms)
{
struct rte_ether_hdr *eth_hdr;
struct rte_ip_frag_tbl *tbl;
struct rx_queue *rxq;
void *d_addr_bytes;
uint32_t next_hop;
uint16_t dst_port;
rxq = &qconf->rx_queue_list[queue];
dst_port = portid;
uint32_t ip_dst;
tbl = rxq->frag_tbl;
dr = &qconf->death_row;
if (mo == NULL)
return;
if (mo != m) {
m = mo;
struct rte_ether_hdr *);
}
}
(enabled_port_mask & 1 << next_hop) != 0) {
dst_port = next_hop;
}
struct rte_ipv6_fragment_ext *frag_hdr;
if (frag_hdr != NULL) {
tbl = rxq->frag_tbl;
dr = &qconf->death_row;
m->
l3_len =
sizeof(*ip_hdr) +
sizeof(*frag_hdr);
if (mo == NULL)
return;
if (mo != m) {
m = mo;
struct rte_ether_hdr *);
}
}
&next_hop) == 0 &&
(enabled_port_mask & 1 << next_hop) != 0) {
dst_port = next_hop;
}
}
d_addr_bytes = ð_hdr->dst_addr.addr_bytes[0];
*((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)dst_port << 40);
send_single_packet(m, dst_port);
}
static int
{
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
unsigned lcore_id;
uint64_t diff_tsc, cur_tsc, prev_tsc;
int i, j, nb_rx;
uint16_t portid;
struct lcore_queue_conf *qconf;
const uint64_t drain_tsc = (
rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
prev_tsc = 0;
qconf = &lcore_queue_conf[lcore_id];
if (qconf->n_rx_queue == 0) {
RTE_LOG(INFO, IP_RSMBL,
"lcore %u has nothing to do\n", lcore_id);
return 0;
}
RTE_LOG(INFO, IP_RSMBL,
"entering main loop on lcore %u\n", lcore_id);
for (i = 0; i < qconf->n_rx_queue; i++) {
portid = qconf->rx_queue_list[i].portid;
RTE_LOG(INFO, IP_RSMBL,
" -- lcoreid=%u portid=%u\n", lcore_id,
portid);
}
while (1) {
cur_tsc = rte_rdtsc();
diff_tsc = cur_tsc - prev_tsc;
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
if ((enabled_port_mask & (1 << portid)) != 0)
send_burst(qconf, 1, portid);
}
prev_tsc = cur_tsc;
}
for (i = 0; i < qconf->n_rx_queue; ++i) {
portid = qconf->rx_queue_list[i].portid;
MAX_PKT_BURST);
for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
pkts_burst[j], void *));
}
for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
j + PREFETCH_OFFSET], void *));
reassemble(pkts_burst[j], portid,
i, qconf, cur_tsc);
}
for (; j < nb_rx; j++) {
reassemble(pkts_burst[j], portid,
i, qconf, cur_tsc);
}
PREFETCH_OFFSET);
}
}
}
static void
print_usage(const char *prgname)
{
printf("%s [EAL options] -- -p PORTMASK [-q NQ]"
" [--maxflows=<flows>] [--flowttl=<ttl>[(s|ms)]]\n"
" -p PORTMASK: hexadecimal bitmask of ports to configure\n"
" -q NQ: number of RX queues per lcore\n"
" --maxflows=<flows>: optional, maximum number of flows "
"supported\n"
" --flowttl=<ttl>[(s|ms)]: optional, maximum TTL for each "
"flow\n",
prgname);
}
static uint32_t
parse_flow_num(const char *str, uint32_t min, uint32_t max, uint32_t *val)
{
char *end;
uint64_t v;
errno = 0;
v = strtoul(str, &end, 10);
if (errno != 0 || *end != '\0')
return -EINVAL;
if (v < min || v > max)
return -EINVAL;
*val = (uint32_t)v;
return 0;
}
static int
parse_flow_ttl(const char *str, uint32_t min, uint32_t max, uint32_t *val)
{
char *end;
uint64_t v;
static const char frmt_sec[] = "s";
static const char frmt_msec[] = "ms";
errno = 0;
v = strtoul(str, &end, 10);
if (errno != 0)
return -EINVAL;
if (*end != '\0') {
if (strncmp(frmt_sec, end, sizeof(frmt_sec)) == 0)
v *= MS_PER_S;
else if (strncmp(frmt_msec, end, sizeof (frmt_msec)) != 0)
return -EINVAL;
}
if (v < min || v > max)
return -EINVAL;
*val = (uint32_t)v;
return 0;
}
static int
parse_portmask(const char *portmask)
{
char *end = NULL;
unsigned long pm;
pm = strtoul(portmask, &end, 16);
if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
return 0;
return pm;
}
static int
parse_nqueue(const char *q_arg)
{
char *end = NULL;
unsigned long n;
printf("%p\n", q_arg);
n = strtoul(q_arg, &end, 10);
if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
return -1;
if (n == 0)
return -1;
if (n >= MAX_RX_QUEUE_PER_LCORE)
return -1;
return n;
}
static int
parse_args(int argc, char **argv)
{
int opt, ret;
char **argvopt;
int option_index;
char *prgname = argv[0];
static struct option lgopts[] = {
{"maxflows", 1, 0, 0},
{"flowttl", 1, 0, 0},
{NULL, 0, 0, 0}
};
argvopt = argv;
while ((opt = getopt_long(argc, argvopt, "p:q:",
lgopts, &option_index)) != EOF) {
switch (opt) {
case 'p':
enabled_port_mask = parse_portmask(optarg);
if (enabled_port_mask == 0) {
printf("invalid portmask\n");
print_usage(prgname);
return -1;
}
break;
case 'q':
rx_queue_per_lcore = parse_nqueue(optarg);
if (rx_queue_per_lcore < 0) {
printf("invalid queue number\n");
print_usage(prgname);
return -1;
}
break;
case 0:
if (!strncmp(lgopts[option_index].name,
"maxflows", 8)) {
if ((ret = parse_flow_num(optarg, MIN_FLOW_NUM,
MAX_FLOW_NUM,
&max_flow_num)) != 0) {
printf("invalid value: \"%s\" for "
"parameter %s\n",
optarg,
lgopts[option_index].name);
print_usage(prgname);
return ret;
}
}
if (!strncmp(lgopts[option_index].name, "flowttl", 7)) {
if ((ret = parse_flow_ttl(optarg, MIN_FLOW_TTL,
MAX_FLOW_TTL,
&max_flow_ttl)) != 0) {
printf("invalid value: \"%s\" for "
"parameter %s\n",
optarg,
lgopts[option_index].name);
print_usage(prgname);
return ret;
}
}
break;
default:
print_usage(prgname);
return -1;
}
}
if (optind >= 0)
argv[optind-1] = prgname;
ret = optind-1;
optind = 1;
return ret;
}
static void
print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
{
char buf[RTE_ETHER_ADDR_FMT_SIZE];
printf("%s%s", name, buf);
}
static void
check_all_ports_link_status(uint32_t port_mask)
{
#define CHECK_INTERVAL 100
#define MAX_CHECK_TIME 90
uint16_t portid;
uint8_t count, all_ports_up, print_flag = 0;
int ret;
printf("\nChecking link status");
fflush(stdout);
for (count = 0; count <= MAX_CHECK_TIME; count++) {
all_ports_up = 1;
if ((port_mask & (1 << portid)) == 0)
continue;
memset(&link, 0, sizeof(link));
if (ret < 0) {
all_ports_up = 0;
if (print_flag == 1)
printf("Port %u link get failed: %s\n",
continue;
}
if (print_flag == 1) {
sizeof(link_status_text), &link);
printf("Port %d %s\n", portid,
link_status_text);
continue;
}
all_ports_up = 0;
break;
}
}
if (print_flag == 1)
break;
if (all_ports_up == 0) {
printf(".");
fflush(stdout);
}
if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
print_flag = 1;
printf("\ndone\n");
}
}
}
static int
init_routing_table(void)
{
struct rte_lpm *lpm;
struct rte_lpm6 *lpm6;
int socket, ret;
unsigned i;
for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
if (socket_lpm[socket]) {
lpm = socket_lpm[socket];
for (i = 0; i <
RTE_DIM(l3fwd_ipv4_route_array); i++) {
l3fwd_ipv4_route_array[i].ip,
l3fwd_ipv4_route_array[i].depth,
l3fwd_ipv4_route_array[i].if_out);
if (ret < 0) {
RTE_LOG(ERR, IP_RSMBL,
"Unable to add entry %i to the l3fwd " "LPM table\n", i);
return -1;
}
RTE_LOG(INFO, IP_RSMBL,
"Socket %i: adding route " IPv4_BYTES_FMT
"/%d (port %d)\n",
socket,
IPv4_BYTES(l3fwd_ipv4_route_array[i].ip),
l3fwd_ipv4_route_array[i].depth,
l3fwd_ipv4_route_array[i].if_out);
}
}
if (socket_lpm6[socket]) {
lpm6 = socket_lpm6[socket];
for (i = 0; i <
RTE_DIM(l3fwd_ipv6_route_array); i++) {
l3fwd_ipv6_route_array[i].ip,
l3fwd_ipv6_route_array[i].depth,
l3fwd_ipv6_route_array[i].if_out);
if (ret < 0) {
RTE_LOG(ERR, IP_RSMBL,
"Unable to add entry %i to the l3fwd " "LPM6 table\n", i);
return -1;
}
RTE_LOG(INFO, IP_RSMBL,
"Socket %i: adding route " IPv6_BYTES_FMT
"/%d (port %d)\n",
socket,
IPv6_BYTES(l3fwd_ipv6_route_array[i].ip),
l3fwd_ipv6_route_array[i].depth,
l3fwd_ipv6_route_array[i].if_out);
}
}
}
return 0;
}
static int
setup_port_tbl(struct lcore_queue_conf *qconf, uint32_t lcore, int socket,
uint32_t port)
{
struct mbuf_table *mtb;
uint32_t n;
size_t sz;
n =
RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST);
sz = sizeof (*mtb) + sizeof (mtb->m_table[0]) * n;
socket)) == NULL) {
RTE_LOG(ERR, IP_RSMBL,
"%s() for lcore: %u, port: %u " "failed to allocate %zu bytes\n",
__func__, lcore, port, sz);
return -1;
}
mtb->len = n;
qconf->tx_mbufs[port] = mtb;
return 0;
}
static int
setup_queue_tbl(struct rx_queue *rxq, uint32_t lcore, uint32_t queue)
{
int socket;
uint32_t nb_mbuf;
uint64_t frag_cycles;
char buf[RTE_MEMPOOL_NAMESIZE];
socket = 0;
max_flow_ttl;
IP_FRAG_TBL_BUCKET_ENTRIES, max_flow_num, frag_cycles,
socket)) == NULL) {
RTE_LOG(ERR, IP_RSMBL,
"ip_frag_tbl_create(%u) on " "lcore: %u for queue: %u failed\n",
max_flow_num, lcore, queue);
return -1;
}
nb_mbuf =
RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST) * MAX_FRAG_NUM;
+ BUF_SIZE - 1) / BUF_SIZE;
nb_mbuf *= 2;
nb_mbuf += nb_rxd + nb_txd;
nb_mbuf =
RTE_MAX(nb_mbuf, (uint32_t)NB_MBUF);
snprintf(buf, sizeof(buf), "mbuf_pool_%u_%u", lcore, queue);
MBUF_DATA_SIZE, socket);
if (rxq->pool == NULL) {
"rte_pktmbuf_pool_create(%s) failed", buf);
return -1;
}
return 0;
}
static int
init_mem(void)
{
char buf[PATH_MAX];
struct rte_lpm *lpm;
struct rte_lpm6 *lpm6;
int socket;
unsigned lcore_id;
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
continue;
socket = 0;
if (socket_lpm[socket] == NULL) {
RTE_LOG(INFO, IP_RSMBL,
"Creating LPM table on socket %i\n", socket);
snprintf(buf, sizeof(buf), "IP_RSMBL_LPM_%i", socket);
lpm_config.max_rules = LPM_MAX_RULES;
lpm_config.number_tbl8s = 256;
lpm_config.flags = 0;
if (lpm == NULL) {
RTE_LOG(ERR, IP_RSMBL,
"Cannot create LPM table\n");
return -1;
}
socket_lpm[socket] = lpm;
}
if (socket_lpm6[socket] == NULL) {
RTE_LOG(INFO, IP_RSMBL,
"Creating LPM6 table on socket %i\n", socket);
snprintf(buf, sizeof(buf), "IP_RSMBL_LPM_%i", socket);
if (lpm6 == NULL) {
RTE_LOG(ERR, IP_RSMBL,
"Cannot create LPM table\n");
return -1;
}
socket_lpm6[socket] = lpm6;
}
}
return 0;
}
static void
queue_dump_stat(void)
{
uint32_t i, lcore;
const struct lcore_queue_conf *qconf;
for (lcore = 0; lcore < RTE_MAX_LCORE; lcore++) {
continue;
qconf = &lcore_queue_conf[lcore];
for (i = 0; i < qconf->n_rx_queue; i++) {
fprintf(stdout, " -- lcoreid=%u portid=%u "
"frag tbl stat:\n",
lcore, qconf->rx_queue_list[i].portid);
qconf->rx_queue_list[i].frag_tbl);
fprintf(stdout, "TX bursts:\t%" PRIu64 "\n"
"TX packets _queued:\t%" PRIu64 "\n"
"TX packets dropped:\t%" PRIu64 "\n"
"TX packets send:\t%" PRIu64 "\n",
qconf->tx_stat.call,
qconf->tx_stat.queue,
qconf->tx_stat.drop,
qconf->tx_stat.send);
}
}
}
static void
signal_handler(int signum)
{
queue_dump_stat();
if (signum != SIGUSR1)
rte_exit(0,
"received signal: %d, exiting\n", signum);
}
int
main(int argc, char **argv)
{
struct lcore_queue_conf *qconf;
struct rx_queue *rxq;
int ret, socket;
unsigned nb_ports;
uint16_t queueid;
unsigned lcore_id = 0, rx_lcore_id = 0;
uint32_t n_tx_queue, nb_lcores;
uint16_t portid;
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Invalid EAL parameters\n");
argc -= ret;
argv += ret;
ret = parse_args(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Invalid IP reassembly parameters\n");
if (nb_ports == 0)
rte_exit(EXIT_FAILURE,
"No ports found!\n");
if (init_mem() < 0)
rte_panic(
"Cannot initialize memory structures!\n");
if (enabled_port_mask & ~(
RTE_LEN2MASK(nb_ports,
unsigned)))
rte_exit(EXIT_FAILURE,
"Non-existent ports in portmask!\n");
if ((enabled_port_mask & (1 << portid)) == 0) {
printf("\nSkipping disabled port %d\n", portid);
continue;
}
qconf = &lcore_queue_conf[rx_lcore_id];
if (ret != 0)
"Error during getting device (port %u) info: %s\n",
portid, strerror(-ret));
dev_info.max_mtu,
qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
rx_lcore_id++;
if (rx_lcore_id >= RTE_MAX_LCORE)
rte_exit(EXIT_FAILURE,
"Not enough cores\n");
qconf = &lcore_queue_conf[rx_lcore_id];
}
socket = 0;
queueid = qconf->n_rx_queue;
rxq = &qconf->rx_queue_list[queueid];
rxq->portid = portid;
rxq->lpm = socket_lpm[socket];
rxq->lpm6 = socket_lpm6[socket];
&nb_txd);
if (ret < 0)
"Cannot adjust number of descriptors: err=%d, port=%d\n",
ret, portid);
if (setup_queue_tbl(rxq, rx_lcore_id, queueid) < 0)
rte_exit(EXIT_FAILURE,
"Failed to set up queue table\n");
qconf->n_rx_queue++;
printf("Initializing port %d ... ", portid );
fflush(stdout);
n_tx_queue = nb_lcores;
if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
n_tx_queue = MAX_TX_QUEUE_PER_PORT;
dev_info.flow_type_rss_offloads;
printf("Port %u modified RSS hash function based on hardware support,"
"requested:%#"PRIx64" configured:%#"PRIx64"\n",
portid,
}
&local_port_conf);
if (ret < 0) {
printf("\n");
rte_exit(EXIT_FAILURE,
"Cannot configure device: " "err=%d, port=%d\n",
ret, portid);
}
rxq_conf = dev_info.default_rxconf;
socket, &rxq_conf,
rxq->pool);
if (ret < 0) {
printf("\n");
rte_exit(EXIT_FAILURE,
"rte_eth_rx_queue_setup: " "err=%d, port=%d\n",
ret, portid);
}
if (ret < 0) {
printf("\n");
"rte_eth_macaddr_get: err=%d, port=%d\n",
ret, portid);
}
print_ethaddr(" Address:", &ports_eth_addr[portid]);
printf("\n");
queueid = 0;
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
continue;
printf("txq=%u,%d,%d ", lcore_id, queueid, socket);
fflush(stdout);
txconf = &dev_info.default_txconf;
socket, txconf);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"rte_eth_tx_queue_setup: err=%d, " "port=%d\n", ret, portid);
qconf = &lcore_queue_conf[lcore_id];
qconf->tx_queue_id[portid] = queueid;
setup_port_tbl(qconf, lcore_id, socket, portid);
queueid++;
}
printf("\n");
}
printf("\n");
if ((enabled_port_mask & (1 << portid)) == 0) {
continue;
}
if (ret < 0)
rte_exit(EXIT_FAILURE,
"rte_eth_dev_start: err=%d, port=%d\n",
ret, portid);
if (ret != 0)
"rte_eth_promiscuous_enable: err=%s, port=%d\n",
}
if (init_routing_table() < 0)
rte_exit(EXIT_FAILURE,
"Cannot init routing table\n");
check_all_ports_link_status(enabled_port_mask);
signal(SIGUSR1, signal_handler);
signal(SIGTERM, signal_handler);
signal(SIGINT, signal_handler);
return -1;
}
return 0;
}