DPDK 21.11.9
examples/l3fwd-acl/main.c
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2016 Intel Corporation
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <string.h>
#include <sys/queue.h>
#include <stdarg.h>
#include <errno.h>
#include <getopt.h>
#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_eal.h>
#include <rte_launch.h>
#include <rte_cycles.h>
#include <rte_prefetch.h>
#include <rte_lcore.h>
#include <rte_per_lcore.h>
#include <rte_interrupts.h>
#include <rte_random.h>
#include <rte_debug.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#include <rte_udp.h>
#include <rte_string_fns.h>
#include <rte_acl.h>
#include <cmdline_parse.h>
#include <cmdline_parse_etheraddr.h>
#if RTE_LOG_DP_LEVEL >= RTE_LOG_DEBUG
#define L3FWDACL_DEBUG
#endif
#define DO_RFC_1812_CHECKS
#define RTE_LOGTYPE_L3FWD RTE_LOGTYPE_USER1
#define MAX_JUMBO_PKT_LEN 9600
#define MEMPOOL_CACHE_SIZE 256
/*
* This expression is used to calculate the number of mbufs needed
* depending on user input, taking into account memory for rx and tx hardware
* rings, cache per lcore and mtable per port per lcore.
* RTE_MAX is used to ensure that NB_MBUF never goes below a
* minimum value of 8192
*/
#define NB_MBUF RTE_MAX(\
(nb_ports * nb_rx_queue * nb_rxd + \
nb_ports * nb_lcores * MAX_PKT_BURST + \
nb_ports * n_tx_queue * nb_txd + \
nb_lcores * MEMPOOL_CACHE_SIZE), \
(unsigned)8192)
#define MAX_PKT_BURST 32
#define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
#define NB_SOCKETS 8
/* Configure how many packets ahead to prefetch, when reading packets */
#define PREFETCH_OFFSET 3
/*
* Configurable number of RX/TX ring descriptors
*/
#define RTE_TEST_RX_DESC_DEFAULT 1024
#define RTE_TEST_TX_DESC_DEFAULT 1024
static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
/* mask of enabled ports */
static uint32_t enabled_port_mask;
static int promiscuous_on;
static int numa_on = 1;
struct lcore_rx_queue {
uint16_t port_id;
uint8_t queue_id;
#define MAX_RX_QUEUE_PER_LCORE 16
#define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS
#define MAX_RX_QUEUE_PER_PORT 128
#define MAX_LCORE_PARAMS 1024
struct lcore_params {
uint16_t port_id;
uint8_t queue_id;
uint8_t lcore_id;
static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
static struct lcore_params lcore_params_array_default[] = {
{0, 0, 2},
{0, 1, 2},
{0, 2, 2},
{1, 0, 2},
{1, 1, 2},
{1, 2, 2},
{2, 0, 2},
{3, 0, 3},
{3, 1, 3},
};
static struct lcore_params *lcore_params = lcore_params_array_default;
static uint16_t nb_lcore_params = sizeof(lcore_params_array_default) /
sizeof(lcore_params_array_default[0]);
static struct rte_eth_conf port_conf = {
.rxmode = {
.split_hdr_size = 0,
.offloads = RTE_ETH_RX_OFFLOAD_CHECKSUM,
},
.rx_adv_conf = {
.rss_conf = {
.rss_key = NULL,
.rss_hf = RTE_ETH_RSS_IP | RTE_ETH_RSS_UDP |
RTE_ETH_RSS_TCP | RTE_ETH_RSS_SCTP,
},
},
.txmode = {
.mq_mode = RTE_ETH_MQ_TX_NONE,
},
};
static uint32_t max_pkt_len;
static struct rte_mempool *pktmbuf_pool[NB_SOCKETS];
/* ethernet addresses of ports */
static struct rte_ether_hdr port_l2hdr[RTE_MAX_ETHPORTS];
static const struct {
const char *name;
} acl_alg[] = {
{
.name = "scalar",
},
{
.name = "sse",
},
{
.name = "avx2",
},
{
.name = "neon",
},
{
.name = "altivec",
},
{
.name = "avx512x16",
},
{
.name = "avx512x32",
},
};
/***********************start of ACL part******************************/
#ifdef DO_RFC_1812_CHECKS
static inline int
is_valid_ipv4_pkt(struct rte_ipv4_hdr *pkt, uint32_t link_len);
#endif
static inline void
send_single_packet(struct rte_mbuf *m, uint16_t port);
#define MAX_ACL_RULE_NUM 100000
#define DEFAULT_MAX_CATEGORIES 1
#define L3FWD_ACL_IPV4_NAME "l3fwd-acl-ipv4"
#define L3FWD_ACL_IPV6_NAME "l3fwd-acl-ipv6"
#define ACL_LEAD_CHAR ('@')
#define ROUTE_LEAD_CHAR ('R')
#define COMMENT_LEAD_CHAR ('#')
enum {
#define OPT_CONFIG "config"
OPT_CONFIG_NUM = 256,
#define OPT_NONUMA "no-numa"
OPT_NONUMA_NUM,
#define OPT_MAX_PKT_LEN "max-pkt-len"
OPT_MAX_PKT_LEN_NUM,
#define OPT_RULE_IPV4 "rule_ipv4"
OPT_RULE_IPV4_NUM,
#define OPT_RULE_IPV6 "rule_ipv6"
OPT_RULE_IPV6_NUM,
#define OPT_ALG "alg"
OPT_ALG_NUM,
#define OPT_ETH_DEST "eth-dest"
OPT_ETH_DEST_NUM,
};
#define ACL_DENY_SIGNATURE 0xf0000000
#define RTE_LOGTYPE_L3FWDACL RTE_LOGTYPE_USER3
#define acl_log(format, ...) RTE_LOG(ERR, L3FWDACL, format, ##__VA_ARGS__)
#define uint32_t_to_char(ip, a, b, c, d) do {\
*a = (unsigned char)(ip >> 24 & 0xff);\
*b = (unsigned char)(ip >> 16 & 0xff);\
*c = (unsigned char)(ip >> 8 & 0xff);\
*d = (unsigned char)(ip & 0xff);\
} while (0)
#define OFF_ETHHEAD (sizeof(struct rte_ether_hdr))
#define OFF_IPV42PROTO (offsetof(struct rte_ipv4_hdr, next_proto_id))
#define OFF_IPV62PROTO (offsetof(struct rte_ipv6_hdr, proto))
#define MBUF_IPV4_2PROTO(m) \
rte_pktmbuf_mtod_offset((m), uint8_t *, OFF_ETHHEAD + OFF_IPV42PROTO)
#define MBUF_IPV6_2PROTO(m) \
rte_pktmbuf_mtod_offset((m), uint8_t *, OFF_ETHHEAD + OFF_IPV62PROTO)
#define GET_CB_FIELD(in, fd, base, lim, dlm) do { \
unsigned long val; \
char *end; \
errno = 0; \
val = strtoul((in), &end, (base)); \
if (errno != 0 || end[0] != (dlm) || val > (lim)) \
return -EINVAL; \
(fd) = (typeof(fd))val; \
(in) = end + 1; \
} while (0)
/*
* ACL rules should have higher priorities than route ones to ensure ACL rule
* always be found when input packets have multi-matches in the database.
* A exception case is performance measure, which can define route rules with
* higher priority and route rules will always be returned in each lookup.
* Reserve range from ACL_RULE_PRIORITY_MAX + 1 to
* RTE_ACL_MAX_PRIORITY for route entries in performance measure
*/
#define ACL_RULE_PRIORITY_MAX 0x10000000
/*
* Forward port info save in ACL lib starts from 1
* since ACL assume 0 is invalid.
* So, need add 1 when saving and minus 1 when forwarding packets.
*/
#define FWD_PORT_SHIFT 1
/*
* Rule and trace formats definitions.
*/
enum {
PROTO_FIELD_IPV4,
SRC_FIELD_IPV4,
DST_FIELD_IPV4,
SRCP_FIELD_IPV4,
DSTP_FIELD_IPV4,
NUM_FIELDS_IPV4
};
/*
* That effectively defines order of IPV4VLAN classifications:
* - PROTO
* - VLAN (TAG and DOMAIN)
* - SRC IP ADDRESS
* - DST IP ADDRESS
* - PORTS (SRC and DST)
*/
enum {
RTE_ACL_IPV4VLAN_PROTO,
RTE_ACL_IPV4VLAN_VLAN,
RTE_ACL_IPV4VLAN_SRC,
RTE_ACL_IPV4VLAN_DST,
RTE_ACL_IPV4VLAN_PORTS,
RTE_ACL_IPV4VLAN_NUM
};
struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = {
{
.type = RTE_ACL_FIELD_TYPE_BITMASK,
.size = sizeof(uint8_t),
.field_index = PROTO_FIELD_IPV4,
.input_index = RTE_ACL_IPV4VLAN_PROTO,
.offset = 0,
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = SRC_FIELD_IPV4,
.input_index = RTE_ACL_IPV4VLAN_SRC,
offsetof(struct rte_ipv4_hdr, next_proto_id),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = DST_FIELD_IPV4,
.input_index = RTE_ACL_IPV4VLAN_DST,
offsetof(struct rte_ipv4_hdr, next_proto_id),
},
{
.type = RTE_ACL_FIELD_TYPE_RANGE,
.size = sizeof(uint16_t),
.field_index = SRCP_FIELD_IPV4,
.input_index = RTE_ACL_IPV4VLAN_PORTS,
.offset = sizeof(struct rte_ipv4_hdr) -
offsetof(struct rte_ipv4_hdr, next_proto_id),
},
{
.type = RTE_ACL_FIELD_TYPE_RANGE,
.size = sizeof(uint16_t),
.field_index = DSTP_FIELD_IPV4,
.input_index = RTE_ACL_IPV4VLAN_PORTS,
.offset = sizeof(struct rte_ipv4_hdr) -
offsetof(struct rte_ipv4_hdr, next_proto_id) +
sizeof(uint16_t),
},
};
#define IPV6_ADDR_LEN 16
#define IPV6_ADDR_U16 (IPV6_ADDR_LEN / sizeof(uint16_t))
#define IPV6_ADDR_U32 (IPV6_ADDR_LEN / sizeof(uint32_t))
enum {
PROTO_FIELD_IPV6,
SRC1_FIELD_IPV6,
SRC2_FIELD_IPV6,
SRC3_FIELD_IPV6,
SRC4_FIELD_IPV6,
DST1_FIELD_IPV6,
DST2_FIELD_IPV6,
DST3_FIELD_IPV6,
DST4_FIELD_IPV6,
SRCP_FIELD_IPV6,
DSTP_FIELD_IPV6,
NUM_FIELDS_IPV6
};
struct rte_acl_field_def ipv6_defs[NUM_FIELDS_IPV6] = {
{
.type = RTE_ACL_FIELD_TYPE_BITMASK,
.size = sizeof(uint8_t),
.field_index = PROTO_FIELD_IPV6,
.input_index = PROTO_FIELD_IPV6,
.offset = 0,
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = SRC1_FIELD_IPV6,
.input_index = SRC1_FIELD_IPV6,
offsetof(struct rte_ipv6_hdr, proto),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = SRC2_FIELD_IPV6,
.input_index = SRC2_FIELD_IPV6,
offsetof(struct rte_ipv6_hdr, proto) + sizeof(uint32_t),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = SRC3_FIELD_IPV6,
.input_index = SRC3_FIELD_IPV6,
offsetof(struct rte_ipv6_hdr, proto) +
2 * sizeof(uint32_t),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = SRC4_FIELD_IPV6,
.input_index = SRC4_FIELD_IPV6,
offsetof(struct rte_ipv6_hdr, proto) +
3 * sizeof(uint32_t),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = DST1_FIELD_IPV6,
.input_index = DST1_FIELD_IPV6,
- offsetof(struct rte_ipv6_hdr, proto),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = DST2_FIELD_IPV6,
.input_index = DST2_FIELD_IPV6,
offsetof(struct rte_ipv6_hdr, proto) + sizeof(uint32_t),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = DST3_FIELD_IPV6,
.input_index = DST3_FIELD_IPV6,
offsetof(struct rte_ipv6_hdr, proto) +
2 * sizeof(uint32_t),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = DST4_FIELD_IPV6,
.input_index = DST4_FIELD_IPV6,
offsetof(struct rte_ipv6_hdr, proto) +
3 * sizeof(uint32_t),
},
{
.type = RTE_ACL_FIELD_TYPE_RANGE,
.size = sizeof(uint16_t),
.field_index = SRCP_FIELD_IPV6,
.input_index = SRCP_FIELD_IPV6,
.offset = sizeof(struct rte_ipv6_hdr) -
offsetof(struct rte_ipv6_hdr, proto),
},
{
.type = RTE_ACL_FIELD_TYPE_RANGE,
.size = sizeof(uint16_t),
.field_index = DSTP_FIELD_IPV6,
.input_index = SRCP_FIELD_IPV6,
.offset = sizeof(struct rte_ipv6_hdr) -
offsetof(struct rte_ipv6_hdr, proto) + sizeof(uint16_t),
},
};
enum {
CB_FLD_SRC_ADDR,
CB_FLD_DST_ADDR,
CB_FLD_SRC_PORT_LOW,
CB_FLD_SRC_PORT_DLM,
CB_FLD_SRC_PORT_HIGH,
CB_FLD_DST_PORT_LOW,
CB_FLD_DST_PORT_DLM,
CB_FLD_DST_PORT_HIGH,
CB_FLD_PROTO,
CB_FLD_USERDATA,
CB_FLD_NUM,
};
RTE_ACL_RULE_DEF(acl4_rule, RTE_DIM(ipv4_defs));
RTE_ACL_RULE_DEF(acl6_rule, RTE_DIM(ipv6_defs));
struct acl_search_t {
const uint8_t *data_ipv4[MAX_PKT_BURST];
struct rte_mbuf *m_ipv4[MAX_PKT_BURST];
uint32_t res_ipv4[MAX_PKT_BURST];
int num_ipv4;
const uint8_t *data_ipv6[MAX_PKT_BURST];
struct rte_mbuf *m_ipv6[MAX_PKT_BURST];
uint32_t res_ipv6[MAX_PKT_BURST];
int num_ipv6;
};
static struct {
char mapped[NB_SOCKETS];
struct rte_acl_ctx *acx_ipv4[NB_SOCKETS];
struct rte_acl_ctx *acx_ipv6[NB_SOCKETS];
#ifdef L3FWDACL_DEBUG
struct acl4_rule *rule_ipv4;
struct acl6_rule *rule_ipv6;
#endif
} acl_config;
static struct{
const char *rule_ipv4_name;
const char *rule_ipv6_name;
} parm_config;
const char cb_port_delim[] = ":";
static inline void
print_one_ipv4_rule(struct acl4_rule *rule, int extra)
{
unsigned char a, b, c, d;
uint32_t_to_char(rule->field[SRC_FIELD_IPV4].value.u32,
&a, &b, &c, &d);
printf("%hhu.%hhu.%hhu.%hhu/%u ", a, b, c, d,
rule->field[SRC_FIELD_IPV4].mask_range.u32);
uint32_t_to_char(rule->field[DST_FIELD_IPV4].value.u32,
&a, &b, &c, &d);
printf("%hhu.%hhu.%hhu.%hhu/%u ", a, b, c, d,
rule->field[DST_FIELD_IPV4].mask_range.u32);
printf("%hu : %hu %hu : %hu 0x%hhx/0x%hhx ",
rule->field[SRCP_FIELD_IPV4].value.u16,
rule->field[SRCP_FIELD_IPV4].mask_range.u16,
rule->field[DSTP_FIELD_IPV4].value.u16,
rule->field[DSTP_FIELD_IPV4].mask_range.u16,
rule->field[PROTO_FIELD_IPV4].value.u8,
rule->field[PROTO_FIELD_IPV4].mask_range.u8);
if (extra)
printf("0x%x-0x%x-0x%x ",
rule->data.category_mask,
rule->data.priority,
rule->data.userdata);
}
static inline void
print_one_ipv6_rule(struct acl6_rule *rule, int extra)
{
unsigned char a, b, c, d;
uint32_t_to_char(rule->field[SRC1_FIELD_IPV6].value.u32,
&a, &b, &c, &d);
printf("%.2x%.2x:%.2x%.2x", a, b, c, d);
uint32_t_to_char(rule->field[SRC2_FIELD_IPV6].value.u32,
&a, &b, &c, &d);
printf(":%.2x%.2x:%.2x%.2x", a, b, c, d);
uint32_t_to_char(rule->field[SRC3_FIELD_IPV6].value.u32,
&a, &b, &c, &d);
printf(":%.2x%.2x:%.2x%.2x", a, b, c, d);
uint32_t_to_char(rule->field[SRC4_FIELD_IPV6].value.u32,
&a, &b, &c, &d);
printf(":%.2x%.2x:%.2x%.2x/%u ", a, b, c, d,
rule->field[SRC1_FIELD_IPV6].mask_range.u32
+ rule->field[SRC2_FIELD_IPV6].mask_range.u32
+ rule->field[SRC3_FIELD_IPV6].mask_range.u32
+ rule->field[SRC4_FIELD_IPV6].mask_range.u32);
uint32_t_to_char(rule->field[DST1_FIELD_IPV6].value.u32,
&a, &b, &c, &d);
printf("%.2x%.2x:%.2x%.2x", a, b, c, d);
uint32_t_to_char(rule->field[DST2_FIELD_IPV6].value.u32,
&a, &b, &c, &d);
printf(":%.2x%.2x:%.2x%.2x", a, b, c, d);
uint32_t_to_char(rule->field[DST3_FIELD_IPV6].value.u32,
&a, &b, &c, &d);
printf(":%.2x%.2x:%.2x%.2x", a, b, c, d);
uint32_t_to_char(rule->field[DST4_FIELD_IPV6].value.u32,
&a, &b, &c, &d);
printf(":%.2x%.2x:%.2x%.2x/%u ", a, b, c, d,
rule->field[DST1_FIELD_IPV6].mask_range.u32
+ rule->field[DST2_FIELD_IPV6].mask_range.u32
+ rule->field[DST3_FIELD_IPV6].mask_range.u32
+ rule->field[DST4_FIELD_IPV6].mask_range.u32);
printf("%hu : %hu %hu : %hu 0x%hhx/0x%hhx ",
rule->field[SRCP_FIELD_IPV6].value.u16,
rule->field[SRCP_FIELD_IPV6].mask_range.u16,
rule->field[DSTP_FIELD_IPV6].value.u16,
rule->field[DSTP_FIELD_IPV6].mask_range.u16,
rule->field[PROTO_FIELD_IPV6].value.u8,
rule->field[PROTO_FIELD_IPV6].mask_range.u8);
if (extra)
printf("0x%x-0x%x-0x%x ",
rule->data.category_mask,
rule->data.priority,
rule->data.userdata);
}
/* Bypass comment and empty lines */
static inline int
is_bypass_line(char *buff)
{
int i = 0;
/* comment line */
if (buff[0] == COMMENT_LEAD_CHAR)
return 1;
/* empty line */
while (buff[i] != '\0') {
if (!isspace(buff[i]))
return 0;
i++;
}
return 1;
}
#ifdef L3FWDACL_DEBUG
static inline void
dump_acl4_rule(struct rte_mbuf *m, uint32_t sig)
{
uint32_t offset = sig & ~ACL_DENY_SIGNATURE;
unsigned char a, b, c, d;
struct rte_ipv4_hdr *ipv4_hdr =
sizeof(struct rte_ether_hdr));
uint32_t_to_char(rte_bswap32(ipv4_hdr->src_addr), &a, &b, &c, &d);
printf("Packet Src:%hhu.%hhu.%hhu.%hhu ", a, b, c, d);
uint32_t_to_char(rte_bswap32(ipv4_hdr->dst_addr), &a, &b, &c, &d);
printf("Dst:%hhu.%hhu.%hhu.%hhu ", a, b, c, d);
printf("Src port:%hu,Dst port:%hu ",
rte_bswap16(*(uint16_t *)(ipv4_hdr + 1)),
rte_bswap16(*((uint16_t *)(ipv4_hdr + 1) + 1)));
printf("hit ACL %d - ", offset);
print_one_ipv4_rule(acl_config.rule_ipv4 + offset, 1);
printf("\n\n");
}
static inline void
dump_acl6_rule(struct rte_mbuf *m, uint32_t sig)
{
unsigned i;
uint32_t offset = sig & ~ACL_DENY_SIGNATURE;
struct rte_ipv6_hdr *ipv6_hdr =
sizeof(struct rte_ether_hdr));
printf("Packet Src");
for (i = 0; i < RTE_DIM(ipv6_hdr->src_addr); i += sizeof(uint16_t))
printf(":%.2x%.2x",
ipv6_hdr->src_addr[i], ipv6_hdr->src_addr[i + 1]);
printf("\nDst");
for (i = 0; i < RTE_DIM(ipv6_hdr->dst_addr); i += sizeof(uint16_t))
printf(":%.2x%.2x",
ipv6_hdr->dst_addr[i], ipv6_hdr->dst_addr[i + 1]);
printf("\nSrc port:%hu,Dst port:%hu ",
rte_bswap16(*(uint16_t *)(ipv6_hdr + 1)),
rte_bswap16(*((uint16_t *)(ipv6_hdr + 1) + 1)));
printf("hit ACL %d - ", offset);
print_one_ipv6_rule(acl_config.rule_ipv6 + offset, 1);
printf("\n\n");
}
#endif /* L3FWDACL_DEBUG */
static inline void
dump_ipv4_rules(struct acl4_rule *rule, int num, int extra)
{
int i;
for (i = 0; i < num; i++, rule++) {
printf("\t%d:", i + 1);
print_one_ipv4_rule(rule, extra);
printf("\n");
}
}
static inline void
dump_ipv6_rules(struct acl6_rule *rule, int num, int extra)
{
int i;
for (i = 0; i < num; i++, rule++) {
printf("\t%d:", i + 1);
print_one_ipv6_rule(rule, extra);
printf("\n");
}
}
#ifdef DO_RFC_1812_CHECKS
static inline void
prepare_one_packet(struct rte_mbuf **pkts_in, struct acl_search_t *acl,
int index)
{
struct rte_ipv4_hdr *ipv4_hdr;
struct rte_mbuf *pkt = pkts_in[index];
ipv4_hdr = rte_pktmbuf_mtod_offset(pkt, struct rte_ipv4_hdr *,
sizeof(struct rte_ether_hdr));
/* Check to make sure the packet is valid (RFC1812) */
if (is_valid_ipv4_pkt(ipv4_hdr, pkt->pkt_len) >= 0) {
/* Update time to live and header checksum */
--(ipv4_hdr->time_to_live);
++(ipv4_hdr->hdr_checksum);
/* Fill acl structure */
acl->data_ipv4[acl->num_ipv4] = MBUF_IPV4_2PROTO(pkt);
acl->m_ipv4[(acl->num_ipv4)++] = pkt;
} else {
/* Not a valid IPv4 packet */
}
} else if (RTE_ETH_IS_IPV6_HDR(pkt->packet_type)) {
/* Fill acl structure */
acl->data_ipv6[acl->num_ipv6] = MBUF_IPV6_2PROTO(pkt);
acl->m_ipv6[(acl->num_ipv6)++] = pkt;
} else {
/* Unknown type, drop the packet */
}
}
#else
static inline void
prepare_one_packet(struct rte_mbuf **pkts_in, struct acl_search_t *acl,
int index)
{
struct rte_mbuf *pkt = pkts_in[index];
/* Fill acl structure */
acl->data_ipv4[acl->num_ipv4] = MBUF_IPV4_2PROTO(pkt);
acl->m_ipv4[(acl->num_ipv4)++] = pkt;
} else if (RTE_ETH_IS_IPV6_HDR(pkt->packet_type)) {
/* Fill acl structure */
acl->data_ipv6[acl->num_ipv6] = MBUF_IPV6_2PROTO(pkt);
acl->m_ipv6[(acl->num_ipv6)++] = pkt;
} else {
/* Unknown type, drop the packet */
}
}
#endif /* DO_RFC_1812_CHECKS */
static inline void
prepare_acl_parameter(struct rte_mbuf **pkts_in, struct acl_search_t *acl,
int nb_rx)
{
int i;
acl->num_ipv4 = 0;
acl->num_ipv6 = 0;
/* Prefetch first packets */
for (i = 0; i < PREFETCH_OFFSET && i < nb_rx; i++) {
pkts_in[i], void *));
}
for (i = 0; i < (nb_rx - PREFETCH_OFFSET); i++) {
i + PREFETCH_OFFSET], void *));
prepare_one_packet(pkts_in, acl, i);
}
/* Process left packets */
for (; i < nb_rx; i++)
prepare_one_packet(pkts_in, acl, i);
}
static inline void
send_one_packet(struct rte_mbuf *m, uint32_t res)
{
if (likely((res & ACL_DENY_SIGNATURE) == 0 && res != 0)) {
/* forward packets */
send_single_packet(m,
(uint8_t)(res - FWD_PORT_SHIFT));
} else{
/* in the ACL list, drop it */
#ifdef L3FWDACL_DEBUG
if ((res & ACL_DENY_SIGNATURE) != 0) {
dump_acl4_rule(m, res);
dump_acl6_rule(m, res);
}
#endif
}
}
static inline void
send_packets(struct rte_mbuf **m, uint32_t *res, int num)
{
int i;
/* Prefetch first packets */
for (i = 0; i < PREFETCH_OFFSET && i < num; i++) {
m[i], void *));
}
for (i = 0; i < (num - PREFETCH_OFFSET); i++) {
i + PREFETCH_OFFSET], void *));
send_one_packet(m[i], res[i]);
}
/* Process left packets */
for (; i < num; i++)
send_one_packet(m[i], res[i]);
}
/*
* Parse IPv6 address, expects the following format:
* XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX (where X is a hexadecimal digit).
*/
static int
parse_ipv6_addr(const char *in, const char **end, uint32_t v[IPV6_ADDR_U32],
char dlm)
{
uint32_t addr[IPV6_ADDR_U16];
GET_CB_FIELD(in, addr[0], 16, UINT16_MAX, ':');
GET_CB_FIELD(in, addr[1], 16, UINT16_MAX, ':');
GET_CB_FIELD(in, addr[2], 16, UINT16_MAX, ':');
GET_CB_FIELD(in, addr[3], 16, UINT16_MAX, ':');
GET_CB_FIELD(in, addr[4], 16, UINT16_MAX, ':');
GET_CB_FIELD(in, addr[5], 16, UINT16_MAX, ':');
GET_CB_FIELD(in, addr[6], 16, UINT16_MAX, ':');
GET_CB_FIELD(in, addr[7], 16, UINT16_MAX, dlm);
*end = in;
v[0] = (addr[0] << 16) + addr[1];
v[1] = (addr[2] << 16) + addr[3];
v[2] = (addr[4] << 16) + addr[5];
v[3] = (addr[6] << 16) + addr[7];
return 0;
}
static int
parse_ipv6_net(const char *in, struct rte_acl_field field[4])
{
int32_t rc;
const char *mp;
uint32_t i, m, v[4];
const uint32_t nbu32 = sizeof(uint32_t) * CHAR_BIT;
/* get address. */
rc = parse_ipv6_addr(in, &mp, v, '/');
if (rc != 0)
return rc;
/* get mask. */
GET_CB_FIELD(mp, m, 0, CHAR_BIT * sizeof(v), 0);
/* put all together. */
for (i = 0; i != RTE_DIM(v); i++) {
if (m >= (i + 1) * nbu32)
field[i].mask_range.u32 = nbu32;
else
field[i].mask_range.u32 = m > (i * nbu32) ?
m - (i * 32) : 0;
field[i].value.u32 = v[i];
}
return 0;
}
static int
parse_cb_ipv6_rule(char *str, struct rte_acl_rule *v, int has_userdata)
{
int i, rc;
char *s, *sp, *in[CB_FLD_NUM];
static const char *dlm = " \t\n";
int dim = has_userdata ? CB_FLD_NUM : CB_FLD_USERDATA;
s = str;
for (i = 0; i != dim; i++, s = NULL) {
in[i] = strtok_r(s, dlm, &sp);
if (in[i] == NULL)
return -EINVAL;
}
rc = parse_ipv6_net(in[CB_FLD_SRC_ADDR], v->field + SRC1_FIELD_IPV6);
if (rc != 0) {
acl_log("failed to read source address/mask: %s\n",
in[CB_FLD_SRC_ADDR]);
return rc;
}
rc = parse_ipv6_net(in[CB_FLD_DST_ADDR], v->field + DST1_FIELD_IPV6);
if (rc != 0) {
acl_log("failed to read destination address/mask: %s\n",
in[CB_FLD_DST_ADDR]);
return rc;
}
/* source port. */
GET_CB_FIELD(in[CB_FLD_SRC_PORT_LOW],
v->field[SRCP_FIELD_IPV6].value.u16,
0, UINT16_MAX, 0);
GET_CB_FIELD(in[CB_FLD_SRC_PORT_HIGH],
v->field[SRCP_FIELD_IPV6].mask_range.u16,
0, UINT16_MAX, 0);
if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim,
sizeof(cb_port_delim)) != 0)
return -EINVAL;
/* destination port. */
GET_CB_FIELD(in[CB_FLD_DST_PORT_LOW],
v->field[DSTP_FIELD_IPV6].value.u16,
0, UINT16_MAX, 0);
GET_CB_FIELD(in[CB_FLD_DST_PORT_HIGH],
v->field[DSTP_FIELD_IPV6].mask_range.u16,
0, UINT16_MAX, 0);
if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim,
sizeof(cb_port_delim)) != 0)
return -EINVAL;
if (v->field[SRCP_FIELD_IPV6].mask_range.u16
< v->field[SRCP_FIELD_IPV6].value.u16
|| v->field[DSTP_FIELD_IPV6].mask_range.u16
< v->field[DSTP_FIELD_IPV6].value.u16)
return -EINVAL;
GET_CB_FIELD(in[CB_FLD_PROTO], v->field[PROTO_FIELD_IPV6].value.u8,
0, UINT8_MAX, '/');
GET_CB_FIELD(in[CB_FLD_PROTO], v->field[PROTO_FIELD_IPV6].mask_range.u8,
0, UINT8_MAX, 0);
if (has_userdata)
GET_CB_FIELD(in[CB_FLD_USERDATA], v->data.userdata,
0, UINT32_MAX, 0);
return 0;
}
/*
* Parse ClassBench rules file.
* Expected format:
* '@'<src_ipv4_addr>'/'<masklen> <space> \
* <dst_ipv4_addr>'/'<masklen> <space> \
* <src_port_low> <space> ":" <src_port_high> <space> \
* <dst_port_low> <space> ":" <dst_port_high> <space> \
* <proto>'/'<mask>
*/
static int
parse_ipv4_net(const char *in, uint32_t *addr, uint32_t *mask_len)
{
uint8_t a, b, c, d, m;
GET_CB_FIELD(in, a, 0, UINT8_MAX, '.');
GET_CB_FIELD(in, b, 0, UINT8_MAX, '.');
GET_CB_FIELD(in, c, 0, UINT8_MAX, '.');
GET_CB_FIELD(in, d, 0, UINT8_MAX, '/');
GET_CB_FIELD(in, m, 0, sizeof(uint32_t) * CHAR_BIT, 0);
addr[0] = RTE_IPV4(a, b, c, d);
mask_len[0] = m;
return 0;
}
static int
parse_cb_ipv4vlan_rule(char *str, struct rte_acl_rule *v, int has_userdata)
{
int i, rc;
char *s, *sp, *in[CB_FLD_NUM];
static const char *dlm = " \t\n";
int dim = has_userdata ? CB_FLD_NUM : CB_FLD_USERDATA;
s = str;
for (i = 0; i != dim; i++, s = NULL) {
in[i] = strtok_r(s, dlm, &sp);
if (in[i] == NULL)
return -EINVAL;
}
rc = parse_ipv4_net(in[CB_FLD_SRC_ADDR],
&v->field[SRC_FIELD_IPV4].value.u32,
&v->field[SRC_FIELD_IPV4].mask_range.u32);
if (rc != 0) {
acl_log("failed to read source address/mask: %s\n",
in[CB_FLD_SRC_ADDR]);
return rc;
}
rc = parse_ipv4_net(in[CB_FLD_DST_ADDR],
&v->field[DST_FIELD_IPV4].value.u32,
&v->field[DST_FIELD_IPV4].mask_range.u32);
if (rc != 0) {
acl_log("failed to read destination address/mask: %s\n",
in[CB_FLD_DST_ADDR]);
return rc;
}
GET_CB_FIELD(in[CB_FLD_SRC_PORT_LOW],
v->field[SRCP_FIELD_IPV4].value.u16,
0, UINT16_MAX, 0);
GET_CB_FIELD(in[CB_FLD_SRC_PORT_HIGH],
v->field[SRCP_FIELD_IPV4].mask_range.u16,
0, UINT16_MAX, 0);
if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim,
sizeof(cb_port_delim)) != 0)
return -EINVAL;
GET_CB_FIELD(in[CB_FLD_DST_PORT_LOW],
v->field[DSTP_FIELD_IPV4].value.u16,
0, UINT16_MAX, 0);
GET_CB_FIELD(in[CB_FLD_DST_PORT_HIGH],
v->field[DSTP_FIELD_IPV4].mask_range.u16,
0, UINT16_MAX, 0);
if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim,
sizeof(cb_port_delim)) != 0)
return -EINVAL;
if (v->field[SRCP_FIELD_IPV4].mask_range.u16
< v->field[SRCP_FIELD_IPV4].value.u16
|| v->field[DSTP_FIELD_IPV4].mask_range.u16
< v->field[DSTP_FIELD_IPV4].value.u16)
return -EINVAL;
GET_CB_FIELD(in[CB_FLD_PROTO], v->field[PROTO_FIELD_IPV4].value.u8,
0, UINT8_MAX, '/');
GET_CB_FIELD(in[CB_FLD_PROTO], v->field[PROTO_FIELD_IPV4].mask_range.u8,
0, UINT8_MAX, 0);
if (has_userdata)
GET_CB_FIELD(in[CB_FLD_USERDATA], v->data.userdata, 0,
UINT32_MAX, 0);
return 0;
}
static int
add_rules(const char *rule_path,
struct rte_acl_rule **proute_base,
unsigned int *proute_num,
struct rte_acl_rule **pacl_base,
unsigned int *pacl_num, uint32_t rule_size,
int (*parser)(char *, struct rte_acl_rule*, int))
{
uint8_t *acl_rules, *route_rules;
struct rte_acl_rule *next;
unsigned int acl_num = 0, route_num = 0, total_num = 0;
unsigned int acl_cnt = 0, route_cnt = 0;
char buff[LINE_MAX];
FILE *fh = fopen(rule_path, "rb");
unsigned int i = 0;
int val;
if (fh == NULL)
rte_exit(EXIT_FAILURE, "%s: Open %s failed\n", __func__,
rule_path);
while ((fgets(buff, LINE_MAX, fh) != NULL)) {
if (buff[0] == ROUTE_LEAD_CHAR)
route_num++;
else if (buff[0] == ACL_LEAD_CHAR)
acl_num++;
}
if (0 == route_num)
rte_exit(EXIT_FAILURE, "Not find any route entries in %s!\n",
rule_path);
val = fseek(fh, 0, SEEK_SET);
if (val < 0) {
rte_exit(EXIT_FAILURE, "%s: File seek operation failed\n",
__func__);
}
acl_rules = calloc(acl_num, rule_size);
if (NULL == acl_rules)
rte_exit(EXIT_FAILURE, "%s: failed to malloc memory\n",
__func__);
route_rules = calloc(route_num, rule_size);
if (NULL == route_rules)
rte_exit(EXIT_FAILURE, "%s: failed to malloc memory\n",
__func__);
i = 0;
while (fgets(buff, LINE_MAX, fh) != NULL) {
i++;
if (is_bypass_line(buff))
continue;
char s = buff[0];
/* Route entry */
if (s == ROUTE_LEAD_CHAR)
next = (struct rte_acl_rule *)(route_rules +
route_cnt * rule_size);
/* ACL entry */
else if (s == ACL_LEAD_CHAR)
next = (struct rte_acl_rule *)(acl_rules +
acl_cnt * rule_size);
/* Illegal line */
else
rte_exit(EXIT_FAILURE,
"%s Line %u: should start with leading "
"char %c or %c\n",
rule_path, i, ROUTE_LEAD_CHAR, ACL_LEAD_CHAR);
if (parser(buff + 1, next, s == ROUTE_LEAD_CHAR) != 0)
rte_exit(EXIT_FAILURE,
"%s Line %u: parse rules error\n",
rule_path, i);
if (s == ROUTE_LEAD_CHAR) {
/* Check the forwarding port number */
if ((enabled_port_mask & (1 << next->data.userdata)) ==
0)
rte_exit(EXIT_FAILURE,
"%s Line %u: fwd number illegal:%u\n",
rule_path, i, next->data.userdata);
next->data.userdata += FWD_PORT_SHIFT;
route_cnt++;
} else {
next->data.userdata = ACL_DENY_SIGNATURE + acl_cnt;
acl_cnt++;
}
next->data.priority = RTE_ACL_MAX_PRIORITY - total_num;
next->data.category_mask = -1;
total_num++;
}
fclose(fh);
*pacl_base = (struct rte_acl_rule *)acl_rules;
*pacl_num = acl_num;
*proute_base = (struct rte_acl_rule *)route_rules;
*proute_num = route_cnt;
return 0;
}
static int
usage_acl_alg(char *buf, size_t sz)
{
uint32_t i, n, rc, tn;
n = 0;
tn = 0;
for (i = 0; i < RTE_DIM(acl_alg); i++) {
rc = snprintf(buf + n, sz - n,
i == RTE_DIM(acl_alg) - 1 ? "%s" : "%s|",
acl_alg[i].name);
tn += rc;
if (rc < sz - n)
n += rc;
}
return tn;
}
static const char *
str_acl_alg(enum rte_acl_classify_alg alg)
{
uint32_t i;
for (i = 0; i != RTE_DIM(acl_alg); i++) {
if (alg == acl_alg[i].alg)
return acl_alg[i].name;
}
return "default";
}
parse_acl_alg(const char *alg)
{
uint32_t i;
for (i = 0; i != RTE_DIM(acl_alg); i++) {
if (strcmp(alg, acl_alg[i].name) == 0)
return acl_alg[i].alg;
}
return RTE_ACL_CLASSIFY_DEFAULT;
}
static void
dump_acl_config(void)
{
printf("ACL option are:\n");
printf(OPT_RULE_IPV4": %s\n", parm_config.rule_ipv4_name);
printf(OPT_RULE_IPV6": %s\n", parm_config.rule_ipv6_name);
printf(OPT_ALG": %s\n", str_acl_alg(parm_config.alg));
}
static int
check_acl_config(void)
{
if (parm_config.rule_ipv4_name == NULL) {
acl_log("ACL IPv4 rule file not specified\n");
return -1;
} else if (parm_config.rule_ipv6_name == NULL) {
acl_log("ACL IPv6 rule file not specified\n");
return -1;
}
return 0;
}
static struct rte_acl_ctx*
setup_acl(struct rte_acl_rule *route_base,
struct rte_acl_rule *acl_base, unsigned int route_num,
unsigned int acl_num, int ipv6, int socketid)
{
char name[PATH_MAX];
struct rte_acl_param acl_param;
struct rte_acl_config acl_build_param;
struct rte_acl_ctx *context;
int dim = ipv6 ? RTE_DIM(ipv6_defs) : RTE_DIM(ipv4_defs);
/* Create ACL contexts */
snprintf(name, sizeof(name), "%s%d",
ipv6 ? L3FWD_ACL_IPV6_NAME : L3FWD_ACL_IPV4_NAME,
socketid);
acl_param.name = name;
acl_param.socket_id = socketid;
acl_param.rule_size = RTE_ACL_RULE_SZ(dim);
acl_param.max_rule_num = MAX_ACL_RULE_NUM;
if ((context = rte_acl_create(&acl_param)) == NULL)
rte_exit(EXIT_FAILURE, "Failed to create ACL context\n");
if (parm_config.alg != RTE_ACL_CLASSIFY_DEFAULT &&
rte_acl_set_ctx_classify(context, parm_config.alg) != 0)
rte_exit(EXIT_FAILURE,
"Failed to setup classify method for ACL context\n");
if (rte_acl_add_rules(context, route_base, route_num) < 0)
rte_exit(EXIT_FAILURE, "add rules failed\n");
if (rte_acl_add_rules(context, acl_base, acl_num) < 0)
rte_exit(EXIT_FAILURE, "add rules failed\n");
/* Perform builds */
memset(&acl_build_param, 0, sizeof(acl_build_param));
acl_build_param.num_categories = DEFAULT_MAX_CATEGORIES;
acl_build_param.num_fields = dim;
memcpy(&acl_build_param.defs, ipv6 ? ipv6_defs : ipv4_defs,
ipv6 ? sizeof(ipv6_defs) : sizeof(ipv4_defs));
if (rte_acl_build(context, &acl_build_param) != 0)
rte_exit(EXIT_FAILURE, "Failed to build ACL trie\n");
rte_acl_dump(context);
return context;
}
static int
app_acl_init(void)
{
unsigned lcore_id;
unsigned int i;
int socketid;
struct rte_acl_rule *acl_base_ipv4, *route_base_ipv4,
*acl_base_ipv6, *route_base_ipv6;
unsigned int acl_num_ipv4 = 0, route_num_ipv4 = 0,
acl_num_ipv6 = 0, route_num_ipv6 = 0;
if (check_acl_config() != 0)
rte_exit(EXIT_FAILURE, "Failed to get valid ACL options\n");
dump_acl_config();
/* Load rules from the input file */
if (add_rules(parm_config.rule_ipv4_name, &route_base_ipv4,
&route_num_ipv4, &acl_base_ipv4, &acl_num_ipv4,
sizeof(struct acl4_rule), &parse_cb_ipv4vlan_rule) < 0)
rte_exit(EXIT_FAILURE, "Failed to add rules\n");
acl_log("IPv4 Route entries %u:\n", route_num_ipv4);
dump_ipv4_rules((struct acl4_rule *)route_base_ipv4, route_num_ipv4, 1);
acl_log("IPv4 ACL entries %u:\n", acl_num_ipv4);
dump_ipv4_rules((struct acl4_rule *)acl_base_ipv4, acl_num_ipv4, 1);
if (add_rules(parm_config.rule_ipv6_name, &route_base_ipv6,
&route_num_ipv6,
&acl_base_ipv6, &acl_num_ipv6,
sizeof(struct acl6_rule), &parse_cb_ipv6_rule) < 0)
rte_exit(EXIT_FAILURE, "Failed to add rules\n");
acl_log("IPv6 Route entries %u:\n", route_num_ipv6);
dump_ipv6_rules((struct acl6_rule *)route_base_ipv6, route_num_ipv6, 1);
acl_log("IPv6 ACL entries %u:\n", acl_num_ipv6);
dump_ipv6_rules((struct acl6_rule *)acl_base_ipv6, acl_num_ipv6, 1);
memset(&acl_config, 0, sizeof(acl_config));
/* Check sockets a context should be created on */
if (!numa_on)
acl_config.mapped[0] = 1;
else {
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;
socketid = rte_lcore_to_socket_id(lcore_id);
if (socketid >= NB_SOCKETS) {
acl_log("Socket %d of lcore %u is out "
"of range %d\n",
socketid, lcore_id, NB_SOCKETS);
free(route_base_ipv4);
free(route_base_ipv6);
free(acl_base_ipv4);
free(acl_base_ipv6);
return -1;
}
acl_config.mapped[socketid] = 1;
}
}
for (i = 0; i < NB_SOCKETS; i++) {
if (acl_config.mapped[i]) {
acl_config.acx_ipv4[i] = setup_acl(route_base_ipv4,
acl_base_ipv4, route_num_ipv4, acl_num_ipv4,
0, i);
acl_config.acx_ipv6[i] = setup_acl(route_base_ipv6,
acl_base_ipv6, route_num_ipv6, acl_num_ipv6,
1, i);
}
}
free(route_base_ipv4);
free(route_base_ipv6);
#ifdef L3FWDACL_DEBUG
acl_config.rule_ipv4 = (struct acl4_rule *)acl_base_ipv4;
acl_config.rule_ipv6 = (struct acl6_rule *)acl_base_ipv6;
#else
free(acl_base_ipv4);
free(acl_base_ipv6);
#endif
return 0;
}
/***********************end of ACL part******************************/
struct lcore_conf {
uint16_t n_rx_queue;
struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
uint16_t n_tx_port;
uint16_t tx_port_id[RTE_MAX_ETHPORTS];
uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
struct rte_eth_dev_tx_buffer *tx_buffer[RTE_MAX_ETHPORTS];
static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
/* Enqueue a single packet, and send burst if queue is filled */
static inline void
send_single_packet(struct rte_mbuf *m, uint16_t port)
{
uint32_t lcore_id;
struct lcore_conf *qconf;
struct rte_ether_hdr *eh;
lcore_id = rte_lcore_id();
/* update src and dst mac*/
eh = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
memcpy(eh, &port_l2hdr[port],
sizeof(eh->dst_addr) + sizeof(eh->src_addr));
qconf = &lcore_conf[lcore_id];
rte_eth_tx_buffer(port, qconf->tx_queue_id[port],
qconf->tx_buffer[port], m);
}
#ifdef DO_RFC_1812_CHECKS
static inline int
is_valid_ipv4_pkt(struct rte_ipv4_hdr *pkt, uint32_t link_len)
{
/* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */
/*
* 1. The packet length reported by the Link Layer must be large
* enough to hold the minimum length legal IP datagram (20 bytes).
*/
if (link_len < sizeof(struct rte_ipv4_hdr))
return -1;
/* 2. The IP checksum must be correct. */
/* this is checked in H/W */
/*
* 3. The IP version number must be 4. If the version number is not 4
* then the packet may be another version of IP, such as IPng or
* ST-II.
*/
if (((pkt->version_ihl) >> 4) != 4)
return -3;
/*
* 4. The IP header length field must be large enough to hold the
* minimum length legal IP datagram (20 bytes = 5 words).
*/
if ((pkt->version_ihl & 0xf) < 5)
return -4;
/*
* 5. The IP total length field must be large enough to hold the IP
* datagram header, whose length is specified in the IP header length
* field.
*/
if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct rte_ipv4_hdr))
return -5;
return 0;
}
#endif
/* main processing loop */
static int
main_loop(__rte_unused void *dummy)
{
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
unsigned lcore_id;
uint64_t prev_tsc, diff_tsc, cur_tsc;
int i, nb_rx;
uint16_t portid;
uint8_t queueid;
struct lcore_conf *qconf;
int socketid;
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1)
/ US_PER_S * BURST_TX_DRAIN_US;
prev_tsc = 0;
lcore_id = rte_lcore_id();
qconf = &lcore_conf[lcore_id];
socketid = rte_lcore_to_socket_id(lcore_id);
if (qconf->n_rx_queue == 0) {
RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id);
return 0;
}
RTE_LOG(INFO, L3FWD, "entering main loop on lcore %u\n", lcore_id);
for (i = 0; i < qconf->n_rx_queue; i++) {
portid = qconf->rx_queue_list[i].port_id;
queueid = qconf->rx_queue_list[i].queue_id;
RTE_LOG(INFO, L3FWD,
" -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
lcore_id, portid, queueid);
}
while (1) {
cur_tsc = rte_rdtsc();
/*
* TX burst queue drain
*/
diff_tsc = cur_tsc - prev_tsc;
if (unlikely(diff_tsc > drain_tsc)) {
for (i = 0; i < qconf->n_tx_port; ++i) {
portid = qconf->tx_port_id[i];
qconf->tx_queue_id[portid],
qconf->tx_buffer[portid]);
}
prev_tsc = cur_tsc;
}
/*
* Read packet from RX queues
*/
for (i = 0; i < qconf->n_rx_queue; ++i) {
portid = qconf->rx_queue_list[i].port_id;
queueid = qconf->rx_queue_list[i].queue_id;
nb_rx = rte_eth_rx_burst(portid, queueid,
pkts_burst, MAX_PKT_BURST);
if (nb_rx > 0) {
struct acl_search_t acl_search;
prepare_acl_parameter(pkts_burst, &acl_search,
nb_rx);
if (acl_search.num_ipv4) {
acl_config.acx_ipv4[socketid],
acl_search.data_ipv4,
acl_search.res_ipv4,
acl_search.num_ipv4,
DEFAULT_MAX_CATEGORIES);
send_packets(acl_search.m_ipv4,
acl_search.res_ipv4,
acl_search.num_ipv4);
}
if (acl_search.num_ipv6) {
acl_config.acx_ipv6[socketid],
acl_search.data_ipv6,
acl_search.res_ipv6,
acl_search.num_ipv6,
DEFAULT_MAX_CATEGORIES);
send_packets(acl_search.m_ipv6,
acl_search.res_ipv6,
acl_search.num_ipv6);
}
}
}
}
}
static int
check_lcore_params(void)
{
uint8_t queue, lcore;
uint16_t i;
int socketid;
for (i = 0; i < nb_lcore_params; ++i) {
queue = lcore_params[i].queue_id;
if (queue >= MAX_RX_QUEUE_PER_PORT) {
printf("invalid queue number: %hhu\n", queue);
return -1;
}
lcore = lcore_params[i].lcore_id;
if (!rte_lcore_is_enabled(lcore)) {
printf("error: lcore %hhu is not enabled in "
"lcore mask\n", lcore);
return -1;
}
socketid = rte_lcore_to_socket_id(lcore);
if (socketid != 0 && numa_on == 0) {
printf("warning: lcore %hhu is on socket %d "
"with numa off\n",
lcore, socketid);
}
}
return 0;
}
static int
check_port_config(void)
{
unsigned portid;
uint16_t i;
for (i = 0; i < nb_lcore_params; ++i) {
portid = lcore_params[i].port_id;
if ((enabled_port_mask & (1 << portid)) == 0) {
printf("port %u is not enabled in port mask\n", portid);
return -1;
}
if (!rte_eth_dev_is_valid_port(portid)) {
printf("port %u is not present on the board\n", portid);
return -1;
}
}
return 0;
}
static uint8_t
get_port_n_rx_queues(const uint16_t port)
{
int queue = -1;
uint16_t i;
for (i = 0; i < nb_lcore_params; ++i) {
if (lcore_params[i].port_id == port &&
lcore_params[i].queue_id > queue)
queue = lcore_params[i].queue_id;
}
return (uint8_t)(++queue);
}
static int
init_lcore_rx_queues(void)
{
uint16_t i, nb_rx_queue;
uint8_t lcore;
for (i = 0; i < nb_lcore_params; ++i) {
lcore = lcore_params[i].lcore_id;
nb_rx_queue = lcore_conf[lcore].n_rx_queue;
if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
printf("error: too many queues (%u) for lcore: %u\n",
(unsigned)nb_rx_queue + 1, (unsigned)lcore);
return -1;
} else {
lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
lcore_params[i].port_id;
lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
lcore_params[i].queue_id;
lcore_conf[lcore].n_rx_queue++;
}
}
return 0;
}
/* display usage */
static void
print_usage(const char *prgname)
{
char alg[PATH_MAX];
usage_acl_alg(alg, sizeof(alg));
printf("%s [EAL options] -- -p PORTMASK -P"
" --"OPT_RULE_IPV4"=FILE"
" --"OPT_RULE_IPV6"=FILE"
" [--"OPT_CONFIG" (port,queue,lcore)[,(port,queue,lcore]]"
" [--"OPT_MAX_PKT_LEN" PKTLEN]\n"
" -p PORTMASK: hexadecimal bitmask of ports to configure\n"
" -P: enable promiscuous mode\n"
" --"OPT_CONFIG" (port,queue,lcore): rx queues configuration\n"
" --"OPT_NONUMA": optional, disable numa awareness\n"
" --"OPT_MAX_PKT_LEN" PKTLEN: maximum packet length in decimal (64-9600)\n"
" --"OPT_RULE_IPV4"=FILE: specify the ipv4 rules entries file. "
"Each rule occupy one line. "
"2 kinds of rules are supported. "
"One is ACL entry at while line leads with character '%c', "
"another is route entry at while line leads with character '%c'.\n"
" --"OPT_RULE_IPV6"=FILE: specify the ipv6 rules entries file.\n"
" --"OPT_ALG": ACL classify method to use, one of: %s\n",
prgname, ACL_LEAD_CHAR, ROUTE_LEAD_CHAR, alg);
}
static int
parse_max_pkt_len(const char *pktlen)
{
char *end = NULL;
unsigned long len;
/* parse decimal string */
len = strtoul(pktlen, &end, 10);
if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0'))
return -1;
if (len == 0)
return -1;
return len;
}
static int
parse_portmask(const char *portmask)
{
char *end = NULL;
unsigned long pm;
/* parse hexadecimal string */
pm = strtoul(portmask, &end, 16);
if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
return 0;
return pm;
}
static int
parse_config(const char *q_arg)
{
char s[256];
const char *p, *p0 = q_arg;
char *end;
enum fieldnames {
FLD_PORT = 0,
FLD_QUEUE,
FLD_LCORE,
_NUM_FLD
};
unsigned long int_fld[_NUM_FLD];
char *str_fld[_NUM_FLD];
int i;
unsigned size;
nb_lcore_params = 0;
while ((p = strchr(p0, '(')) != NULL) {
++p;
if ((p0 = strchr(p, ')')) == NULL)
return -1;
size = p0 - p;
if (size >= sizeof(s))
return -1;
snprintf(s, sizeof(s), "%.*s", size, p);
if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
_NUM_FLD)
return -1;
for (i = 0; i < _NUM_FLD; i++) {
errno = 0;
int_fld[i] = strtoul(str_fld[i], &end, 0);
if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
return -1;
}
if (nb_lcore_params >= MAX_LCORE_PARAMS) {
printf("exceeded max number of lcore params: %hu\n",
nb_lcore_params);
return -1;
}
lcore_params_array[nb_lcore_params].port_id =
(uint8_t)int_fld[FLD_PORT];
lcore_params_array[nb_lcore_params].queue_id =
(uint8_t)int_fld[FLD_QUEUE];
lcore_params_array[nb_lcore_params].lcore_id =
(uint8_t)int_fld[FLD_LCORE];
++nb_lcore_params;
}
lcore_params = lcore_params_array;
return 0;
}
static const char *
parse_eth_dest(const char *optarg)
{
unsigned long portid;
char *port_end;
errno = 0;
portid = strtoul(optarg, &port_end, 0);
if (errno != 0 || port_end == optarg || *port_end++ != ',')
return "Invalid format";
else if (portid >= RTE_MAX_ETHPORTS)
return "port value exceeds RTE_MAX_ETHPORTS("
RTE_STR(RTE_MAX_ETHPORTS) ")";
if (cmdline_parse_etheraddr(NULL, port_end,
&port_l2hdr[portid].dst_addr,
sizeof(port_l2hdr[portid].dst_addr)) < 0)
return "Invalid ethernet address";
return NULL;
}
/* Parse the argument given in the command line of the application */
static int
parse_args(int argc, char **argv)
{
int opt, ret;
char **argvopt;
int option_index;
char *prgname = argv[0];
static struct option lgopts[] = {
{OPT_CONFIG, 1, NULL, OPT_CONFIG_NUM },
{OPT_NONUMA, 0, NULL, OPT_NONUMA_NUM },
{OPT_MAX_PKT_LEN, 1, NULL, OPT_MAX_PKT_LEN_NUM },
{OPT_RULE_IPV4, 1, NULL, OPT_RULE_IPV4_NUM },
{OPT_RULE_IPV6, 1, NULL, OPT_RULE_IPV6_NUM },
{OPT_ALG, 1, NULL, OPT_ALG_NUM },
{OPT_ETH_DEST, 1, NULL, OPT_ETH_DEST_NUM },
{NULL, 0, 0, 0 }
};
argvopt = argv;
while ((opt = getopt_long(argc, argvopt, "p:P",
lgopts, &option_index)) != EOF) {
switch (opt) {
/* portmask */
case 'p':
enabled_port_mask = parse_portmask(optarg);
if (enabled_port_mask == 0) {
printf("invalid portmask\n");
print_usage(prgname);
return -1;
}
break;
case 'P':
printf("Promiscuous mode selected\n");
promiscuous_on = 1;
break;
/* long options */
case OPT_CONFIG_NUM:
ret = parse_config(optarg);
if (ret) {
printf("invalid config\n");
print_usage(prgname);
return -1;
}
break;
case OPT_NONUMA_NUM:
printf("numa is disabled\n");
numa_on = 0;
break;
case OPT_MAX_PKT_LEN_NUM:
printf("Custom frame size is configured\n");
max_pkt_len = parse_max_pkt_len(optarg);
break;
case OPT_RULE_IPV4_NUM:
parm_config.rule_ipv4_name = optarg;
break;
case OPT_RULE_IPV6_NUM:
parm_config.rule_ipv6_name = optarg;
break;
case OPT_ALG_NUM:
parm_config.alg = parse_acl_alg(optarg);
if (parm_config.alg ==
RTE_ACL_CLASSIFY_DEFAULT) {
printf("unknown %s value:\"%s\"\n",
OPT_ALG, optarg);
print_usage(prgname);
return -1;
}
break;
case OPT_ETH_DEST_NUM:
{
const char *serr = parse_eth_dest(optarg);
if (serr != NULL) {
printf("invalid %s value:\"%s\": %s\n",
OPT_ETH_DEST, optarg, serr);
print_usage(prgname);
return -1;
}
break;
}
default:
print_usage(prgname);
return -1;
}
}
if (optind >= 0)
argv[optind-1] = prgname;
ret = optind-1;
optind = 1; /* reset getopt lib */
return ret;
}
static void
print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
{
char buf[RTE_ETHER_ADDR_FMT_SIZE];
rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
printf("%s%s", name, buf);
}
static int
init_mem(unsigned nb_mbuf)
{
int socketid;
unsigned lcore_id;
char s[64];
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;
if (numa_on)
socketid = rte_lcore_to_socket_id(lcore_id);
else
socketid = 0;
if (socketid >= NB_SOCKETS) {
rte_exit(EXIT_FAILURE,
"Socket %d of lcore %u is out of range %d\n",
socketid, lcore_id, NB_SOCKETS);
}
if (pktmbuf_pool[socketid] == NULL) {
snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
pktmbuf_pool[socketid] =
MEMPOOL_CACHE_SIZE, 0,
RTE_MBUF_DEFAULT_BUF_SIZE,
socketid);
if (pktmbuf_pool[socketid] == NULL)
rte_exit(EXIT_FAILURE,
"Cannot init mbuf pool on socket %d\n",
socketid);
else
printf("Allocated mbuf pool on socket %d\n",
socketid);
}
}
return 0;
}
/* Check the link status of all ports in up to 9s, and print them finally */
static void
check_all_ports_link_status(uint32_t port_mask)
{
#define CHECK_INTERVAL 100 /* 100ms */
#define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
uint16_t portid;
uint8_t count, all_ports_up, print_flag = 0;
struct rte_eth_link link;
int ret;
char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
printf("\nChecking link status");
fflush(stdout);
for (count = 0; count <= MAX_CHECK_TIME; count++) {
all_ports_up = 1;
if ((port_mask & (1 << portid)) == 0)
continue;
memset(&link, 0, sizeof(link));
ret = rte_eth_link_get_nowait(portid, &link);
if (ret < 0) {
all_ports_up = 0;
if (print_flag == 1)
printf("Port %u link get failed: %s\n",
portid, rte_strerror(-ret));
continue;
}
/* print link status if flag set */
if (print_flag == 1) {
rte_eth_link_to_str(link_status_text,
sizeof(link_status_text), &link);
printf("Port %d %s\n", portid,
link_status_text);
continue;
}
/* clear all_ports_up flag if any link down */
if (link.link_status == RTE_ETH_LINK_DOWN) {
all_ports_up = 0;
break;
}
}
/* after finally printing all link status, get out */
if (print_flag == 1)
break;
if (all_ports_up == 0) {
printf(".");
fflush(stdout);
rte_delay_ms(CHECK_INTERVAL);
}
/* set the print_flag if all ports up or timeout */
if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
print_flag = 1;
printf("done\n");
}
}
}
/*
* build-up default values for dest MACs.
*/
static void
set_default_dest_mac(void)
{
uint32_t i;
for (i = 0; i != RTE_DIM(port_l2hdr); i++) {
port_l2hdr[i].dst_addr.addr_bytes[0] =
port_l2hdr[i].dst_addr.addr_bytes[5] = i;
}
}
static uint32_t
eth_dev_get_overhead_len(uint32_t max_rx_pktlen, uint16_t max_mtu)
{
uint32_t overhead_len;
if (max_mtu != UINT16_MAX && max_rx_pktlen > max_mtu)
overhead_len = max_rx_pktlen - max_mtu;
else
return overhead_len;
}
static int
config_port_max_pkt_len(struct rte_eth_conf *conf,
struct rte_eth_dev_info *dev_info)
{
uint32_t overhead_len;
if (max_pkt_len == 0)
return 0;
if (max_pkt_len < RTE_ETHER_MIN_LEN || max_pkt_len > MAX_JUMBO_PKT_LEN)
return -1;
overhead_len = eth_dev_get_overhead_len(dev_info->max_rx_pktlen,
dev_info->max_mtu);
conf->rxmode.mtu = max_pkt_len - overhead_len;
if (conf->rxmode.mtu > RTE_ETHER_MTU)
return 0;
}
int
main(int argc, char **argv)
{
struct lcore_conf *qconf;
struct rte_eth_dev_info dev_info;
struct rte_eth_txconf *txconf;
int ret;
unsigned nb_ports;
uint16_t queueid;
unsigned lcore_id;
uint32_t n_tx_queue, nb_lcores;
uint16_t portid;
uint8_t nb_rx_queue, queue, socketid;
/* init EAL */
ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
argc -= ret;
argv += ret;
set_default_dest_mac();
/* parse application arguments (after the EAL ones) */
ret = parse_args(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n");
if (check_lcore_params() < 0)
rte_exit(EXIT_FAILURE, "check_lcore_params failed\n");
ret = init_lcore_rx_queues();
if (ret < 0)
rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
if (check_port_config() < 0)
rte_exit(EXIT_FAILURE, "check_port_config failed\n");
/* Add ACL rules and route entries, build trie */
if (app_acl_init() < 0)
rte_exit(EXIT_FAILURE, "app_acl_init failed\n");
nb_lcores = rte_lcore_count();
/* initialize all ports */
struct rte_eth_conf local_port_conf = port_conf;
/* skip ports that are not enabled */
if ((enabled_port_mask & (1 << portid)) == 0) {
printf("\nSkipping disabled port %d\n", portid);
continue;
}
/* init port */
printf("Initializing port %d ... ", portid);
fflush(stdout);
nb_rx_queue = get_port_n_rx_queues(portid);
n_tx_queue = nb_lcores;
if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
n_tx_queue = MAX_TX_QUEUE_PER_PORT;
printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
nb_rx_queue, (unsigned)n_tx_queue);
ret = rte_eth_dev_info_get(portid, &dev_info);
if (ret != 0)
rte_exit(EXIT_FAILURE,
"Error during getting device (port %u) info: %s\n",
portid, strerror(-ret));
ret = config_port_max_pkt_len(&local_port_conf, &dev_info);
if (ret != 0)
rte_exit(EXIT_FAILURE,
"Invalid max packet length: %u (port %u)\n",
max_pkt_len, portid);
local_port_conf.txmode.offloads |=
local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
printf("Port %u modified RSS hash function based on hardware support,"
"requested:%#"PRIx64" configured:%#"PRIx64"\n",
portid,
local_port_conf.rx_adv_conf.rss_conf.rss_hf);
}
ret = rte_eth_dev_configure(portid, nb_rx_queue,
(uint16_t)n_tx_queue, &local_port_conf);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Cannot configure device: err=%d, port=%d\n",
ret, portid);
ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
&nb_txd);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"rte_eth_dev_adjust_nb_rx_tx_desc: err=%d, port=%d\n",
ret, portid);
ret = rte_eth_macaddr_get(portid, &port_l2hdr[portid].src_addr);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"rte_eth_macaddr_get: err=%d, port=%d\n",
ret, portid);
print_ethaddr("Dst MAC:", &port_l2hdr[portid].dst_addr);
print_ethaddr(", Src MAC:", &port_l2hdr[portid].src_addr);
printf(", ");
/* init memory */
ret = init_mem(NB_MBUF);
if (ret < 0)
rte_exit(EXIT_FAILURE, "init_mem failed\n");
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;
/* Initialize TX buffers */
qconf = &lcore_conf[lcore_id];
qconf->tx_buffer[portid] = rte_zmalloc_socket("tx_buffer",
RTE_ETH_TX_BUFFER_SIZE(MAX_PKT_BURST), 0,
if (qconf->tx_buffer[portid] == NULL)
rte_exit(EXIT_FAILURE, "Can't allocate tx buffer for port %u\n",
(unsigned) portid);
rte_eth_tx_buffer_init(qconf->tx_buffer[portid], MAX_PKT_BURST);
}
/* init one TX queue per couple (lcore,port) */
queueid = 0;
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;
if (numa_on)
socketid = (uint8_t)
else
socketid = 0;
printf("txq=%u,%d,%d ", lcore_id, queueid, socketid);
fflush(stdout);
ret = rte_eth_dev_info_get(portid, &dev_info);
if (ret != 0)
rte_exit(EXIT_FAILURE,
"Error during getting device (port %u) info: %s\n",
portid, strerror(-ret));
txconf = &dev_info.default_txconf;
txconf->offloads = local_port_conf.txmode.offloads;
ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
socketid, txconf);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"rte_eth_tx_queue_setup: err=%d, "
"port=%d\n", ret, portid);
qconf = &lcore_conf[lcore_id];
qconf->tx_queue_id[portid] = queueid;
queueid++;
qconf->tx_port_id[qconf->n_tx_port] = portid;
qconf->n_tx_port++;
}
printf("\n");
}
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;
qconf = &lcore_conf[lcore_id];
printf("\nInitializing rx queues on lcore %u ... ", lcore_id);
fflush(stdout);
/* init RX queues */
for (queue = 0; queue < qconf->n_rx_queue; ++queue) {
struct rte_eth_rxconf rxq_conf;
portid = qconf->rx_queue_list[queue].port_id;
queueid = qconf->rx_queue_list[queue].queue_id;
if (numa_on)
socketid = (uint8_t)
else
socketid = 0;
printf("rxq=%d,%d,%d ", portid, queueid, socketid);
fflush(stdout);
ret = rte_eth_dev_info_get(portid, &dev_info);
if (ret != 0)
rte_exit(EXIT_FAILURE,
"Error during getting device (port %u) info: %s\n",
portid, strerror(-ret));
rxq_conf = dev_info.default_rxconf;
rxq_conf.offloads = port_conf.rxmode.offloads;
ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
socketid, &rxq_conf,
pktmbuf_pool[socketid]);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"rte_eth_rx_queue_setup: err=%d,"
"port=%d\n", ret, portid);
}
}
printf("\n");
/* start ports */
if ((enabled_port_mask & (1 << portid)) == 0)
continue;
/* Start device */
ret = rte_eth_dev_start(portid);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"rte_eth_dev_start: err=%d, port=%d\n",
ret, portid);
/*
* If enabled, put device in promiscuous mode.
* This allows IO forwarding mode to forward packets
* to itself through 2 cross-connected ports of the
* target machine.
*/
if (promiscuous_on) {
if (ret != 0)
rte_exit(EXIT_FAILURE,
"rte_eth_promiscuous_enable: err=%s, port=%u\n",
rte_strerror(-ret), portid);
}
}
check_all_ports_link_status(enabled_port_mask);
/* launch per-lcore init on every lcore */
if (rte_eal_wait_lcore(lcore_id) < 0)
return -1;
}
/* clean up the EAL */
return 0;
}
void rte_acl_dump(const struct rte_acl_ctx *ctx)
int rte_acl_add_rules(struct rte_acl_ctx *ctx, const struct rte_acl_rule *rules, uint32_t num)
rte_acl_classify_alg
Definition: rte_acl.h:237
@ RTE_ACL_CLASSIFY_NEON
Definition: rte_acl.h:242
@ RTE_ACL_CLASSIFY_AVX2
Definition: rte_acl.h:241
@ RTE_ACL_CLASSIFY_SSE
Definition: rte_acl.h:240
@ RTE_ACL_CLASSIFY_SCALAR
Definition: rte_acl.h:239
@ RTE_ACL_CLASSIFY_AVX512X32
Definition: rte_acl.h:245
@ RTE_ACL_CLASSIFY_AVX512X16
Definition: rte_acl.h:244
@ RTE_ACL_CLASSIFY_ALTIVEC
Definition: rte_acl.h:243
int rte_acl_classify(const struct rte_acl_ctx *ctx, const uint8_t **data, uint32_t *results, uint32_t num, uint32_t categories)
struct rte_acl_ctx * rte_acl_create(const struct rte_acl_param *param)
#define RTE_ACL_RULE_DEF(name, fld_num)
Definition: rte_acl.h:111
int rte_acl_build(struct rte_acl_ctx *ctx, const struct rte_acl_config *cfg)
#define likely(x)
#define unlikely(x)
static rte_be16_t rte_cpu_to_be_16(uint16_t x)
static uint16_t rte_bswap16(uint16_t _x)
static uint32_t rte_bswap32(uint32_t x)
#define offsetof(TYPE, MEMBER)
Definition: rte_common.h:773
#define __rte_cache_aligned
Definition: rte_common.h:420
#define RTE_STR(x)
Definition: rte_common.h:821
__rte_noreturn void rte_exit(int exit_code, const char *format,...) __rte_format_printf(2
#define RTE_DIM(a)
Definition: rte_common.h:837
#define __rte_unused
Definition: rte_common.h:123
uint64_t rte_get_tsc_hz(void)
static void rte_delay_ms(unsigned ms)
Definition: rte_cycles.h:148
int rte_eal_init(int argc, char **argv)
int rte_eal_cleanup(void)
const char * rte_strerror(int errnum)
static __rte_always_inline uint16_t rte_eth_tx_buffer(uint16_t port_id, uint16_t queue_id, struct rte_eth_dev_tx_buffer *buffer, struct rte_mbuf *tx_pkt)
Definition: rte_ethdev.h:5885
int rte_eth_dev_configure(uint16_t port_id, uint16_t nb_rx_queue, uint16_t nb_tx_queue, const struct rte_eth_conf *eth_conf)
int rte_eth_dev_is_valid_port(uint16_t port_id)
#define RTE_ETH_LINK_DOWN
Definition: rte_ethdev.h:379
int rte_eth_rx_queue_setup(uint16_t port_id, uint16_t rx_queue_id, uint16_t nb_rx_desc, unsigned int socket_id, const struct rte_eth_rxconf *rx_conf, struct rte_mempool *mb_pool)
static uint16_t rte_eth_rx_burst(uint16_t port_id, uint16_t queue_id, struct rte_mbuf **rx_pkts, const uint16_t nb_pkts)
Definition: rte_ethdev.h:5312
#define RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE
Definition: rte_ethdev.h:1650
@ RTE_ETH_MQ_TX_NONE
Definition: rte_ethdev.h:451
@ RTE_ETH_MQ_RX_RSS
Definition: rte_ethdev.h:420
int rte_eth_promiscuous_enable(uint16_t port_id)
__rte_experimental int rte_eth_link_to_str(char *str, size_t len, const struct rte_eth_link *eth_link)
int rte_eth_dev_info_get(uint16_t port_id, struct rte_eth_dev_info *dev_info)
int rte_eth_tx_queue_setup(uint16_t port_id, uint16_t tx_queue_id, uint16_t nb_tx_desc, unsigned int socket_id, const struct rte_eth_txconf *tx_conf)
#define RTE_ETH_LINK_MAX_STR_LEN
Definition: rte_ethdev.h:387
int rte_eth_macaddr_get(uint16_t port_id, struct rte_ether_addr *mac_addr)
uint16_t rte_eth_dev_count_avail(void)
int rte_eth_tx_buffer_init(struct rte_eth_dev_tx_buffer *buffer, uint16_t size)
static uint16_t rte_eth_tx_buffer_flush(uint16_t port_id, uint16_t queue_id, struct rte_eth_dev_tx_buffer *buffer)
Definition: rte_ethdev.h:5832
int rte_eth_dev_socket_id(uint16_t port_id)
int rte_eth_link_get_nowait(uint16_t port_id, struct rte_eth_link *link)
int rte_eth_dev_adjust_nb_rx_tx_desc(uint16_t port_id, uint16_t *nb_rx_desc, uint16_t *nb_tx_desc)
#define RTE_ETH_FOREACH_DEV(p)
Definition: rte_ethdev.h:2145
#define RTE_ETH_TX_OFFLOAD_MULTI_SEGS
Definition: rte_ethdev.h:1643
int rte_eth_dev_start(uint16_t port_id)
#define RTE_ETH_TX_BUFFER_SIZE(sz)
Definition: rte_ethdev.h:3624
#define RTE_ETHER_MTU
Definition: rte_ether.h:34
#define RTE_ETHER_LOCAL_ADMIN_ADDR
Definition: rte_ether.h:79
#define RTE_ETHER_HDR_LEN
Definition: rte_ether.h:29
struct rte_ether_addr src_addr
Definition: rte_ether.h:1
#define RTE_ETHER_CRC_LEN
Definition: rte_ether.h:28
struct rte_ether_addr dst_addr
Definition: rte_ether.h:0
void rte_ether_format_addr(char *buf, uint16_t size, const struct rte_ether_addr *eth_addr)
#define RTE_IPV4(a, b, c, d)
Definition: rte_ip.h:67
@ CALL_MAIN
Definition: rte_launch.h:74
int rte_eal_mp_remote_launch(lcore_function_t *f, void *arg, enum rte_rmt_call_main_t call_main)
int rte_eal_wait_lcore(unsigned worker_id)
unsigned int rte_lcore_to_socket_id(unsigned int lcore_id)
unsigned int rte_lcore_count(void)
int rte_lcore_is_enabled(unsigned int lcore_id)
#define RTE_LCORE_FOREACH_WORKER(i)
Definition: rte_lcore.h:232
static unsigned rte_lcore_id(void)
Definition: rte_lcore.h:76
#define RTE_LOG(l, t,...)
Definition: rte_log.h:341
void * rte_zmalloc_socket(const char *type, size_t size, unsigned align, int socket) __rte_alloc_size(2)
static void rte_pktmbuf_free(struct rte_mbuf *m)
Definition: rte_mbuf.h:1375
struct rte_mempool * rte_pktmbuf_pool_create(const char *name, unsigned n, unsigned cache_size, uint16_t priv_size, uint16_t data_room_size, int socket_id)
#define rte_pktmbuf_mtod(m, t)
#define rte_pktmbuf_mtod_offset(m, t, o)
#define RTE_ETH_IS_IPV6_HDR(ptype)
#define RTE_ETH_IS_IPV4_HDR(ptype)
static void rte_prefetch0(const volatile void *p)
int rte_strsplit(char *string, int stringlen, char **tokens, int maxtokens, char delim)
uint8_t type
Definition: rte_acl.h:52
uint32_t offset
Definition: rte_acl.h:56
uint8_t input_index
Definition: rte_acl.h:55
uint8_t field_index
Definition: rte_acl.h:54
union rte_acl_field_types value
Definition: rte_acl.h:76
struct rte_eth_txmode txmode
Definition: rte_ethdev.h:1514
struct rte_eth_rxmode rxmode
Definition: rte_ethdev.h:1513
struct rte_eth_conf::@147 rx_adv_conf
struct rte_eth_rss_conf rss_conf
Definition: rte_ethdev.h:1521
struct rte_eth_txconf default_txconf
Definition: rte_ethdev.h:1823
struct rte_eth_rxconf default_rxconf
Definition: rte_ethdev.h:1822
uint32_t max_rx_pktlen
Definition: rte_ethdev.h:1798
uint16_t max_mtu
Definition: rte_ethdev.h:1795
uint64_t flow_type_rss_offloads
Definition: rte_ethdev.h:1821
uint64_t tx_offload_capa
Definition: rte_ethdev.h:1812
uint64_t rss_hf
Definition: rte_ethdev.h:526
uint64_t offloads
Definition: rte_ethdev.h:1226
uint32_t mtu
Definition: rte_ethdev.h:467
uint64_t offloads
Definition: rte_ethdev.h:476
enum rte_eth_rx_mq_mode mq_mode
Definition: rte_ethdev.h:466
uint64_t offloads
Definition: rte_ethdev.h:1255
uint64_t offloads
Definition: rte_ethdev.h:1134
struct rte_ether_addr src_addr
Definition: rte_ether.h:290
struct rte_ether_addr dst_addr
Definition: rte_ether.h:289
uint8_t time_to_live
Definition: rte_ip.h:59
uint8_t version_ihl
Definition: rte_ip.h:44
rte_be16_t hdr_checksum
Definition: rte_ip.h:61
rte_be32_t dst_addr
Definition: rte_ip.h:63
rte_be32_t src_addr
Definition: rte_ip.h:62
rte_be16_t total_length
Definition: rte_ip.h:56
uint8_t dst_addr[16]
Definition: rte_ip.h:443
uint8_t src_addr[16]
Definition: rte_ip.h:442
uint32_t pkt_len
uint32_t packet_type