DPDK  23.07.0
examples/fips_validation/fips_validation_ccm.c
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Intel Corporation
*/
#include <stdio.h>
#include <string.h>
#include <rte_string_fns.h>
#include <rte_cryptodev.h>
#include <rte_malloc.h>
#include "fips_validation.h"
#define DVPT_STR "CCM-DVPT"
#define VADT_STR "CCM-VADT"
#define VPT_STR "CCM-VPT"
#define VNT_STR "CCM-VNT"
#define VTT_STR "CCM-VTT"
#define PARAM_PREFIX "["
#define ALEN_PREFIX "Alen = "
#define PLEN_PREFIX "Plen = "
#define IVLEN_PREFIX "Nlen = "
#define DIGESTL_PREFIX "Tlen = "
#define COUNT_STR "Count = "
#define KEY_STR "Key = "
#define IV_STR "Nonce = "
#define PT_STR "Payload = "
#define CT_STR "CT = "
#define AAD_STR "Adata = "
#define POS_NEG_STR "Result = "
#define POS_KEYWORD "Pass"
#define NEG_KEYWORD "Fail"
#define DIR_JSON_STR "direction"
#define IVLEN_JSON_STR "ivLen"
#define PTLEN_JSON_STR "payloadLen"
#define AADLEN_JSON_STR "aadLen"
#define TAGLEN_JSON_STR "tagLen"
#define KEYLEN_JSON_STR "keyLen"
#define PT_JSON_STR "pt"
#define CT_JSON_STR "ct"
#define KEY_JSON_STR "key"
#define IV_JSON_STR "iv"
#define AAD_JSON_STR "aad"
static int
parser_dvpt_interim(const char *key, char *src, struct fips_val *val)
{
char *tmp, c, value[10];
char num_pattern[] = "0123456789";
int i = 0;
memset(value, 0, 10);
tmp = strstr(src, key);
if (!tmp)
return -1;
tmp += strlen(key);
c = tmp[0];
while (strchr(num_pattern, c) && i < 10) {
value[i++] = c;
c = tmp[i];
}
return parser_read_uint32_val("", value, val);
}
static int
parse_dvpt_ct_hex_str(const char *key, char *src, struct fips_val *val)
{
int ret;
val->len = vec.pt.len;
ret = parse_uint8_known_len_hex_str(key, src, val);
if (ret < 0)
return ret;
src += strlen(key) + val->len * 2;
ret = parse_uint8_known_len_hex_str("", src, &vec.aead.digest);
if (ret < 0) {
rte_free(val->val);
memset(val, 0, sizeof(*val));
return ret;
}
return 0;
}
static int
parse_uint8_ccm_aad_str(const char *key, char *src, struct fips_val *val)
{
uint32_t len = val->len, j;
src += strlen(key);
/* CCM aad requires 18 bytes padding before the real content */
val->val = rte_zmalloc(NULL, len + 18, 0);
if (!val->val)
return -1;
for (j = 0; j < len; j++) {
char byte[3] = {src[j * 2], src[j * 2 + 1], '\0'};
if (parser_read_uint8_hex(&val->val[j + 18], byte) < 0) {
rte_free(val->val);
memset(val, 0, sizeof(*val));
return -EINVAL;
}
}
return 0;
}
struct fips_test_callback ccm_vnt_vec[] = {
{IV_STR, parse_uint8_known_len_hex_str, &vec.iv},
{AAD_STR, parse_uint8_ccm_aad_str, &vec.aead.aad},
{PT_STR, parse_uint8_known_len_hex_str, &vec.pt},
{NULL, NULL, NULL}
};
struct fips_test_callback ccm_vnt_interim_vec[] = {
{ALEN_PREFIX, parser_read_uint32_val, &vec.aead.aad},
{PLEN_PREFIX, parser_read_uint32_val, &vec.pt},
{DIGESTL_PREFIX, parser_read_uint32_val, &vec.aead.digest},
{IVLEN_PREFIX, parser_read_uint32_val, &vec.iv},
{KEY_STR, parse_uint8_hex_str, &vec.aead.key},
{NULL, NULL, NULL}
};
struct fips_test_callback ccm_vtt_vec[] = {
{AAD_STR, parse_uint8_ccm_aad_str, &vec.aead.aad},
{PT_STR, parse_uint8_known_len_hex_str, &vec.pt},
{NULL, NULL, NULL}
};
struct fips_test_callback ccm_vtt_interim_vec[] = {
{ALEN_PREFIX, parser_read_uint32_val, &vec.aead.aad},
{PLEN_PREFIX, parser_read_uint32_val, &vec.pt},
{IVLEN_PREFIX, parser_read_uint32_val, &vec.iv},
{DIGESTL_PREFIX, parser_read_uint32_val, &vec.aead.digest},
{KEY_STR, parse_uint8_hex_str, &vec.aead.key},
{IV_STR, parse_uint8_known_len_hex_str, &vec.iv},
{NULL, NULL, NULL}
};
struct fips_test_callback ccm_vadt_vec[] = {
{AAD_STR, parse_uint8_ccm_aad_str, &vec.aead.aad},
{PT_STR, parse_uint8_known_len_hex_str, &vec.pt},
{NULL, NULL, NULL}
};
struct fips_test_callback ccm_vadt_interim_vec[] = {
{PLEN_PREFIX, parser_read_uint32_val, &vec.pt},
{IVLEN_PREFIX, parser_read_uint32_val, &vec.iv},
{ALEN_PREFIX, parser_read_uint32_val, &vec.aead.aad},
{DIGESTL_PREFIX, parser_read_uint32_val, &vec.aead.digest},
{KEY_STR, parse_uint8_hex_str, &vec.aead.key},
{IV_STR, parse_uint8_known_len_hex_str, &vec.iv},
{NULL, NULL, NULL}
};
struct fips_test_callback ccm_vpt_vec[] = {
{AAD_STR, parse_uint8_ccm_aad_str, &vec.aead.aad},
{PT_STR, parse_uint8_known_len_hex_str, &vec.pt},
{NULL, NULL, NULL}
};
struct fips_test_callback ccm_vpt_interim_vec[] = {
{ALEN_PREFIX, parser_read_uint32_val, &vec.aead.aad},
{IVLEN_PREFIX, parser_read_uint32_val, &vec.iv},
{DIGESTL_PREFIX, parser_read_uint32_val, &vec.aead.digest},
{PLEN_PREFIX, parser_read_uint32_val, &vec.pt},
{KEY_STR, parse_uint8_hex_str, &vec.aead.key},
{IV_STR, parse_uint8_known_len_hex_str, &vec.iv},
{NULL, NULL, NULL}
};
struct fips_test_callback ccm_dvpt_vec[] = {
{IV_STR, parse_uint8_known_len_hex_str, &vec.iv},
{AAD_STR, parse_uint8_ccm_aad_str, &vec.aead.aad},
{CT_STR, parse_dvpt_ct_hex_str, &vec.ct},
{NULL, NULL, NULL}
};
struct fips_test_callback ccm_dvpt_interim_vec[] = {
{ALEN_PREFIX, parser_dvpt_interim, &vec.aead.aad},
{PLEN_PREFIX, parser_dvpt_interim, &vec.pt},
{IVLEN_PREFIX, parser_dvpt_interim, &vec.iv},
{DIGESTL_PREFIX, parser_dvpt_interim, &vec.aead.digest},
{KEY_STR, parse_uint8_hex_str, &vec.aead.key},
{NULL, NULL, NULL}
};
struct ccm_test_types {
const char *str;
uint32_t type;
const struct fips_test_callback *cb;
const struct fips_test_callback *cb_interim;
enum fips_test_op op;
} ctt[] = {
{DVPT_STR, CCM_DVPT, ccm_dvpt_vec, ccm_dvpt_interim_vec,
FIPS_TEST_DEC_AUTH_VERIF},
{VPT_STR, CCM_VPT, ccm_vpt_vec, ccm_vpt_interim_vec,
FIPS_TEST_ENC_AUTH_GEN},
{VADT_STR, CCM_VADT, ccm_vadt_vec, ccm_vadt_interim_vec,
FIPS_TEST_ENC_AUTH_GEN},
{VNT_STR, CCM_VNT, ccm_vnt_vec, ccm_vnt_interim_vec,
FIPS_TEST_ENC_AUTH_GEN},
{VTT_STR, CCM_VTT, ccm_vtt_vec, ccm_vtt_interim_vec,
FIPS_TEST_ENC_AUTH_GEN},
};
#ifdef USE_JANSSON
static int
parser_read_ccm_direction_str(__rte_unused const char *key, char *src,
__rte_unused struct fips_val *val)
{
if (strcmp(src, "encrypt") == 0)
info.op = FIPS_TEST_ENC_AUTH_GEN;
else if (strcmp(src, "decrypt") == 0)
info.op = FIPS_TEST_DEC_AUTH_VERIF;
return 0;
}
static int
parser_read_ccm_aad_str(const char *key, char *src, struct fips_val *val)
{
struct fips_val tmp_val = {0};
uint32_t len = val->len;
/* CCM aad requires 18 bytes padding before the real content */
val->val = rte_zmalloc(NULL, len + 18, 0);
if (!val->val)
return -1;
if (parse_uint8_hex_str(key, src, &tmp_val) < 0)
return -1;
memcpy(val->val + 18, tmp_val.val, val->len);
rte_free(tmp_val.val);
return 0;
}
static int
parse_read_ccm_ct_str(const char *key, char *src, struct fips_val *val)
{
int ret;
val->len = vec.pt.len;
ret = parse_uint8_known_len_hex_str(key, src, val);
if (ret < 0)
return ret;
src += val->len * 2;
ret = parse_uint8_known_len_hex_str("", src, &vec.aead.digest);
if (ret < 0) {
rte_free(val->val);
memset(val, 0, sizeof(*val));
return ret;
}
return 0;
}
struct fips_test_callback ccm_tests_interim_json_vectors[] = {
{DIR_JSON_STR, parser_read_ccm_direction_str, NULL},
{IVLEN_JSON_STR, parser_read_uint32_bit_val, &vec.iv},
{PTLEN_JSON_STR, parser_read_uint32_bit_val, &vec.pt},
{AADLEN_JSON_STR, parser_read_uint32_bit_val, &vec.aead.aad},
{TAGLEN_JSON_STR, parser_read_uint32_bit_val, &vec.aead.digest},
{KEYLEN_JSON_STR, parser_read_uint32_bit_val, &vec.aead.key},
{NULL, NULL, NULL}
};
struct fips_test_callback ccm_tests_json_vectors[] = {
{PT_JSON_STR, parse_uint8_known_len_hex_str, &vec.pt},
{CT_JSON_STR, parse_read_ccm_ct_str, &vec.ct},
{KEY_JSON_STR, parse_uint8_known_len_hex_str, &vec.aead.key},
{IV_JSON_STR, parse_uint8_known_len_hex_str, &vec.iv},
{AAD_JSON_STR, parser_read_ccm_aad_str, &vec.aead.aad},
{NULL, NULL, NULL}
};
static int
parse_test_ccm_json_writeback(struct fips_val *val)
{
struct fips_val tmp_val;
json_t *tcId;
tcId = json_object_get(json_info.json_test_case, "tcId");
json_info.json_write_case = json_object();
json_object_set(json_info.json_write_case, "tcId", tcId);
if (info.op == FIPS_TEST_ENC_AUTH_GEN) {
json_t *ct;
info.one_line_text[0] = '\0';
writeback_hex_str("", info.one_line_text, val);
ct = json_string(info.one_line_text);
json_object_set_new(json_info.json_write_case, CT_JSON_STR, ct);
} else {
if (vec.status == RTE_CRYPTO_OP_STATUS_SUCCESS) {
tmp_val.val = val->val;
tmp_val.len = vec.pt.len;
info.one_line_text[0] = '\0';
writeback_hex_str("", info.one_line_text, &tmp_val);
json_object_set_new(json_info.json_write_case, PT_JSON_STR,
json_string(info.one_line_text));
} else {
json_object_set_new(json_info.json_write_case, "testPassed",
json_false());
}
}
return 0;
}
int
parse_test_ccm_json_init(void)
{
info.interim_callbacks = ccm_tests_interim_json_vectors;
info.parse_writeback = parse_test_ccm_json_writeback;
info.callbacks = ccm_tests_json_vectors;
return 0;
}
#endif /* USE_JANSSON */
static int
parse_test_ccm_writeback(struct fips_val *val)
{
struct fips_val tmp_val;
switch (info.interim_info.ccm_data.test_type) {
case CCM_DVPT:
fprintf(info.fp_wr, "%s", POS_NEG_STR);
if (vec.status == RTE_CRYPTO_OP_STATUS_SUCCESS) {
fprintf(info.fp_wr, "%s\n", POS_KEYWORD);
fprintf(info.fp_wr, "%s", PT_STR);
tmp_val.val = val->val;
tmp_val.len = vec.pt.len;
if (tmp_val.len == 0)
fprintf(info.fp_wr, "00\n");
else
parse_write_hex_str(&tmp_val);
} else
fprintf(info.fp_wr, "%s\n", NEG_KEYWORD);
break;
case CCM_VADT:
case CCM_VNT:
case CCM_VPT:
case CCM_VTT:
fprintf(info.fp_wr, "%s", CT_STR);
parse_write_hex_str(val);
break;
}
return 0;
}
int
parse_test_ccm_init(void)
{
uint32_t i;
for (i = 0; i < info.nb_vec_lines; i++) {
char *line = info.vec[i];
uint32_t j;
for (j = 0; j < RTE_DIM(ctt); j++)
if (strstr(line, ctt[j].str)) {
info.interim_info.ccm_data.test_type =
ctt[j].type;
info.callbacks = ctt[j].cb;
info.interim_callbacks = ctt[j].cb_interim;
info.op = ctt[j].op;
break;
}
}
info.parse_writeback = parse_test_ccm_writeback;
return 0;
}