#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <sys/param.h>
#include <string.h>
#include <sys/queue.h>
#include <stdarg.h>
#include <errno.h>
#include <getopt.h>
#define RTE_LOGTYPE_IP_FRAG RTE_LOGTYPE_USER1
#define JUMBO_FRAME_MAX_SIZE 0x2600
#define ROUNDUP_DIV(a, b) (((a) + (b) - 1) / (b))
#define IPV4_MTU_DEFAULT RTE_ETHER_MTU
#define IPV6_MTU_DEFAULT RTE_ETHER_MTU
#define MTU_OVERHEAD \
(RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN + \
2 * sizeof(struct rte_vlan_hdr))
#define IPV4_DEFAULT_PAYLOAD (IPV4_MTU_DEFAULT - sizeof(struct rte_ipv4_hdr))
#define IPV6_DEFAULT_PAYLOAD (IPV6_MTU_DEFAULT - sizeof(struct rte_ipv6_hdr))
#define MAX_PACKET_FRAG RTE_LIBRTE_IP_FRAG_MAX_FRAG
#define NB_MBUF 8192
#define MAX_PKT_BURST 32
#define BURST_TX_DRAIN_US 100
#define PREFETCH_OFFSET 3
#define RX_DESC_DEFAULT 1024
#define TX_DESC_DEFAULT 1024
static uint16_t nb_rxd = RX_DESC_DEFAULT;
static uint16_t nb_txd = TX_DESC_DEFAULT;
#ifndef IPv4_BYTES
#define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8
#define IPv4_BYTES(addr) \
(uint8_t) (((addr) >> 24) & 0xFF),\
(uint8_t) (((addr) >> 16) & 0xFF),\
(uint8_t) (((addr) >> 8) & 0xFF),\
(uint8_t) ((addr) & 0xFF)
#endif
#ifndef IPv6_BYTES
#define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
"%02x%02x:%02x%02x:%02x%02x:%02x%02x"
#define IPv6_BYTES(addr) \
addr[0], addr[1], addr[2], addr[3], \
addr[4], addr[5], addr[6], addr[7], \
addr[8], addr[9], addr[10], addr[11],\
addr[12], addr[13],addr[14], addr[15]
#endif
#define IPV6_ADDR_LEN 16
static int enabled_port_mask = 0;
static int rx_queue_per_lcore = 1;
#define MBUF_TABLE_SIZE (2 * MAX(MAX_PKT_BURST, MAX_PACKET_FRAG))
struct mbuf_table {
uint16_t len;
struct rte_mbuf *m_table[MBUF_TABLE_SIZE];
};
struct rx_queue {
struct rte_lpm *lpm;
struct rte_lpm6 *lpm6;
uint16_t portid;
};
#define MAX_RX_QUEUE_PER_LCORE 16
#define MAX_TX_QUEUE_PER_PORT 16
struct lcore_queue_conf {
uint16_t n_rx_queue;
uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];
struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
.offloads = (RTE_ETH_RX_OFFLOAD_CHECKSUM |
RTE_ETH_RX_OFFLOAD_SCATTER),
},
.offloads = (RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
},
};
struct l3fwd_ipv4_route {
uint32_t ip;
uint8_t depth;
uint8_t if_out;
};
struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {
};
struct l3fwd_ipv6_route {
uint8_t ip[IPV6_ADDR_LEN];
uint8_t depth;
uint8_t if_out;
};
static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {
{{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0},
{{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1},
{{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2},
{{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3},
{{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4},
{{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5},
{{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6},
{{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7},
};
#define LPM_MAX_RULES 1024
#define LPM6_MAX_RULES 1024
#define LPM6_NUMBER_TBL8S (1 << 16)
.number_tbl8s = LPM6_NUMBER_TBL8S,
.flags = 0
};
static struct rte_mempool *socket_direct_pool[RTE_MAX_NUMA_NODES];
static struct rte_mempool *socket_indirect_pool[RTE_MAX_NUMA_NODES];
static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES];
static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES];
static inline int
send_burst(struct lcore_queue_conf *qconf, uint16_t n, uint16_t port)
{
int ret;
uint16_t queueid;
queueid = qconf->tx_queue_id[
port];
m_table = (
struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
do {
} while (++ret < n);
}
return 0;
}
static inline void
l3fwd_simple_forward(
struct rte_mbuf *m,
struct lcore_queue_conf *qconf,
uint8_t queueid, uint16_t port_in)
{
struct rx_queue *rxq;
uint32_t i, len, next_hop;
int32_t len2;
uint64_t ol_flags;
ol_flags = 0;
rxq = &qconf->rx_queue_list[queueid];
port_out = port_in;
len = qconf->tx_mbufs[port_out].len;
uint32_t ip_dst;
(enabled_port_mask & 1 << next_hop) != 0) {
port_out = next_hop;
len = qconf->tx_mbufs[port_out].len;
}
qconf->tx_mbufs[port_out].m_table[len] = m;
len2 = 1;
} else {
&qconf->tx_mbufs[port_out].m_table[len],
(uint16_t)(MBUF_TABLE_SIZE - len),
IPV4_MTU_DEFAULT,
rxq->direct_pool, rxq->indirect_pool);
return;
}
&next_hop) == 0 &&
(enabled_port_mask & 1 << next_hop) != 0) {
port_out = next_hop;
len = qconf->tx_mbufs[port_out].len;
}
qconf->tx_mbufs[port_out].m_table[len] = m;
len2 = 1;
} else {
&qconf->tx_mbufs[port_out].m_table[len],
(uint16_t)(MBUF_TABLE_SIZE - len),
IPV6_MTU_DEFAULT,
rxq->direct_pool, rxq->indirect_pool);
return;
}
}
else {
qconf->tx_mbufs[port_out].m_table[len] = m;
len2 = 1;
}
for (i = len; i < len + len2; i ++) {
void *d_addr_bytes;
m = qconf->tx_mbufs[port_out].m_table[i];
if (eth_hdr == NULL) {
}
*((uint64_t *)d_addr_bytes) = 0x000000000002 +
((uint64_t)port_out << 40);
}
len += len2;
if (
likely(len < MAX_PKT_BURST)) {
qconf->tx_mbufs[port_out].len = (uint16_t)len;
return;
}
send_burst(qconf, (uint16_t)len, port_out);
qconf->tx_mbufs[port_out].len = 0;
}
static int
{
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
unsigned lcore_id;
uint64_t prev_tsc, diff_tsc, cur_tsc;
int i, j, nb_rx;
uint16_t portid;
struct lcore_queue_conf *qconf;
const uint64_t drain_tsc = (
rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
prev_tsc = 0;
qconf = &lcore_queue_conf[lcore_id];
if (qconf->n_rx_queue == 0) {
RTE_LOG(INFO, IP_FRAG,
"lcore %u has nothing to do\n", lcore_id);
return 0;
}
RTE_LOG(INFO, IP_FRAG,
"entering main loop on lcore %u\n", lcore_id);
for (i = 0; i < qconf->n_rx_queue; i++) {
portid = qconf->rx_queue_list[i].portid;
RTE_LOG(INFO, IP_FRAG,
" -- lcoreid=%u portid=%d\n", lcore_id,
portid);
}
while (1) {
cur_tsc = rte_rdtsc();
diff_tsc = cur_tsc - prev_tsc;
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
if (qconf->tx_mbufs[portid].len == 0)
continue;
send_burst(&lcore_queue_conf[lcore_id],
qconf->tx_mbufs[portid].len,
portid);
qconf->tx_mbufs[portid].len = 0;
}
prev_tsc = cur_tsc;
}
for (i = 0; i < qconf->n_rx_queue; i++) {
portid = qconf->rx_queue_list[i].portid;
MAX_PKT_BURST);
for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
pkts_burst[j], void *));
}
for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
j + PREFETCH_OFFSET], void *));
l3fwd_simple_forward(pkts_burst[j], qconf, i, portid);
}
for (; j < nb_rx; j++) {
l3fwd_simple_forward(pkts_burst[j], qconf, i, portid);
}
}
}
}
static void
print_usage(const char *prgname)
{
printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n"
" -p PORTMASK: hexadecimal bitmask of ports to configure\n"
" -q NQ: number of queue (=ports) per lcore (default is 1)\n",
prgname);
}
static int
parse_portmask(const char *portmask)
{
char *end = NULL;
unsigned long pm;
pm = strtoul(portmask, &end, 16);
if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
return -1;
if (pm == 0)
return -1;
return pm;
}
static int
parse_nqueue(const char *q_arg)
{
char *end = NULL;
unsigned long n;
n = strtoul(q_arg, &end, 10);
if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
return -1;
if (n == 0)
return -1;
if (n >= MAX_RX_QUEUE_PER_LCORE)
return -1;
return n;
}
static int
parse_args(int argc, char **argv)
{
int opt, ret;
char **argvopt;
int option_index;
char *prgname = argv[0];
static struct option lgopts[] = {
{NULL, 0, 0, 0}
};
argvopt = argv;
while ((opt = getopt_long(argc, argvopt, "p:q:",
lgopts, &option_index)) != EOF) {
switch (opt) {
case 'p':
enabled_port_mask = parse_portmask(optarg);
if (enabled_port_mask < 0) {
printf("invalid portmask\n");
print_usage(prgname);
return -1;
}
break;
case 'q':
rx_queue_per_lcore = parse_nqueue(optarg);
if (rx_queue_per_lcore < 0) {
printf("invalid queue number\n");
print_usage(prgname);
return -1;
}
break;
case 0:
print_usage(prgname);
return -1;
default:
print_usage(prgname);
return -1;
}
}
if (enabled_port_mask == 0) {
printf("portmask not specified\n");
print_usage(prgname);
return -1;
}
if (optind >= 0)
argv[optind-1] = prgname;
ret = optind-1;
optind = 1;
return ret;
}
static void
{
char buf[RTE_ETHER_ADDR_FMT_SIZE];
printf("%s%s", name, buf);
}
static void
check_all_ports_link_status(uint32_t port_mask)
{
#define CHECK_INTERVAL 100
#define MAX_CHECK_TIME 90
uint16_t portid;
uint8_t count, all_ports_up, print_flag = 0;
int ret;
printf("\nChecking link status");
fflush(stdout);
for (count = 0; count <= MAX_CHECK_TIME; count++) {
all_ports_up = 1;
if ((port_mask & (1 << portid)) == 0)
continue;
memset(&link, 0, sizeof(link));
if (ret < 0) {
all_ports_up = 0;
if (print_flag == 1)
printf("Port %u link get failed: %s\n",
continue;
}
if (print_flag == 1) {
sizeof(link_status_text), &link);
printf("Port %d %s\n", portid,
link_status_text);
continue;
}
all_ports_up = 0;
break;
}
}
if (print_flag == 1)
break;
if (all_ports_up == 0) {
printf(".");
fflush(stdout);
}
if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
print_flag = 1;
printf("\ndone\n");
}
}
}
static int
check_ptype(int portid)
{
int i, ret;
int ptype_l3_ipv4 = 0, ptype_l3_ipv6 = 0;
if (ret <= 0)
return 0;
uint32_t ptypes[ret];
for (i = 0; i < ret; ++i) {
ptype_l3_ipv4 = 1;
ptype_l3_ipv6 = 1;
}
if (ptype_l3_ipv4 == 0)
printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid);
if (ptype_l3_ipv6 == 0)
printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid);
if (ptype_l3_ipv4 && ptype_l3_ipv6)
return 1;
return 0;
}
static inline void
{
}
static uint16_t
cb_parse_ptype(uint16_t port
__rte_unused, uint16_t queue __rte_unused,
struct rte_mbuf *pkts[], uint16_t nb_pkts,
uint16_t max_pkts __rte_unused,
void *user_param __rte_unused)
{
uint16_t i;
for (i = 0; i < nb_pkts; ++i)
parse_ptype(pkts[i]);
return nb_pkts;
}
static int
init_routing_table(void)
{
struct rte_lpm *lpm;
struct rte_lpm6 *lpm6;
int socket, ret;
unsigned i;
for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
if (socket_lpm[socket]) {
lpm = socket_lpm[socket];
for (i = 0; i <
RTE_DIM(l3fwd_ipv4_route_array); i++) {
l3fwd_ipv4_route_array[i].ip,
l3fwd_ipv4_route_array[i].depth,
l3fwd_ipv4_route_array[i].if_out);
if (ret < 0) {
RTE_LOG(ERR, IP_FRAG,
"Unable to add entry %i to the l3fwd " "LPM table\n", i);
return -1;
}
RTE_LOG(INFO, IP_FRAG,
"Socket %i: adding route " IPv4_BYTES_FMT
"/%d (port %d)\n",
socket,
IPv4_BYTES(l3fwd_ipv4_route_array[i].ip),
l3fwd_ipv4_route_array[i].depth,
l3fwd_ipv4_route_array[i].if_out);
}
}
if (socket_lpm6[socket]) {
lpm6 = socket_lpm6[socket];
for (i = 0; i <
RTE_DIM(l3fwd_ipv6_route_array); i++) {
l3fwd_ipv6_route_array[i].ip,
l3fwd_ipv6_route_array[i].depth,
l3fwd_ipv6_route_array[i].if_out);
if (ret < 0) {
RTE_LOG(ERR, IP_FRAG,
"Unable to add entry %i to the l3fwd " "LPM6 table\n", i);
return -1;
}
RTE_LOG(INFO, IP_FRAG,
"Socket %i: adding route " IPv6_BYTES_FMT
"/%d (port %d)\n",
socket,
IPv6_BYTES(l3fwd_ipv6_route_array[i].ip),
l3fwd_ipv6_route_array[i].depth,
l3fwd_ipv6_route_array[i].if_out);
}
}
}
return 0;
}
static int
init_mem(void)
{
char buf[PATH_MAX];
struct rte_lpm *lpm;
struct rte_lpm6 *lpm6;
int socket;
unsigned lcore_id;
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
continue;
socket = 0;
if (socket_direct_pool[socket] == NULL) {
RTE_LOG(INFO, IP_FRAG,
"Creating direct mempool on socket %i\n",
socket);
snprintf(buf, sizeof(buf), "pool_direct_%i", socket);
0, RTE_MBUF_DEFAULT_BUF_SIZE, socket);
if (mp == NULL) {
RTE_LOG(ERR, IP_FRAG,
"Cannot create direct mempool\n");
return -1;
}
socket_direct_pool[socket] = mp;
}
if (socket_indirect_pool[socket] == NULL) {
RTE_LOG(INFO, IP_FRAG,
"Creating indirect mempool on socket %i\n",
socket);
snprintf(buf, sizeof(buf), "pool_indirect_%i", socket);
socket);
if (mp == NULL) {
RTE_LOG(ERR, IP_FRAG,
"Cannot create indirect mempool\n");
return -1;
}
socket_indirect_pool[socket] = mp;
}
if (socket_lpm[socket] == NULL) {
RTE_LOG(INFO, IP_FRAG,
"Creating LPM table on socket %i\n", socket);
snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket);
lpm_config.max_rules = LPM_MAX_RULES;
lpm_config.number_tbl8s = 256;
lpm_config.flags = 0;
if (lpm == NULL) {
RTE_LOG(ERR, IP_FRAG,
"Cannot create LPM table\n");
return -1;
}
socket_lpm[socket] = lpm;
}
if (socket_lpm6[socket] == NULL) {
RTE_LOG(INFO, IP_FRAG,
"Creating LPM6 table on socket %i\n", socket);
snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket);
if (lpm6 == NULL) {
RTE_LOG(ERR, IP_FRAG,
"Cannot create LPM table\n");
return -1;
}
socket_lpm6[socket] = lpm6;
}
}
return 0;
}
int
main(int argc, char **argv)
{
struct lcore_queue_conf *qconf;
struct rx_queue *rxq;
int socket, ret;
uint16_t nb_ports;
uint16_t queueid = 0;
unsigned lcore_id = 0, rx_lcore_id = 0;
uint32_t n_tx_queue, nb_lcores;
uint16_t portid;
if (ret < 0)
rte_exit(EXIT_FAILURE,
"rte_eal_init failed");
argc -= ret;
argv += ret;
ret = parse_args(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Invalid arguments");
if (nb_ports == 0)
rte_exit(EXIT_FAILURE,
"No ports found!\n");
if (init_mem() < 0)
rte_panic(
"Cannot initialize memory structures!\n");
if (enabled_port_mask & ~(
RTE_LEN2MASK(nb_ports,
unsigned)))
rte_exit(EXIT_FAILURE,
"Non-existent ports in portmask!\n");
if ((enabled_port_mask & (1 << portid)) == 0) {
printf("Skipping disabled port %d\n", portid);
continue;
}
qconf = &lcore_queue_conf[rx_lcore_id];
if (ret != 0)
"Error during getting device (port %u) info: %s\n",
portid, strerror(-ret));
dev_info.max_mtu,
qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
rx_lcore_id ++;
if (rx_lcore_id >= RTE_MAX_LCORE)
rte_exit(EXIT_FAILURE,
"Not enough cores\n");
qconf = &lcore_queue_conf[rx_lcore_id];
}
socket = 0;
rxq = &qconf->rx_queue_list[qconf->n_rx_queue];
rxq->portid = portid;
rxq->direct_pool = socket_direct_pool[socket];
rxq->indirect_pool = socket_indirect_pool[socket];
rxq->lpm = socket_lpm[socket];
rxq->lpm6 = socket_lpm6[socket];
qconf->n_rx_queue++;
printf("Initializing port %d on lcore %u...", portid,
rx_lcore_id);
fflush(stdout);
n_tx_queue = nb_lcores;
if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
n_tx_queue = MAX_TX_QUEUE_PER_PORT;
&local_port_conf);
if (ret < 0) {
printf("\n");
rte_exit(EXIT_FAILURE,
"Cannot configure device: " "err=%d, port=%d\n",
ret, portid);
}
if (ret < 0) {
printf("\n");
rte_exit(EXIT_FAILURE,
"Set MTU failed: " "err=%d, port=%d\n",
ret, portid);
}
&nb_txd);
if (ret < 0) {
printf("\n");
rte_exit(EXIT_FAILURE,
"Cannot adjust number of " "descriptors: err=%d, port=%d\n", ret, portid);
}
rxq_conf = dev_info.default_rxconf;
socket, &rxq_conf,
socket_direct_pool[socket]);
if (ret < 0) {
printf("\n");
rte_exit(EXIT_FAILURE,
"rte_eth_rx_queue_setup: " "err=%d, port=%d\n",
ret, portid);
}
if (ret < 0) {
printf("\n");
"rte_eth_macaddr_get: err=%d, port=%d\n",
ret, portid);
}
print_ethaddr(" Address:", &ports_eth_addr[portid]);
printf("\n");
if (ret != 0)
"Error during getting device (port %u) info: %s\n",
portid, strerror(-ret));
queueid = 0;
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
continue;
if (queueid >= dev_info.nb_tx_queues)
break;
printf("txq=%u,%d ", lcore_id, queueid);
fflush(stdout);
txconf = &dev_info.default_txconf;
socket, txconf);
if (ret < 0) {
printf("\n");
rte_exit(EXIT_FAILURE,
"rte_eth_tx_queue_setup: " "err=%d, port=%d\n", ret, portid);
}
qconf = &lcore_queue_conf[lcore_id];
qconf->tx_queue_id[portid] = queueid;
queueid++;
}
printf("\n");
}
printf("\n");
if ((enabled_port_mask & (1 << portid)) == 0) {
continue;
}
if (ret < 0)
rte_exit(EXIT_FAILURE,
"rte_eth_dev_start: err=%d, port=%d\n",
ret, portid);
if (ret != 0)
"rte_eth_promiscuous_enable: err=%s, port=%d\n",
if (check_ptype(portid) == 0) {
printf("Add Rx callback function to detect L3 packet type by SW :"
" port = %d\n", portid);
}
}
if (init_routing_table() < 0)
rte_exit(EXIT_FAILURE,
"Cannot init routing table\n");
check_all_ports_link_status(enabled_port_mask);
return -1;
}
return 0;
}