DPDK 21.11.9
examples/l3fwd/l3fwd_em.c
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2016 Intel Corporation
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <string.h>
#include <sys/queue.h>
#include <stdarg.h>
#include <errno.h>
#include <getopt.h>
#include <stdbool.h>
#include <netinet/in.h>
#include <rte_debug.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_cycles.h>
#include <rte_mbuf.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#include <rte_udp.h>
#include <rte_hash.h>
#include "l3fwd.h"
#include "l3fwd_event.h"
#if defined(RTE_ARCH_X86) || defined(__ARM_FEATURE_CRC32)
#define EM_HASH_CRC 1
#endif
#ifdef EM_HASH_CRC
#include <rte_hash_crc.h>
#define DEFAULT_HASH_FUNC rte_hash_crc
#else
#include <rte_jhash.h>
#define DEFAULT_HASH_FUNC rte_jhash
#endif
#define IPV6_ADDR_LEN 16
struct ipv4_5tuple {
uint32_t ip_dst;
uint32_t ip_src;
uint16_t port_dst;
uint16_t port_src;
uint8_t proto;
union ipv4_5tuple_host {
struct {
uint8_t pad0;
uint8_t proto;
uint16_t pad1;
uint32_t ip_src;
uint32_t ip_dst;
uint16_t port_src;
uint16_t port_dst;
};
xmm_t xmm;
};
#define XMM_NUM_IN_IPV6_5TUPLE 3
struct ipv6_5tuple {
uint8_t ip_dst[IPV6_ADDR_LEN];
uint8_t ip_src[IPV6_ADDR_LEN];
uint16_t port_dst;
uint16_t port_src;
uint8_t proto;
union ipv6_5tuple_host {
struct {
uint16_t pad0;
uint8_t proto;
uint8_t pad1;
uint8_t ip_src[IPV6_ADDR_LEN];
uint8_t ip_dst[IPV6_ADDR_LEN];
uint16_t port_src;
uint16_t port_dst;
uint64_t reserve;
};
xmm_t xmm[XMM_NUM_IN_IPV6_5TUPLE];
};
struct ipv4_l3fwd_em_route {
struct ipv4_5tuple key;
uint8_t if_out;
};
struct ipv6_l3fwd_em_route {
struct ipv6_5tuple key;
uint8_t if_out;
};
/* 198.18.0.0/16 are set aside for RFC2544 benchmarking (RFC5735).
* Use RFC863 Discard Protocol.
*/
static const struct ipv4_l3fwd_em_route ipv4_l3fwd_em_route_array[] = {
{{RTE_IPV4(198, 18, 0, 0), RTE_IPV4(198, 18, 0, 1), 9, 9, IPPROTO_UDP}, 0},
{{RTE_IPV4(198, 18, 1, 0), RTE_IPV4(198, 18, 1, 1), 9, 9, IPPROTO_UDP}, 1},
{{RTE_IPV4(198, 18, 2, 0), RTE_IPV4(198, 18, 2, 1), 9, 9, IPPROTO_UDP}, 2},
{{RTE_IPV4(198, 18, 3, 0), RTE_IPV4(198, 18, 3, 1), 9, 9, IPPROTO_UDP}, 3},
{{RTE_IPV4(198, 18, 4, 0), RTE_IPV4(198, 18, 4, 1), 9, 9, IPPROTO_UDP}, 4},
{{RTE_IPV4(198, 18, 5, 0), RTE_IPV4(198, 18, 5, 1), 9, 9, IPPROTO_UDP}, 5},
{{RTE_IPV4(198, 18, 6, 0), RTE_IPV4(198, 18, 6, 1), 9, 9, IPPROTO_UDP}, 6},
{{RTE_IPV4(198, 18, 7, 0), RTE_IPV4(198, 18, 7, 1), 9, 9, IPPROTO_UDP}, 7},
{{RTE_IPV4(198, 18, 8, 0), RTE_IPV4(198, 18, 8, 1), 9, 9, IPPROTO_UDP}, 8},
{{RTE_IPV4(198, 18, 9, 0), RTE_IPV4(198, 18, 9, 1), 9, 9, IPPROTO_UDP}, 9},
{{RTE_IPV4(198, 18, 10, 0), RTE_IPV4(198, 18, 10, 1), 9, 9, IPPROTO_UDP}, 10},
{{RTE_IPV4(198, 18, 11, 0), RTE_IPV4(198, 18, 11, 1), 9, 9, IPPROTO_UDP}, 11},
{{RTE_IPV4(198, 18, 12, 0), RTE_IPV4(198, 18, 12, 1), 9, 9, IPPROTO_UDP}, 12},
{{RTE_IPV4(198, 18, 13, 0), RTE_IPV4(198, 18, 13, 1), 9, 9, IPPROTO_UDP}, 13},
{{RTE_IPV4(198, 18, 14, 0), RTE_IPV4(198, 18, 14, 1), 9, 9, IPPROTO_UDP}, 14},
{{RTE_IPV4(198, 18, 15, 0), RTE_IPV4(198, 18, 15, 1), 9, 9, IPPROTO_UDP}, 15},
};
/* 2001:0200::/48 is IANA reserved range for IPv6 benchmarking (RFC5180).
* Use RFC863 Discard Protocol.
*/
static const struct ipv6_l3fwd_em_route ipv6_l3fwd_em_route_array[] = {
{{{32, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{32, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 0},
{{{32, 1, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0},
{32, 1, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 1},
{{{32, 1, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0},
{32, 1, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 2},
{{{32, 1, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0},
{32, 1, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 3},
{{{32, 1, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0},
{32, 1, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 4},
{{{32, 1, 2, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0},
{32, 1, 2, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 5},
{{{32, 1, 2, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0},
{32, 1, 2, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 6},
{{{32, 1, 2, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0},
{32, 1, 2, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 7},
{{{32, 1, 2, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0},
{32, 1, 2, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 8},
{{{32, 1, 2, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0},
{32, 1, 2, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 9},
{{{32, 1, 2, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0},
{32, 1, 2, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 10},
{{{32, 1, 2, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0},
{32, 1, 2, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 11},
{{{32, 1, 2, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0},
{32, 1, 2, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 12},
{{{32, 1, 2, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0},
{32, 1, 2, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 13},
{{{32, 1, 2, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0},
{32, 1, 2, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 14},
{{{32, 1, 2, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0},
{32, 1, 2, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 1}, 9, 9, IPPROTO_UDP}, 15},
};
struct rte_hash *ipv4_l3fwd_em_lookup_struct[NB_SOCKETS];
struct rte_hash *ipv6_l3fwd_em_lookup_struct[NB_SOCKETS];
static inline uint32_t
ipv4_hash_crc(const void *data, __rte_unused uint32_t data_len,
uint32_t init_val)
{
const union ipv4_5tuple_host *k;
uint32_t t;
const uint32_t *p;
k = data;
t = k->proto;
p = (const uint32_t *)&k->port_src;
#ifdef EM_HASH_CRC
init_val = rte_hash_crc_4byte(t, init_val);
init_val = rte_hash_crc_4byte(k->ip_src, init_val);
init_val = rte_hash_crc_4byte(k->ip_dst, init_val);
init_val = rte_hash_crc_4byte(*p, init_val);
#else
init_val = rte_jhash_1word(t, init_val);
init_val = rte_jhash_1word(k->ip_src, init_val);
init_val = rte_jhash_1word(k->ip_dst, init_val);
init_val = rte_jhash_1word(*p, init_val);
#endif
return init_val;
}
static inline uint32_t
ipv6_hash_crc(const void *data, __rte_unused uint32_t data_len,
uint32_t init_val)
{
const union ipv6_5tuple_host *k;
uint32_t t;
const uint32_t *p;
#ifdef EM_HASH_CRC
const uint32_t *ip_src0, *ip_src1, *ip_src2, *ip_src3;
const uint32_t *ip_dst0, *ip_dst1, *ip_dst2, *ip_dst3;
#endif
k = data;
t = k->proto;
p = (const uint32_t *)&k->port_src;
#ifdef EM_HASH_CRC
ip_src0 = (const uint32_t *) k->ip_src;
ip_src1 = (const uint32_t *)(k->ip_src+4);
ip_src2 = (const uint32_t *)(k->ip_src+8);
ip_src3 = (const uint32_t *)(k->ip_src+12);
ip_dst0 = (const uint32_t *) k->ip_dst;
ip_dst1 = (const uint32_t *)(k->ip_dst+4);
ip_dst2 = (const uint32_t *)(k->ip_dst+8);
ip_dst3 = (const uint32_t *)(k->ip_dst+12);
init_val = rte_hash_crc_4byte(t, init_val);
init_val = rte_hash_crc_4byte(*ip_src0, init_val);
init_val = rte_hash_crc_4byte(*ip_src1, init_val);
init_val = rte_hash_crc_4byte(*ip_src2, init_val);
init_val = rte_hash_crc_4byte(*ip_src3, init_val);
init_val = rte_hash_crc_4byte(*ip_dst0, init_val);
init_val = rte_hash_crc_4byte(*ip_dst1, init_val);
init_val = rte_hash_crc_4byte(*ip_dst2, init_val);
init_val = rte_hash_crc_4byte(*ip_dst3, init_val);
init_val = rte_hash_crc_4byte(*p, init_val);
#else
init_val = rte_jhash_1word(t, init_val);
init_val = rte_jhash(k->ip_src,
sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
init_val = rte_jhash(k->ip_dst,
sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
init_val = rte_jhash_1word(*p, init_val);
#endif
return init_val;
}
#define IPV4_L3FWD_EM_NUM_ROUTES RTE_DIM(ipv4_l3fwd_em_route_array)
#define IPV6_L3FWD_EM_NUM_ROUTES RTE_DIM(ipv6_l3fwd_em_route_array)
static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
static rte_xmm_t mask0;
static rte_xmm_t mask1;
static rte_xmm_t mask2;
#if defined(__SSE2__)
static inline xmm_t
em_mask_key(void *key, xmm_t mask)
{
__m128i data = _mm_loadu_si128((__m128i *)(key));
return _mm_and_si128(data, mask);
}
#elif defined(__ARM_NEON)
static inline xmm_t
em_mask_key(void *key, xmm_t mask)
{
int32x4_t data = vld1q_s32((int32_t *)key);
return vandq_s32(data, mask);
}
#elif defined(__ALTIVEC__)
static inline xmm_t
em_mask_key(void *key, xmm_t mask)
{
xmm_t data = vec_ld(0, (xmm_t *)(key));
return vec_and(data, mask);
}
#else
#error No vector engine (SSE, NEON, ALTIVEC) available, check your toolchain
#endif
/* Performing hash-based lookups. 8< */
static inline uint16_t
em_get_ipv4_dst_port(void *ipv4_hdr, uint16_t portid, void *lookup_struct)
{
int ret = 0;
union ipv4_5tuple_host key;
struct rte_hash *ipv4_l3fwd_lookup_struct =
(struct rte_hash *)lookup_struct;
ipv4_hdr = (uint8_t *)ipv4_hdr +
offsetof(struct rte_ipv4_hdr, time_to_live);
/*
* Get 5 tuple: dst port, src port, dst IP address,
* src IP address and protocol.
*/
key.xmm = em_mask_key(ipv4_hdr, mask0.x);
/* Find destination port */
ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
return (ret < 0) ? portid : ipv4_l3fwd_out_if[ret];
}
/* >8 End of performing hash-based lookups. */
static inline uint16_t
em_get_ipv6_dst_port(void *ipv6_hdr, uint16_t portid, void *lookup_struct)
{
int ret = 0;
union ipv6_5tuple_host key;
struct rte_hash *ipv6_l3fwd_lookup_struct =
(struct rte_hash *)lookup_struct;
ipv6_hdr = (uint8_t *)ipv6_hdr +
offsetof(struct rte_ipv6_hdr, payload_len);
void *data0 = ipv6_hdr;
void *data1 = ((uint8_t *)ipv6_hdr) + sizeof(xmm_t);
void *data2 = ((uint8_t *)ipv6_hdr) + sizeof(xmm_t) + sizeof(xmm_t);
/* Get part of 5 tuple: src IP address lower 96 bits and protocol */
key.xmm[0] = em_mask_key(data0, mask1.x);
/*
* Get part of 5 tuple: dst IP address lower 96 bits
* and src IP address higher 32 bits.
*/
#if defined RTE_ARCH_X86
key.xmm[1] = _mm_loadu_si128(data1);
#else
key.xmm[1] = *(xmm_t *)data1;
#endif
/*
* Get part of 5 tuple: dst port and src port
* and dst IP address higher 32 bits.
*/
key.xmm[2] = em_mask_key(data2, mask2.x);
/* Find destination port */
ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
return (ret < 0) ? portid : ipv6_l3fwd_out_if[ret];
}
#if defined RTE_ARCH_X86 || defined __ARM_NEON
#if defined(NO_HASH_MULTI_LOOKUP)
#include "l3fwd_em_sequential.h"
#else
#include "l3fwd_em_hlm.h"
#endif
#else
#include "l3fwd_em.h"
#endif
static void
convert_ipv4_5tuple(struct ipv4_5tuple *key1,
union ipv4_5tuple_host *key2)
{
key2->ip_dst = rte_cpu_to_be_32(key1->ip_dst);
key2->ip_src = rte_cpu_to_be_32(key1->ip_src);
key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
key2->port_src = rte_cpu_to_be_16(key1->port_src);
key2->proto = key1->proto;
key2->pad0 = 0;
key2->pad1 = 0;
}
static void
convert_ipv6_5tuple(struct ipv6_5tuple *key1,
union ipv6_5tuple_host *key2)
{
uint32_t i;
for (i = 0; i < 16; i++) {
key2->ip_dst[i] = key1->ip_dst[i];
key2->ip_src[i] = key1->ip_src[i];
}
key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
key2->port_src = rte_cpu_to_be_16(key1->port_src);
key2->proto = key1->proto;
key2->pad0 = 0;
key2->pad1 = 0;
key2->reserve = 0;
}
#define BYTE_VALUE_MAX 256
#define ALL_32_BITS 0xffffffff
#define BIT_8_TO_15 0x0000ff00
static inline void
populate_ipv4_few_flow_into_table(const struct rte_hash *h)
{
uint32_t i;
int32_t ret;
mask0 = (rte_xmm_t){.u32 = {BIT_8_TO_15, ALL_32_BITS,
ALL_32_BITS, ALL_32_BITS} };
for (i = 0; i < IPV4_L3FWD_EM_NUM_ROUTES; i++) {
struct ipv4_l3fwd_em_route entry;
union ipv4_5tuple_host newkey;
entry = ipv4_l3fwd_em_route_array[i];
convert_ipv4_5tuple(&entry.key, &newkey);
ret = rte_hash_add_key(h, (void *) &newkey);
if (ret < 0) {
rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
" to the l3fwd hash.\n", i);
}
ipv4_l3fwd_out_if[ret] = entry.if_out;
}
printf("Hash: Adding 0x%" PRIx64 " keys\n",
(uint64_t)IPV4_L3FWD_EM_NUM_ROUTES);
}
#define BIT_16_TO_23 0x00ff0000
static inline void
populate_ipv6_few_flow_into_table(const struct rte_hash *h)
{
uint32_t i;
int32_t ret;
mask1 = (rte_xmm_t){.u32 = {BIT_16_TO_23, ALL_32_BITS,
ALL_32_BITS, ALL_32_BITS} };
mask2 = (rte_xmm_t){.u32 = {ALL_32_BITS, ALL_32_BITS, 0, 0} };
for (i = 0; i < IPV6_L3FWD_EM_NUM_ROUTES; i++) {
struct ipv6_l3fwd_em_route entry;
union ipv6_5tuple_host newkey;
entry = ipv6_l3fwd_em_route_array[i];
convert_ipv6_5tuple(&entry.key, &newkey);
ret = rte_hash_add_key(h, (void *) &newkey);
if (ret < 0) {
rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
" to the l3fwd hash.\n", i);
}
ipv6_l3fwd_out_if[ret] = entry.if_out;
}
printf("Hash: Adding 0x%" PRIx64 "keys\n",
(uint64_t)IPV6_L3FWD_EM_NUM_ROUTES);
}
#define NUMBER_PORT_USED 16
static inline void
populate_ipv4_many_flow_into_table(const struct rte_hash *h,
unsigned int nr_flow)
{
unsigned i;
mask0 = (rte_xmm_t){.u32 = {BIT_8_TO_15, ALL_32_BITS,
ALL_32_BITS, ALL_32_BITS} };
for (i = 0; i < nr_flow; i++) {
uint8_t port = i % NUMBER_PORT_USED;
struct ipv4_l3fwd_em_route entry;
union ipv4_5tuple_host newkey;
uint8_t a = (uint8_t)((port + 1) % BYTE_VALUE_MAX);
/* Create the ipv4 exact match flow */
memset(&entry, 0, sizeof(entry));
entry = ipv4_l3fwd_em_route_array[port];
entry.key.ip_dst = RTE_IPV4(198, 18, port, a);
convert_ipv4_5tuple(&entry.key, &newkey);
int32_t ret = rte_hash_add_key(h, (void *) &newkey);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
ipv4_l3fwd_out_if[ret] = (uint8_t) entry.if_out;
}
printf("Hash: Adding 0x%x keys\n", nr_flow);
}
static inline void
populate_ipv6_many_flow_into_table(const struct rte_hash *h,
unsigned int nr_flow)
{
unsigned i;
mask1 = (rte_xmm_t){.u32 = {BIT_16_TO_23, ALL_32_BITS,
ALL_32_BITS, ALL_32_BITS} };
mask2 = (rte_xmm_t){.u32 = {ALL_32_BITS, ALL_32_BITS, 0, 0} };
for (i = 0; i < nr_flow; i++) {
uint8_t port = i % NUMBER_PORT_USED;
struct ipv6_l3fwd_em_route entry;
union ipv6_5tuple_host newkey;
/* Create the ipv6 exact match flow */
memset(&entry, 0, sizeof(entry));
entry = ipv6_l3fwd_em_route_array[port];
entry.key.ip_dst[15] = (port + 1) % BYTE_VALUE_MAX;
convert_ipv6_5tuple(&entry.key, &newkey);
int32_t ret = rte_hash_add_key(h, (void *) &newkey);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
ipv6_l3fwd_out_if[ret] = (uint8_t) entry.if_out;
}
printf("Hash: Adding 0x%x keys\n", nr_flow);
}
/* Requirements:
* 1. IP packets without extension;
* 2. L4 payload should be either TCP or UDP.
*/
int
em_check_ptype(int portid)
{
int i, ret;
int ptype_l3_ipv4_ext = 0;
int ptype_l3_ipv6_ext = 0;
int ptype_l4_tcp = 0;
int ptype_l4_udp = 0;
uint32_t ptype_mask = RTE_PTYPE_L3_MASK | RTE_PTYPE_L4_MASK;
ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0);
if (ret <= 0)
return 0;
uint32_t ptypes[ret];
ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret);
for (i = 0; i < ret; ++i) {
switch (ptypes[i]) {
ptype_l3_ipv4_ext = 1;
break;
ptype_l3_ipv6_ext = 1;
break;
ptype_l4_tcp = 1;
break;
ptype_l4_udp = 1;
break;
}
}
if (ptype_l3_ipv4_ext == 0)
printf("port %d cannot parse RTE_PTYPE_L3_IPV4_EXT\n", portid);
if (ptype_l3_ipv6_ext == 0)
printf("port %d cannot parse RTE_PTYPE_L3_IPV6_EXT\n", portid);
if (!ptype_l3_ipv4_ext || !ptype_l3_ipv6_ext)
return 0;
if (ptype_l4_tcp == 0)
printf("port %d cannot parse RTE_PTYPE_L4_TCP\n", portid);
if (ptype_l4_udp == 0)
printf("port %d cannot parse RTE_PTYPE_L4_UDP\n", portid);
if (ptype_l4_tcp && ptype_l4_udp)
return 1;
return 0;
}
static inline void
em_parse_ptype(struct rte_mbuf *m)
{
struct rte_ether_hdr *eth_hdr;
uint32_t packet_type = RTE_PTYPE_UNKNOWN;
uint16_t ether_type;
void *l3;
int hdr_len;
struct rte_ipv4_hdr *ipv4_hdr;
struct rte_ipv6_hdr *ipv6_hdr;
eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
ether_type = eth_hdr->ether_type;
l3 = (uint8_t *)eth_hdr + sizeof(struct rte_ether_hdr);
ipv4_hdr = (struct rte_ipv4_hdr *)l3;
hdr_len = rte_ipv4_hdr_len(ipv4_hdr);
if (hdr_len == sizeof(struct rte_ipv4_hdr)) {
packet_type |= RTE_PTYPE_L3_IPV4;
if (ipv4_hdr->next_proto_id == IPPROTO_TCP)
packet_type |= RTE_PTYPE_L4_TCP;
else if (ipv4_hdr->next_proto_id == IPPROTO_UDP)
packet_type |= RTE_PTYPE_L4_UDP;
} else
packet_type |= RTE_PTYPE_L3_IPV4_EXT;
ipv6_hdr = (struct rte_ipv6_hdr *)l3;
if (ipv6_hdr->proto == IPPROTO_TCP)
else if (ipv6_hdr->proto == IPPROTO_UDP)
else
}
m->packet_type = packet_type;
}
uint16_t
em_cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused,
struct rte_mbuf *pkts[], uint16_t nb_pkts,
uint16_t max_pkts __rte_unused,
void *user_param __rte_unused)
{
unsigned i;
for (i = 0; i < nb_pkts; ++i)
em_parse_ptype(pkts[i]);
return nb_pkts;
}
/* main processing loop */
int
em_main_loop(__rte_unused void *dummy)
{
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
unsigned lcore_id;
uint64_t prev_tsc, diff_tsc, cur_tsc;
int i, nb_rx;
uint8_t queueid;
uint16_t portid;
struct lcore_conf *qconf;
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
US_PER_S * BURST_TX_DRAIN_US;
lcore_id = rte_lcore_id();
qconf = &lcore_conf[lcore_id];
const uint16_t n_rx_q = qconf->n_rx_queue;
const uint16_t n_tx_p = qconf->n_tx_port;
if (n_rx_q == 0) {
RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id);
return 0;
}
RTE_LOG(INFO, L3FWD, "entering main loop on lcore %u\n", lcore_id);
for (i = 0; i < n_rx_q; i++) {
portid = qconf->rx_queue_list[i].port_id;
queueid = qconf->rx_queue_list[i].queue_id;
RTE_LOG(INFO, L3FWD,
" -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
lcore_id, portid, queueid);
}
cur_tsc = rte_rdtsc();
prev_tsc = cur_tsc;
while (!force_quit) {
/*
* TX burst queue drain
*/
diff_tsc = cur_tsc - prev_tsc;
if (unlikely(diff_tsc > drain_tsc)) {
for (i = 0; i < n_tx_p; ++i) {
portid = qconf->tx_port_id[i];
if (qconf->tx_mbufs[portid].len == 0)
continue;
send_burst(qconf,
qconf->tx_mbufs[portid].len,
portid);
qconf->tx_mbufs[portid].len = 0;
}
prev_tsc = cur_tsc;
}
/*
* Read packet from RX queues
*/
for (i = 0; i < n_rx_q; ++i) {
portid = qconf->rx_queue_list[i].port_id;
queueid = qconf->rx_queue_list[i].queue_id;
nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
MAX_PKT_BURST);
if (nb_rx == 0)
continue;
#if defined RTE_ARCH_X86 || defined __ARM_NEON
l3fwd_em_send_packets(nb_rx, pkts_burst,
portid, qconf);
#else
l3fwd_em_no_opt_send_packets(nb_rx, pkts_burst,
portid, qconf);
#endif
}
cur_tsc = rte_rdtsc();
}
return 0;
}
em_event_loop_single(struct l3fwd_event_resources *evt_rsrc,
const uint8_t flags)
{
const int event_p_id = l3fwd_get_free_event_port(evt_rsrc);
const uint8_t tx_q_id = evt_rsrc->evq.event_q_id[
evt_rsrc->evq.nb_queues - 1];
const uint8_t event_d_id = evt_rsrc->event_d_id;
struct lcore_conf *lconf;
unsigned int lcore_id;
struct rte_event ev;
if (event_p_id < 0)
return;
lcore_id = rte_lcore_id();
lconf = &lcore_conf[lcore_id];
RTE_LOG(INFO, L3FWD, "entering %s on lcore %u\n", __func__, lcore_id);
while (!force_quit) {
if (!rte_event_dequeue_burst(event_d_id, event_p_id, &ev, 1, 0))
continue;
struct rte_mbuf *mbuf = ev.mbuf;
#if defined RTE_ARCH_X86 || defined __ARM_NEON
mbuf->port = em_get_dst_port(lconf, mbuf, mbuf->port);
process_packet(mbuf, &mbuf->port);
#else
l3fwd_em_simple_process(mbuf, lconf);
#endif
if (mbuf->port == BAD_PORT) {
continue;
}
if (flags & L3FWD_EVENT_TX_ENQ) {
ev.queue_id = tx_q_id;
while (rte_event_enqueue_burst(event_d_id, event_p_id,
&ev, 1) && !force_quit)
;
}
if (flags & L3FWD_EVENT_TX_DIRECT) {
event_p_id, &ev, 1, 0) &&
!force_quit)
;
}
}
}
em_event_loop_burst(struct l3fwd_event_resources *evt_rsrc,
const uint8_t flags)
{
const int event_p_id = l3fwd_get_free_event_port(evt_rsrc);
const uint8_t tx_q_id = evt_rsrc->evq.event_q_id[
evt_rsrc->evq.nb_queues - 1];
const uint8_t event_d_id = evt_rsrc->event_d_id;
const uint16_t deq_len = evt_rsrc->deq_depth;
struct rte_event events[MAX_PKT_BURST];
struct lcore_conf *lconf;
unsigned int lcore_id;
int i, nb_enq, nb_deq;
if (event_p_id < 0)
return;
lcore_id = rte_lcore_id();
lconf = &lcore_conf[lcore_id];
RTE_LOG(INFO, L3FWD, "entering %s on lcore %u\n", __func__, lcore_id);
while (!force_quit) {
/* Read events from RX queues */
nb_deq = rte_event_dequeue_burst(event_d_id, event_p_id,
events, deq_len, 0);
if (nb_deq == 0) {
continue;
}
#if defined RTE_ARCH_X86 || defined __ARM_NEON
l3fwd_em_process_events(nb_deq, (struct rte_event **)&events,
lconf);
#else
l3fwd_em_no_opt_process_events(nb_deq,
(struct rte_event **)&events,
lconf);
#endif
for (i = 0; i < nb_deq; i++) {
if (flags & L3FWD_EVENT_TX_ENQ) {
events[i].queue_id = tx_q_id;
events[i].op = RTE_EVENT_OP_FORWARD;
}
if (flags & L3FWD_EVENT_TX_DIRECT)
0);
}
if (flags & L3FWD_EVENT_TX_ENQ) {
nb_enq = rte_event_enqueue_burst(event_d_id, event_p_id,
events, nb_deq);
while (nb_enq < nb_deq && !force_quit)
nb_enq += rte_event_enqueue_burst(event_d_id,
event_p_id, events + nb_enq,
nb_deq - nb_enq);
}
if (flags & L3FWD_EVENT_TX_DIRECT) {
nb_enq = rte_event_eth_tx_adapter_enqueue(event_d_id,
event_p_id, events, nb_deq, 0);
while (nb_enq < nb_deq && !force_quit)
event_d_id, event_p_id,
events + nb_enq,
nb_deq - nb_enq, 0);
}
}
}
em_event_loop(struct l3fwd_event_resources *evt_rsrc,
const uint8_t flags)
{
if (flags & L3FWD_EVENT_SINGLE)
em_event_loop_single(evt_rsrc, flags);
if (flags & L3FWD_EVENT_BURST)
em_event_loop_burst(evt_rsrc, flags);
}
em_event_main_loop_tx_d(__rte_unused void *dummy)
{
struct l3fwd_event_resources *evt_rsrc =
l3fwd_get_eventdev_rsrc();
em_event_loop(evt_rsrc, L3FWD_EVENT_TX_DIRECT | L3FWD_EVENT_SINGLE);
return 0;
}
em_event_main_loop_tx_d_burst(__rte_unused void *dummy)
{
struct l3fwd_event_resources *evt_rsrc =
l3fwd_get_eventdev_rsrc();
em_event_loop(evt_rsrc, L3FWD_EVENT_TX_DIRECT | L3FWD_EVENT_BURST);
return 0;
}
em_event_main_loop_tx_q(__rte_unused void *dummy)
{
struct l3fwd_event_resources *evt_rsrc =
l3fwd_get_eventdev_rsrc();
em_event_loop(evt_rsrc, L3FWD_EVENT_TX_ENQ | L3FWD_EVENT_SINGLE);
return 0;
}
em_event_main_loop_tx_q_burst(__rte_unused void *dummy)
{
struct l3fwd_event_resources *evt_rsrc =
l3fwd_get_eventdev_rsrc();
em_event_loop(evt_rsrc, L3FWD_EVENT_TX_ENQ | L3FWD_EVENT_BURST);
return 0;
}
/* Same eventdev loop for single and burst of vector */
em_event_loop_vector(struct l3fwd_event_resources *evt_rsrc,
const uint8_t flags)
{
const int event_p_id = l3fwd_get_free_event_port(evt_rsrc);
const uint8_t tx_q_id =
evt_rsrc->evq.event_q_id[evt_rsrc->evq.nb_queues - 1];
const uint8_t event_d_id = evt_rsrc->event_d_id;
const uint16_t deq_len = evt_rsrc->deq_depth;
struct rte_event events[MAX_PKT_BURST];
struct lcore_conf *lconf;
unsigned int lcore_id;
int i, nb_enq, nb_deq;
if (event_p_id < 0)
return;
lcore_id = rte_lcore_id();
lconf = &lcore_conf[lcore_id];
RTE_LOG(INFO, L3FWD, "entering %s on lcore %u\n", __func__, lcore_id);
while (!force_quit) {
/* Read events from RX queues */
nb_deq = rte_event_dequeue_burst(event_d_id, event_p_id, events,
deq_len, 0);
if (nb_deq == 0) {
continue;
}
for (i = 0; i < nb_deq; i++) {
if (flags & L3FWD_EVENT_TX_ENQ) {
events[i].queue_id = tx_q_id;
events[i].op = RTE_EVENT_OP_FORWARD;
}
#if defined RTE_ARCH_X86 || defined __ARM_NEON
l3fwd_em_process_event_vector(events[i].vec, lconf);
#else
l3fwd_em_no_opt_process_event_vector(events[i].vec,
lconf);
#endif
if (flags & L3FWD_EVENT_TX_DIRECT)
event_vector_txq_set(events[i].vec, 0);
}
if (flags & L3FWD_EVENT_TX_ENQ) {
nb_enq = rte_event_enqueue_burst(event_d_id, event_p_id,
events, nb_deq);
while (nb_enq < nb_deq && !force_quit)
event_d_id, event_p_id, events + nb_enq,
nb_deq - nb_enq);
}
if (flags & L3FWD_EVENT_TX_DIRECT) {
event_d_id, event_p_id, events, nb_deq, 0);
while (nb_enq < nb_deq && !force_quit)
event_d_id, event_p_id, events + nb_enq,
nb_deq - nb_enq, 0);
}
}
}
em_event_main_loop_tx_d_vector(__rte_unused void *dummy)
{
struct l3fwd_event_resources *evt_rsrc = l3fwd_get_eventdev_rsrc();
em_event_loop_vector(evt_rsrc, L3FWD_EVENT_TX_DIRECT);
return 0;
}
em_event_main_loop_tx_d_burst_vector(__rte_unused void *dummy)
{
struct l3fwd_event_resources *evt_rsrc = l3fwd_get_eventdev_rsrc();
em_event_loop_vector(evt_rsrc, L3FWD_EVENT_TX_DIRECT);
return 0;
}
em_event_main_loop_tx_q_vector(__rte_unused void *dummy)
{
struct l3fwd_event_resources *evt_rsrc = l3fwd_get_eventdev_rsrc();
em_event_loop_vector(evt_rsrc, L3FWD_EVENT_TX_ENQ);
return 0;
}
em_event_main_loop_tx_q_burst_vector(__rte_unused void *dummy)
{
struct l3fwd_event_resources *evt_rsrc = l3fwd_get_eventdev_rsrc();
em_event_loop_vector(evt_rsrc, L3FWD_EVENT_TX_ENQ);
return 0;
}
/* Initialize exact match (hash) parameters. 8< */
void
setup_hash(const int socketid)
{
struct rte_hash_parameters ipv4_l3fwd_hash_params = {
.name = NULL,
.entries = L3FWD_HASH_ENTRIES,
.key_len = sizeof(union ipv4_5tuple_host),
.hash_func = ipv4_hash_crc,
.hash_func_init_val = 0,
};
struct rte_hash_parameters ipv6_l3fwd_hash_params = {
.name = NULL,
.entries = L3FWD_HASH_ENTRIES,
.key_len = sizeof(union ipv6_5tuple_host),
.hash_func = ipv6_hash_crc,
.hash_func_init_val = 0,
};
char s[64];
/* create ipv4 hash */
snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
ipv4_l3fwd_hash_params.name = s;
ipv4_l3fwd_hash_params.socket_id = socketid;
ipv4_l3fwd_em_lookup_struct[socketid] =
rte_hash_create(&ipv4_l3fwd_hash_params);
if (ipv4_l3fwd_em_lookup_struct[socketid] == NULL)
rte_exit(EXIT_FAILURE,
"Unable to create the l3fwd hash on socket %d\n",
socketid);
/* create ipv6 hash */
snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
ipv6_l3fwd_hash_params.name = s;
ipv6_l3fwd_hash_params.socket_id = socketid;
ipv6_l3fwd_em_lookup_struct[socketid] =
rte_hash_create(&ipv6_l3fwd_hash_params);
if (ipv6_l3fwd_em_lookup_struct[socketid] == NULL)
rte_exit(EXIT_FAILURE,
"Unable to create the l3fwd hash on socket %d\n",
socketid);
if (hash_entry_number != HASH_ENTRY_NUMBER_DEFAULT) {
/* For testing hash matching with a large number of flows we
* generate millions of IP 5-tuples with an incremented dst
* address to initialize the hash table. */
if (ipv6 == 0) {
/* populate the ipv4 hash */
populate_ipv4_many_flow_into_table(
ipv4_l3fwd_em_lookup_struct[socketid],
hash_entry_number);
} else {
/* populate the ipv6 hash */
populate_ipv6_many_flow_into_table(
ipv6_l3fwd_em_lookup_struct[socketid],
hash_entry_number);
}
} else {
/*
* Use data in ipv4/ipv6 l3fwd lookup table
* directly to initialize the hash table.
*/
if (ipv6 == 0) {
/* populate the ipv4 hash */
populate_ipv4_few_flow_into_table(
ipv4_l3fwd_em_lookup_struct[socketid]);
} else {
/* populate the ipv6 hash */
populate_ipv6_few_flow_into_table(
ipv6_l3fwd_em_lookup_struct[socketid]);
}
}
}
/* >8 End of initialization of hash parameters. */
/* Return ipv4/ipv6 em fwd lookup struct. */
void *
em_get_ipv4_l3fwd_lookup_struct(const int socketid)
{
return ipv4_l3fwd_em_lookup_struct[socketid];
}
void *
em_get_ipv6_l3fwd_lookup_struct(const int socketid)
{
return ipv6_l3fwd_em_lookup_struct[socketid];
}
#define unlikely(x)
static rte_be32_t rte_cpu_to_be_32(uint32_t x)
static rte_be16_t rte_cpu_to_be_16(uint16_t x)
#define offsetof(TYPE, MEMBER)
Definition: rte_common.h:773
#define __rte_cache_aligned
Definition: rte_common.h:420
#define __rte_noinline
Definition: rte_common.h:238
#define __rte_packed
Definition: rte_common.h:86
__rte_noreturn void rte_exit(int exit_code, const char *format,...) __rte_format_printf(2
#define __rte_unused
Definition: rte_common.h:123
#define __rte_always_inline
Definition: rte_common.h:233
static uint32_t rte_hash_crc_4byte(uint32_t data, uint32_t init_val)
uint64_t rte_get_tsc_hz(void)
static uint16_t rte_eth_rx_burst(uint16_t port_id, uint16_t queue_id, struct rte_mbuf **rx_pkts, const uint16_t nb_pkts)
Definition: rte_ethdev.h:5312
int rte_eth_dev_get_supported_ptypes(uint16_t port_id, uint32_t ptype_mask, uint32_t *ptypes, int num)
#define RTE_ETHER_TYPE_IPV4
Definition: rte_ether.h:307
rte_be16_t ether_type
Definition: rte_ether.h:2
#define RTE_ETHER_TYPE_IPV6
Definition: rte_ether.h:308
static __rte_always_inline void rte_event_eth_tx_adapter_txq_set(struct rte_mbuf *pkt, uint16_t queue)
static uint16_t rte_event_eth_tx_adapter_enqueue(uint8_t dev_id, uint8_t port_id, struct rte_event ev[], uint16_t nb_events, const uint8_t flags)
static uint16_t rte_event_dequeue_burst(uint8_t dev_id, uint8_t port_id, struct rte_event ev[], uint16_t nb_events, uint64_t timeout_ticks)
#define RTE_EVENT_OP_FORWARD
static uint16_t rte_event_enqueue_burst(uint8_t dev_id, uint8_t port_id, const struct rte_event ev[], uint16_t nb_events)
int32_t rte_hash_add_key(const struct rte_hash *h, const void *key)
int32_t rte_hash_lookup(const struct rte_hash *h, const void *key)
struct rte_hash * rte_hash_create(const struct rte_hash_parameters *params)
#define RTE_IPV4(a, b, c, d)
Definition: rte_ip.h:67
static uint8_t rte_ipv4_hdr_len(const struct rte_ipv4_hdr *ipv4_hdr)
Definition: rte_ip.h:137
static uint32_t rte_jhash_1word(uint32_t a, uint32_t initval)
Definition: rte_jhash.h:376
static uint32_t rte_jhash(const void *key, uint32_t length, uint32_t initval)
Definition: rte_jhash.h:280
static unsigned rte_lcore_id(void)
Definition: rte_lcore.h:76
#define RTE_LOG(l, t,...)
Definition: rte_log.h:341
static void rte_pktmbuf_free(struct rte_mbuf *m)
Definition: rte_mbuf.h:1375
#define rte_pktmbuf_mtod(m, t)
#define RTE_PTYPE_L3_IPV6_EXT_UNKNOWN
#define RTE_PTYPE_L4_UDP
#define RTE_PTYPE_L3_IPV6
#define RTE_PTYPE_L4_MASK
#define RTE_PTYPE_L3_MASK
#define RTE_PTYPE_L3_IPV4_EXT
#define RTE_PTYPE_UNKNOWN
#define RTE_PTYPE_L3_IPV6_EXT
#define RTE_PTYPE_L4_TCP
#define RTE_PTYPE_L3_IPV4
static void rte_pause(void)
rte_be16_t ether_type
Definition: rte_ether.h:291
const char * name
Definition: rte_hash.h:83
uint8_t next_proto_id
Definition: rte_ip.h:60
uint8_t proto
Definition: rte_ip.h:440
uint32_t packet_type
uint16_t port