DPDK 21.11.9
All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
examples/ipsec-secgw/ipsec_worker.c
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2016 Intel Corporation
* Copyright (C) 2020 Marvell International Ltd.
*/
#include <rte_acl.h>
#include <rte_lpm.h>
#include <rte_lpm6.h>
#include "event_helper.h"
#include "ipsec.h"
#include "ipsec-secgw.h"
#include "ipsec_worker.h"
struct port_drv_mode_data {
struct rte_security_session *sess;
struct rte_security_ctx *ctx;
};
static inline enum pkt_type
process_ipsec_get_pkt_type(struct rte_mbuf *pkt, uint8_t **nlp)
{
struct rte_ether_hdr *eth;
uint32_t ptype = pkt->packet_type;
eth = rte_pktmbuf_mtod(pkt, struct rte_ether_hdr *);
if (RTE_ETH_IS_IPV4_HDR(ptype)) {
offsetof(struct ip, ip_p));
return PKT_TYPE_IPSEC_IPV4;
else
return PKT_TYPE_PLAIN_IPV4;
} else if (RTE_ETH_IS_IPV6_HDR(ptype)) {
offsetof(struct ip6_hdr, ip6_nxt));
return PKT_TYPE_IPSEC_IPV6;
else
return PKT_TYPE_PLAIN_IPV6;
}
/* Unknown/Unsupported type */
return PKT_TYPE_INVALID;
}
static inline void
update_mac_addrs(struct rte_mbuf *pkt, uint16_t portid)
{
struct rte_ether_hdr *ethhdr;
ethhdr = rte_pktmbuf_mtod(pkt, struct rte_ether_hdr *);
memcpy(&ethhdr->src_addr, &ethaddr_tbl[portid].src, RTE_ETHER_ADDR_LEN);
memcpy(&ethhdr->dst_addr, &ethaddr_tbl[portid].dst, RTE_ETHER_ADDR_LEN);
}
static inline void
ipsec_event_pre_forward(struct rte_mbuf *m, unsigned int port_id)
{
/* Save the destination port in the mbuf */
m->port = port_id;
/* Save eth queue for Tx */
}
static inline void
ev_vector_attr_init(struct rte_event_vector *vec)
{
vec->attr_valid = 1;
vec->port = 0xFFFF;
vec->queue = 0;
}
static inline void
ev_vector_attr_update(struct rte_event_vector *vec, struct rte_mbuf *pkt)
{
if (vec->port == 0xFFFF) {
vec->port = pkt->port;
return;
}
if (vec->attr_valid && (vec->port != pkt->port))
vec->attr_valid = 0;
}
static inline void
prepare_out_sessions_tbl(struct sa_ctx *sa_out,
struct port_drv_mode_data *data,
uint16_t size)
{
struct rte_ipsec_session *pri_sess;
struct ipsec_sa *sa;
uint32_t i;
if (!sa_out)
return;
for (i = 0; i < sa_out->nb_sa; i++) {
sa = &sa_out->sa[i];
if (!sa)
continue;
pri_sess = ipsec_get_primary_session(sa);
if (!pri_sess)
continue;
if (pri_sess->type !=
RTE_LOG(ERR, IPSEC, "Invalid session type %d\n",
pri_sess->type);
continue;
}
if (sa->portid >= size) {
RTE_LOG(ERR, IPSEC,
"Port id >= than table size %d, %d\n",
sa->portid, size);
continue;
}
/* Use only first inline session found for a given port */
if (data[sa->portid].sess)
continue;
data[sa->portid].sess = pri_sess->security.ses;
data[sa->portid].ctx = pri_sess->security.ctx;
}
}
static inline int
check_sp(struct sp_ctx *sp, const uint8_t *nlp, uint32_t *sa_idx)
{
uint32_t res;
if (unlikely(sp == NULL))
return 0;
rte_acl_classify((struct rte_acl_ctx *)sp, &nlp, &res, 1,
DEFAULT_MAX_CATEGORIES);
if (unlikely(res == DISCARD))
return 0;
else if (res == BYPASS) {
*sa_idx = -1;
return 1;
}
*sa_idx = res - 1;
return 1;
}
static inline void
check_sp_bulk(struct sp_ctx *sp, struct traffic_type *ip,
struct traffic_type *ipsec)
{
uint32_t i, j, res;
struct rte_mbuf *m;
if (unlikely(sp == NULL || ip->num == 0))
return;
rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res, ip->num,
DEFAULT_MAX_CATEGORIES);
j = 0;
for (i = 0; i < ip->num; i++) {
m = ip->pkts[i];
res = ip->res[i];
if (unlikely(res == DISCARD))
free_pkts(&m, 1);
else if (res == BYPASS)
ip->pkts[j++] = m;
else {
ipsec->res[ipsec->num] = res - 1;
ipsec->pkts[ipsec->num++] = m;
}
}
ip->num = j;
}
static inline void
check_sp_sa_bulk(struct sp_ctx *sp, struct sa_ctx *sa_ctx,
struct traffic_type *ip)
{
struct ipsec_sa *sa;
uint32_t i, j, res;
struct rte_mbuf *m;
if (unlikely(sp == NULL || ip->num == 0))
return;
rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res, ip->num,
DEFAULT_MAX_CATEGORIES);
j = 0;
for (i = 0; i < ip->num; i++) {
m = ip->pkts[i];
res = ip->res[i];
if (unlikely(res == DISCARD))
free_pkts(&m, 1);
else if (res == BYPASS)
ip->pkts[j++] = m;
else {
sa = *(struct ipsec_sa **)rte_security_dynfield(m);
if (sa == NULL) {
free_pkts(&m, 1);
continue;
}
/* SPI on the packet should match with the one in SA */
if (unlikely(sa->spi != sa_ctx->sa[res - 1].spi)) {
free_pkts(&m, 1);
continue;
}
ip->pkts[j++] = m;
}
}
ip->num = j;
}
static inline uint16_t
route4_pkt(struct rte_mbuf *pkt, struct rt_ctx *rt_ctx)
{
uint32_t dst_ip;
uint16_t offset;
uint32_t hop;
int ret;
offset = RTE_ETHER_HDR_LEN + offsetof(struct ip, ip_dst);
dst_ip = *rte_pktmbuf_mtod_offset(pkt, uint32_t *, offset);
dst_ip = rte_be_to_cpu_32(dst_ip);
ret = rte_lpm_lookup((struct rte_lpm *)rt_ctx, dst_ip, &hop);
if (ret == 0) {
/* We have a hit */
return hop;
}
/* else */
return RTE_MAX_ETHPORTS;
}
/* TODO: To be tested */
static inline uint16_t
route6_pkt(struct rte_mbuf *pkt, struct rt_ctx *rt_ctx)
{
uint8_t dst_ip[16];
uint8_t *ip6_dst;
uint16_t offset;
uint32_t hop;
int ret;
offset = RTE_ETHER_HDR_LEN + offsetof(struct ip6_hdr, ip6_dst);
ip6_dst = rte_pktmbuf_mtod_offset(pkt, uint8_t *, offset);
memcpy(&dst_ip[0], ip6_dst, 16);
ret = rte_lpm6_lookup((struct rte_lpm6 *)rt_ctx, dst_ip, &hop);
if (ret == 0) {
/* We have a hit */
return hop;
}
/* else */
return RTE_MAX_ETHPORTS;
}
static inline uint16_t
get_route(struct rte_mbuf *pkt, struct route_table *rt, enum pkt_type type)
{
if (type == PKT_TYPE_PLAIN_IPV4 || type == PKT_TYPE_IPSEC_IPV4)
return route4_pkt(pkt, rt->rt4_ctx);
else if (type == PKT_TYPE_PLAIN_IPV6 || type == PKT_TYPE_IPSEC_IPV6)
return route6_pkt(pkt, rt->rt6_ctx);
return RTE_MAX_ETHPORTS;
}
static inline int
process_ipsec_ev_inbound(struct ipsec_ctx *ctx, struct route_table *rt,
struct rte_event *ev)
{
struct ipsec_sa *sa = NULL;
struct rte_mbuf *pkt;
uint16_t port_id = 0;
enum pkt_type type;
uint32_t sa_idx;
uint8_t *nlp;
/* Get pkt from event */
pkt = ev->mbuf;
/* Check the packet type */
type = process_ipsec_get_pkt_type(pkt, &nlp);
switch (type) {
case PKT_TYPE_PLAIN_IPV4:
if (unlikely(pkt->ol_flags &
RTE_LOG(ERR, IPSEC,
"Inbound security offload failed\n");
goto drop_pkt_and_exit;
}
sa = *(struct ipsec_sa **)rte_security_dynfield(pkt);
}
/* Check if we have a match */
if (check_sp(ctx->sp4_ctx, nlp, &sa_idx) == 0) {
/* No valid match */
goto drop_pkt_and_exit;
}
break;
case PKT_TYPE_PLAIN_IPV6:
if (unlikely(pkt->ol_flags &
RTE_LOG(ERR, IPSEC,
"Inbound security offload failed\n");
goto drop_pkt_and_exit;
}
sa = *(struct ipsec_sa **)rte_security_dynfield(pkt);
}
/* Check if we have a match */
if (check_sp(ctx->sp6_ctx, nlp, &sa_idx) == 0) {
/* No valid match */
goto drop_pkt_and_exit;
}
break;
default:
RTE_LOG(ERR, IPSEC, "Unsupported packet type = %d\n", type);
goto drop_pkt_and_exit;
}
/* Check if the packet has to be bypassed */
if (sa_idx == BYPASS)
goto route_and_send_pkt;
/* Validate sa_idx */
if (sa_idx >= ctx->sa_ctx->nb_sa)
goto drop_pkt_and_exit;
/* Else the packet has to be protected with SA */
/* If the packet was IPsec processed, then SA pointer should be set */
if (sa == NULL)
goto drop_pkt_and_exit;
/* SPI on the packet should match with the one in SA */
if (unlikely(sa->spi != ctx->sa_ctx->sa[sa_idx].spi))
goto drop_pkt_and_exit;
route_and_send_pkt:
port_id = get_route(pkt, rt, type);
if (unlikely(port_id == RTE_MAX_ETHPORTS)) {
/* no match */
goto drop_pkt_and_exit;
}
/* else, we have a matching route */
/* Update mac addresses */
update_mac_addrs(pkt, port_id);
/* Update the event with the dest port */
ipsec_event_pre_forward(pkt, port_id);
return PKT_FORWARDED;
drop_pkt_and_exit:
RTE_LOG(ERR, IPSEC, "Inbound packet dropped\n");
ev->mbuf = NULL;
return PKT_DROPPED;
}
static inline int
process_ipsec_ev_outbound(struct ipsec_ctx *ctx, struct route_table *rt,
struct rte_event *ev)
{
struct rte_ipsec_session *sess;
struct sa_ctx *sa_ctx;
struct rte_mbuf *pkt;
uint16_t port_id = 0;
struct ipsec_sa *sa;
enum pkt_type type;
uint32_t sa_idx;
uint8_t *nlp;
/* Get pkt from event */
pkt = ev->mbuf;
/* Check the packet type */
type = process_ipsec_get_pkt_type(pkt, &nlp);
switch (type) {
case PKT_TYPE_PLAIN_IPV4:
/* Check if we have a match */
if (check_sp(ctx->sp4_ctx, nlp, &sa_idx) == 0) {
/* No valid match */
goto drop_pkt_and_exit;
}
break;
case PKT_TYPE_PLAIN_IPV6:
/* Check if we have a match */
if (check_sp(ctx->sp6_ctx, nlp, &sa_idx) == 0) {
/* No valid match */
goto drop_pkt_and_exit;
}
break;
default:
/*
* Only plain IPv4 & IPv6 packets are allowed
* on protected port. Drop the rest.
*/
RTE_LOG(ERR, IPSEC, "Unsupported packet type = %d\n", type);
goto drop_pkt_and_exit;
}
/* Check if the packet has to be bypassed */
if (sa_idx == BYPASS) {
port_id = get_route(pkt, rt, type);
if (unlikely(port_id == RTE_MAX_ETHPORTS)) {
/* no match */
goto drop_pkt_and_exit;
}
/* else, we have a matching route */
goto send_pkt;
}
/* Validate sa_idx */
if (unlikely(sa_idx >= ctx->sa_ctx->nb_sa))
goto drop_pkt_and_exit;
/* Else the packet has to be protected */
/* Get SA ctx*/
sa_ctx = ctx->sa_ctx;
/* Get SA */
sa = &(sa_ctx->sa[sa_idx]);
/* Get IPsec session */
sess = ipsec_get_primary_session(sa);
/* Allow only inline protocol for now */
RTE_LOG(ERR, IPSEC, "SA type not supported\n");
goto drop_pkt_and_exit;
}
rte_security_set_pkt_metadata(sess->security.ctx,
sess->security.ses, pkt, NULL);
/* Mark the packet for Tx security offload */
/* Get the port to which this pkt need to be submitted */
port_id = sa->portid;
send_pkt:
/* Provide L2 len for Outbound processing */
/* Update mac addresses */
update_mac_addrs(pkt, port_id);
/* Update the event with the dest port */
ipsec_event_pre_forward(pkt, port_id);
return PKT_FORWARDED;
drop_pkt_and_exit:
RTE_LOG(ERR, IPSEC, "Outbound packet dropped\n");
ev->mbuf = NULL;
return PKT_DROPPED;
}
static inline int
ipsec_ev_route_pkts(struct rte_event_vector *vec, struct route_table *rt,
struct ipsec_traffic *t, struct sa_ctx *sa_ctx)
{
struct rte_ipsec_session *sess;
uint32_t sa_idx, i, j = 0;
uint16_t port_id = 0;
struct rte_mbuf *pkt;
struct ipsec_sa *sa;
/* Route IPv4 packets */
for (i = 0; i < t->ip4.num; i++) {
pkt = t->ip4.pkts[i];
port_id = route4_pkt(pkt, rt->rt4_ctx);
if (port_id != RTE_MAX_ETHPORTS) {
/* Update mac addresses */
update_mac_addrs(pkt, port_id);
/* Update the event with the dest port */
ipsec_event_pre_forward(pkt, port_id);
ev_vector_attr_update(vec, pkt);
vec->mbufs[j++] = pkt;
} else
free_pkts(&pkt, 1);
}
/* Route IPv6 packets */
for (i = 0; i < t->ip6.num; i++) {
pkt = t->ip6.pkts[i];
port_id = route6_pkt(pkt, rt->rt6_ctx);
if (port_id != RTE_MAX_ETHPORTS) {
/* Update mac addresses */
update_mac_addrs(pkt, port_id);
/* Update the event with the dest port */
ipsec_event_pre_forward(pkt, port_id);
ev_vector_attr_update(vec, pkt);
vec->mbufs[j++] = pkt;
} else
free_pkts(&pkt, 1);
}
/* Route ESP packets */
for (i = 0; i < t->ipsec.num; i++) {
/* Validate sa_idx */
sa_idx = t->ipsec.res[i];
pkt = t->ipsec.pkts[i];
if (unlikely(sa_idx >= sa_ctx->nb_sa))
free_pkts(&pkt, 1);
else {
/* Else the packet has to be protected */
sa = &(sa_ctx->sa[sa_idx]);
/* Get IPsec session */
sess = ipsec_get_primary_session(sa);
/* Allow only inline protocol for now */
if (unlikely(sess->type !=
RTE_LOG(ERR, IPSEC, "SA type not supported\n");
free_pkts(&pkt, 1);
continue;
}
rte_security_set_pkt_metadata(sess->security.ctx,
sess->security.ses, pkt, NULL);
port_id = sa->portid;
update_mac_addrs(pkt, port_id);
ipsec_event_pre_forward(pkt, port_id);
ev_vector_attr_update(vec, pkt);
vec->mbufs[j++] = pkt;
}
}
return j;
}
static inline void
classify_pkt(struct rte_mbuf *pkt, struct ipsec_traffic *t)
{
enum pkt_type type;
uint8_t *nlp;
/* Check the packet type */
type = process_ipsec_get_pkt_type(pkt, &nlp);
switch (type) {
case PKT_TYPE_PLAIN_IPV4:
t->ip4.data[t->ip4.num] = nlp;
t->ip4.pkts[(t->ip4.num)++] = pkt;
break;
case PKT_TYPE_PLAIN_IPV6:
t->ip6.data[t->ip6.num] = nlp;
t->ip6.pkts[(t->ip6.num)++] = pkt;
break;
default:
RTE_LOG(ERR, IPSEC, "Unsupported packet type = %d\n", type);
free_pkts(&pkt, 1);
break;
}
}
static inline int
process_ipsec_ev_inbound_vector(struct ipsec_ctx *ctx, struct route_table *rt,
struct rte_event_vector *vec)
{
struct ipsec_traffic t;
struct rte_mbuf *pkt;
int i;
t.ip4.num = 0;
t.ip6.num = 0;
t.ipsec.num = 0;
for (i = 0; i < vec->nb_elem; i++) {
/* Get pkt from event */
pkt = vec->mbufs[i];
if (unlikely(pkt->ol_flags &
RTE_LOG(ERR, IPSEC,
"Inbound security offload failed\n");
free_pkts(&pkt, 1);
continue;
}
}
classify_pkt(pkt, &t);
}
check_sp_sa_bulk(ctx->sp4_ctx, ctx->sa_ctx, &t.ip4);
check_sp_sa_bulk(ctx->sp6_ctx, ctx->sa_ctx, &t.ip6);
return ipsec_ev_route_pkts(vec, rt, &t, ctx->sa_ctx);
}
static inline int
process_ipsec_ev_outbound_vector(struct ipsec_ctx *ctx, struct route_table *rt,
struct rte_event_vector *vec)
{
struct ipsec_traffic t;
struct rte_mbuf *pkt;
uint32_t i;
t.ip4.num = 0;
t.ip6.num = 0;
t.ipsec.num = 0;
for (i = 0; i < vec->nb_elem; i++) {
/* Get pkt from event */
pkt = vec->mbufs[i];
classify_pkt(pkt, &t);
/* Provide L2 len for Outbound processing */
}
check_sp_bulk(ctx->sp4_ctx, &t.ip4, &t.ipsec);
check_sp_bulk(ctx->sp6_ctx, &t.ip6, &t.ipsec);
return ipsec_ev_route_pkts(vec, rt, &t, ctx->sa_ctx);
}
static inline int
process_ipsec_ev_drv_mode_outbound_vector(struct rte_event_vector *vec,
struct port_drv_mode_data *data)
{
struct rte_mbuf *pkt;
int16_t port_id;
uint32_t i;
int j = 0;
for (i = 0; i < vec->nb_elem; i++) {
pkt = vec->mbufs[i];
port_id = pkt->port;
if (unlikely(!data[port_id].sess)) {
free_pkts(&pkt, 1);
continue;
}
ipsec_event_pre_forward(pkt, port_id);
/* Save security session */
rte_security_set_pkt_metadata(data[port_id].ctx,
data[port_id].sess, pkt,
NULL);
/* Mark the packet for Tx security offload */
/* Provide L2 len for Outbound processing */
vec->mbufs[j++] = pkt;
}
return j;
}
static inline void
ipsec_ev_vector_process(struct lcore_conf_ev_tx_int_port_wrkr *lconf,
struct eh_event_link_info *links,
struct rte_event *ev)
{
struct rte_event_vector *vec = ev->vec;
struct rte_mbuf *pkt;
int ret;
pkt = vec->mbufs[0];
ev_vector_attr_init(vec);
if (is_unprotected_port(pkt->port))
ret = process_ipsec_ev_inbound_vector(&lconf->inbound,
&lconf->rt, vec);
else
ret = process_ipsec_ev_outbound_vector(&lconf->outbound,
&lconf->rt, vec);
if (likely(ret > 0)) {
vec->nb_elem = ret;
rte_event_eth_tx_adapter_enqueue(links[0].eventdev_id,
links[0].event_port_id,
ev, 1, 0);
} else {
}
}
static inline void
ipsec_ev_vector_drv_mode_process(struct eh_event_link_info *links,
struct rte_event *ev,
struct port_drv_mode_data *data)
{
struct rte_event_vector *vec = ev->vec;
struct rte_mbuf *pkt;
pkt = vec->mbufs[0];
if (!is_unprotected_port(pkt->port))
vec->nb_elem = process_ipsec_ev_drv_mode_outbound_vector(vec,
data);
if (vec->nb_elem > 0)
rte_event_eth_tx_adapter_enqueue(links[0].eventdev_id,
links[0].event_port_id,
ev, 1, 0);
else
}
/*
* Event mode exposes various operating modes depending on the
* capabilities of the event device and the operating mode
* selected.
*/
/* Workers registered */
#define IPSEC_EVENTMODE_WORKERS 2
/*
* Event mode worker
* Operating parameters : non-burst - Tx internal port - driver mode
*/
static void
ipsec_wrkr_non_burst_int_port_drv_mode(struct eh_event_link_info *links,
uint8_t nb_links)
{
struct port_drv_mode_data data[RTE_MAX_ETHPORTS];
unsigned int nb_rx = 0;
struct rte_mbuf *pkt;
struct rte_event ev;
uint32_t lcore_id;
int32_t socket_id;
int16_t port_id;
/* Check if we have links registered for this lcore */
if (nb_links == 0) {
/* No links registered - exit */
return;
}
memset(&data, 0, sizeof(struct port_drv_mode_data));
/* Get core ID */
lcore_id = rte_lcore_id();
/* Get socket ID */
socket_id = rte_lcore_to_socket_id(lcore_id);
/*
* Prepare security sessions table. In outbound driver mode
* we always use first session configured for a given port
*/
prepare_out_sessions_tbl(socket_ctx[socket_id].sa_out, data,
RTE_MAX_ETHPORTS);
RTE_LOG(INFO, IPSEC,
"Launching event mode worker (non-burst - Tx internal port - "
"driver mode) on lcore %d\n", lcore_id);
/* We have valid links */
/* Check if it's single link */
if (nb_links != 1) {
RTE_LOG(INFO, IPSEC,
"Multiple links not supported. Using first link\n");
}
RTE_LOG(INFO, IPSEC, " -- lcoreid=%u event_port_id=%u\n", lcore_id,
links[0].event_port_id);
while (!force_quit) {
/* Read packet from event queues */
nb_rx = rte_event_dequeue_burst(links[0].eventdev_id,
links[0].event_port_id,
&ev, /* events */
1, /* nb_events */
0 /* timeout_ticks */);
if (nb_rx == 0)
continue;
switch (ev.event_type) {
ipsec_ev_vector_drv_mode_process(links, &ev, data);
continue;
break;
default:
RTE_LOG(ERR, IPSEC, "Invalid event type %u",
continue;
}
pkt = ev.mbuf;
port_id = pkt->port;
/* Process packet */
ipsec_event_pre_forward(pkt, port_id);
if (!is_unprotected_port(port_id)) {
if (unlikely(!data[port_id].sess)) {
continue;
}
/* Save security session */
rte_security_set_pkt_metadata(data[port_id].ctx,
data[port_id].sess, pkt,
NULL);
/* Mark the packet for Tx security offload */
/* Provide L2 len for Outbound processing */
}
/*
* Since tx internal port is available, events can be
* directly enqueued to the adapter and it would be
* internally submitted to the eth device.
*/
rte_event_eth_tx_adapter_enqueue(links[0].eventdev_id,
links[0].event_port_id,
&ev, /* events */
1, /* nb_events */
0 /* flags */);
}
}
/*
* Event mode worker
* Operating parameters : non-burst - Tx internal port - app mode
*/
static void
ipsec_wrkr_non_burst_int_port_app_mode(struct eh_event_link_info *links,
uint8_t nb_links)
{
struct lcore_conf_ev_tx_int_port_wrkr lconf;
unsigned int nb_rx = 0;
struct rte_event ev;
uint32_t lcore_id;
int32_t socket_id;
int ret;
/* Check if we have links registered for this lcore */
if (nb_links == 0) {
/* No links registered - exit */
return;
}
/* We have valid links */
/* Get core ID */
lcore_id = rte_lcore_id();
/* Get socket ID */
socket_id = rte_lcore_to_socket_id(lcore_id);
/* Save routing table */
lconf.rt.rt4_ctx = socket_ctx[socket_id].rt_ip4;
lconf.rt.rt6_ctx = socket_ctx[socket_id].rt_ip6;
lconf.inbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_in;
lconf.inbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_in;
lconf.inbound.sa_ctx = socket_ctx[socket_id].sa_in;
lconf.inbound.session_pool = socket_ctx[socket_id].session_pool;
lconf.inbound.session_priv_pool =
socket_ctx[socket_id].session_priv_pool;
lconf.outbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_out;
lconf.outbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_out;
lconf.outbound.sa_ctx = socket_ctx[socket_id].sa_out;
lconf.outbound.session_pool = socket_ctx[socket_id].session_pool;
lconf.outbound.session_priv_pool =
socket_ctx[socket_id].session_priv_pool;
RTE_LOG(INFO, IPSEC,
"Launching event mode worker (non-burst - Tx internal port - "
"app mode) on lcore %d\n", lcore_id);
/* Check if it's single link */
if (nb_links != 1) {
RTE_LOG(INFO, IPSEC,
"Multiple links not supported. Using first link\n");
}
RTE_LOG(INFO, IPSEC, " -- lcoreid=%u event_port_id=%u\n", lcore_id,
links[0].event_port_id);
while (!force_quit) {
/* Read packet from event queues */
nb_rx = rte_event_dequeue_burst(links[0].eventdev_id,
links[0].event_port_id,
&ev, /* events */
1, /* nb_events */
0 /* timeout_ticks */);
if (nb_rx == 0)
continue;
switch (ev.event_type) {
ipsec_ev_vector_process(&lconf, links, &ev);
continue;
break;
default:
RTE_LOG(ERR, IPSEC, "Invalid event type %u",
continue;
}
if (is_unprotected_port(ev.mbuf->port))
ret = process_ipsec_ev_inbound(&lconf.inbound,
&lconf.rt, &ev);
else
ret = process_ipsec_ev_outbound(&lconf.outbound,
&lconf.rt, &ev);
if (ret != 1)
/* The pkt has been dropped */
continue;
/*
* Since tx internal port is available, events can be
* directly enqueued to the adapter and it would be
* internally submitted to the eth device.
*/
rte_event_eth_tx_adapter_enqueue(links[0].eventdev_id,
links[0].event_port_id,
&ev, /* events */
1, /* nb_events */
0 /* flags */);
}
}
static uint8_t
ipsec_eventmode_populate_wrkr_params(struct eh_app_worker_params *wrkrs)
{
struct eh_app_worker_params *wrkr;
uint8_t nb_wrkr_param = 0;
/* Save workers */
wrkr = wrkrs;
/* Non-burst - Tx internal port - driver mode */
wrkr->cap.burst = EH_RX_TYPE_NON_BURST;
wrkr->cap.tx_internal_port = EH_TX_TYPE_INTERNAL_PORT;
wrkr->cap.ipsec_mode = EH_IPSEC_MODE_TYPE_DRIVER;
wrkr->worker_thread = ipsec_wrkr_non_burst_int_port_drv_mode;
wrkr++;
nb_wrkr_param++;
/* Non-burst - Tx internal port - app mode */
wrkr->cap.burst = EH_RX_TYPE_NON_BURST;
wrkr->cap.tx_internal_port = EH_TX_TYPE_INTERNAL_PORT;
wrkr->cap.ipsec_mode = EH_IPSEC_MODE_TYPE_APP;
wrkr->worker_thread = ipsec_wrkr_non_burst_int_port_app_mode;
nb_wrkr_param++;
return nb_wrkr_param;
}
static void
ipsec_eventmode_worker(struct eh_conf *conf)
{
struct eh_app_worker_params ipsec_wrkr[IPSEC_EVENTMODE_WORKERS] = {
{{{0} }, NULL } };
uint8_t nb_wrkr_param;
/* Populate l2fwd_wrkr params */
nb_wrkr_param = ipsec_eventmode_populate_wrkr_params(ipsec_wrkr);
/*
* Launch correct worker after checking
* the event device's capabilities.
*/
eh_launch_worker(conf, ipsec_wrkr, nb_wrkr_param);
}
int ipsec_launch_one_lcore(void *args)
{
struct eh_conf *conf;
conf = (struct eh_conf *)args;
if (conf->mode == EH_PKT_TRANSFER_MODE_POLL) {
/* Run in poll mode */
ipsec_poll_mode_worker();
} else if (conf->mode == EH_PKT_TRANSFER_MODE_EVENT) {
/* Run in event mode */
ipsec_eventmode_worker(conf);
}
return 0;
}
int rte_acl_classify(const struct rte_acl_ctx *ctx, const uint8_t **data, uint32_t *results, uint32_t num, uint32_t categories)
#define likely(x)
#define unlikely(x)
static uint32_t rte_be_to_cpu_32(rte_be32_t x)
#define offsetof(TYPE, MEMBER)
Definition: rte_common.h:773
#define RTE_PTR_ADD(ptr, x)
Definition: rte_common.h:268
#define RTE_ETHER_ADDR_LEN
Definition: rte_ether.h:26
#define RTE_ETHER_HDR_LEN
Definition: rte_ether.h:29
static __rte_always_inline void rte_event_eth_tx_adapter_txq_set(struct rte_mbuf *pkt, uint16_t queue)
static uint16_t rte_event_eth_tx_adapter_enqueue(uint8_t dev_id, uint8_t port_id, struct rte_event ev[], uint16_t nb_events, const uint8_t flags)
#define RTE_EVENT_TYPE_ETHDEV_VECTOR
static uint16_t rte_event_dequeue_burst(uint8_t dev_id, uint8_t port_id, struct rte_event ev[], uint16_t nb_events, uint64_t timeout_ticks)
#define RTE_EVENT_TYPE_ETH_RX_ADAPTER_VECTOR
#define RTE_EVENT_TYPE_ETHDEV
unsigned int rte_lcore_to_socket_id(unsigned int lcore_id)
static unsigned rte_lcore_id(void)
Definition: rte_lcore.h:76
#define RTE_LOG(l, t,...)
Definition: rte_log.h:341
int rte_lpm6_lookup(const struct rte_lpm6 *lpm, const uint8_t *ip, uint32_t *next_hop)
static int rte_lpm_lookup(struct rte_lpm *lpm, uint32_t ip, uint32_t *next_hop)
Definition: rte_lpm.h:284
static void rte_pktmbuf_free(struct rte_mbuf *m)
Definition: rte_mbuf.h:1375
#define rte_pktmbuf_mtod(m, t)
#define RTE_MBUF_F_TX_SEC_OFFLOAD
#define RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED
#define RTE_MBUF_F_RX_SEC_OFFLOAD
#define rte_pktmbuf_mtod_offset(m, t, o)
#define RTE_PTYPE_TUNNEL_MASK
#define RTE_PTYPE_TUNNEL_ESP
#define RTE_ETH_IS_IPV6_HDR(ptype)
#define RTE_ETH_IS_IPV4_HDR(ptype)
static struct rte_mempool * rte_mempool_from_obj(void *obj)
Definition: rte_mempool.h:357
static __rte_always_inline void rte_mempool_put(struct rte_mempool *mp, void *obj)
Definition: rte_mempool.h:1444
static void rte_prefetch0(const volatile void *p)
@ RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL
Definition: rte_security.h:464
static int rte_security_set_pkt_metadata(struct rte_security_ctx *instance, struct rte_security_session *sess, struct rte_mbuf *mb, void *params)
Definition: rte_security.h:648
static __rte_experimental rte_security_dynfield_t * rte_security_dynfield(struct rte_mbuf *mbuf)
Definition: rte_security.h:607
struct rte_ether_addr src_addr
Definition: rte_ether.h:290
struct rte_ether_addr dst_addr
Definition: rte_ether.h:289
uint16_t attr_valid
Definition: rte_eventdev.h:981
uint32_t event_type
struct rte_mbuf * mbuf
struct rte_event_vector * vec
struct rte_ipsec_sa * sa
Definition: rte_ipsec.h:63
enum rte_security_session_action_type type
Definition: rte_ipsec.h:65
uint64_t ol_flags
uint32_t packet_type
uint16_t port
uint64_t l2_len