DPDK 21.11.9
examples/ipsec-secgw/ipsec-secgw.c
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2016 Intel Corporation
*/
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <string.h>
#include <sys/queue.h>
#include <stdarg.h>
#include <errno.h>
#include <signal.h>
#include <getopt.h>
#include <rte_common.h>
#include <rte_bitmap.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_eal.h>
#include <rte_launch.h>
#include <rte_cycles.h>
#include <rte_prefetch.h>
#include <rte_lcore.h>
#include <rte_per_lcore.h>
#include <rte_interrupts.h>
#include <rte_random.h>
#include <rte_debug.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_acl.h>
#include <rte_lpm.h>
#include <rte_lpm6.h>
#include <rte_hash.h>
#include <rte_jhash.h>
#include <rte_cryptodev.h>
#include <rte_security.h>
#include <rte_eventdev.h>
#include <rte_ip.h>
#include <rte_ip_frag.h>
#include <rte_alarm.h>
#include <rte_telemetry.h>
#include "event_helper.h"
#include "flow.h"
#include "ipsec.h"
#include "ipsec_worker.h"
#include "parser.h"
#include "sad.h"
volatile bool force_quit;
#define MAX_JUMBO_PKT_LEN 9600
#define MEMPOOL_CACHE_SIZE 256
#define CDEV_QUEUE_DESC 2048
#define CDEV_MAP_ENTRIES 16384
#define CDEV_MP_CACHE_SZ 64
#define CDEV_MP_CACHE_MULTIPLIER 1.5 /* from rte_mempool.c */
#define MAX_QUEUE_PAIRS 1
#define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
/* Configure how many packets ahead to prefetch, when reading packets */
#define PREFETCH_OFFSET 3
#define MAX_RX_QUEUE_PER_LCORE 16
#define MAX_LCORE_PARAMS 1024
/*
* Configurable number of RX/TX ring descriptors
*/
#define IPSEC_SECGW_RX_DESC_DEFAULT 1024
#define IPSEC_SECGW_TX_DESC_DEFAULT 1024
static uint16_t nb_rxd = IPSEC_SECGW_RX_DESC_DEFAULT;
static uint16_t nb_txd = IPSEC_SECGW_TX_DESC_DEFAULT;
#define ETHADDR_TO_UINT64(addr) __BYTES_TO_UINT64( \
(addr)->addr_bytes[0], (addr)->addr_bytes[1], \
(addr)->addr_bytes[2], (addr)->addr_bytes[3], \
(addr)->addr_bytes[4], (addr)->addr_bytes[5], \
0, 0)
#define FRAG_TBL_BUCKET_ENTRIES 4
#define MAX_FRAG_TTL_NS (10LL * NS_PER_S)
#define MTU_TO_FRAMELEN(x) ((x) + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN)
struct ethaddr_info ethaddr_tbl[RTE_MAX_ETHPORTS] = {
{ 0, ETHADDR(0x00, 0x16, 0x3e, 0x7e, 0x94, 0x9a) },
{ 0, ETHADDR(0x00, 0x16, 0x3e, 0x22, 0xa1, 0xd9) },
{ 0, ETHADDR(0x00, 0x16, 0x3e, 0x08, 0x69, 0x26) },
{ 0, ETHADDR(0x00, 0x16, 0x3e, 0x49, 0x9e, 0xdd) }
};
struct flow_info flow_info_tbl[RTE_MAX_ETHPORTS];
#define CMD_LINE_OPT_CONFIG "config"
#define CMD_LINE_OPT_SINGLE_SA "single-sa"
#define CMD_LINE_OPT_CRYPTODEV_MASK "cryptodev_mask"
#define CMD_LINE_OPT_TRANSFER_MODE "transfer-mode"
#define CMD_LINE_OPT_SCHEDULE_TYPE "event-schedule-type"
#define CMD_LINE_OPT_RX_OFFLOAD "rxoffload"
#define CMD_LINE_OPT_TX_OFFLOAD "txoffload"
#define CMD_LINE_OPT_REASSEMBLE "reassemble"
#define CMD_LINE_OPT_MTU "mtu"
#define CMD_LINE_OPT_FRAG_TTL "frag-ttl"
#define CMD_LINE_OPT_EVENT_VECTOR "event-vector"
#define CMD_LINE_OPT_VECTOR_SIZE "vector-size"
#define CMD_LINE_OPT_VECTOR_TIMEOUT "vector-tmo"
#define CMD_LINE_ARG_EVENT "event"
#define CMD_LINE_ARG_POLL "poll"
#define CMD_LINE_ARG_ORDERED "ordered"
#define CMD_LINE_ARG_ATOMIC "atomic"
#define CMD_LINE_ARG_PARALLEL "parallel"
enum {
/* long options mapped to a short option */
/* first long only option value must be >= 256, so that we won't
* conflict with short options
*/
CMD_LINE_OPT_MIN_NUM = 256,
CMD_LINE_OPT_CONFIG_NUM,
CMD_LINE_OPT_SINGLE_SA_NUM,
CMD_LINE_OPT_CRYPTODEV_MASK_NUM,
CMD_LINE_OPT_TRANSFER_MODE_NUM,
CMD_LINE_OPT_SCHEDULE_TYPE_NUM,
CMD_LINE_OPT_RX_OFFLOAD_NUM,
CMD_LINE_OPT_TX_OFFLOAD_NUM,
CMD_LINE_OPT_REASSEMBLE_NUM,
CMD_LINE_OPT_MTU_NUM,
CMD_LINE_OPT_FRAG_TTL_NUM,
CMD_LINE_OPT_EVENT_VECTOR_NUM,
CMD_LINE_OPT_VECTOR_SIZE_NUM,
CMD_LINE_OPT_VECTOR_TIMEOUT_NUM,
};
static const struct option lgopts[] = {
{CMD_LINE_OPT_CONFIG, 1, 0, CMD_LINE_OPT_CONFIG_NUM},
{CMD_LINE_OPT_SINGLE_SA, 1, 0, CMD_LINE_OPT_SINGLE_SA_NUM},
{CMD_LINE_OPT_CRYPTODEV_MASK, 1, 0, CMD_LINE_OPT_CRYPTODEV_MASK_NUM},
{CMD_LINE_OPT_TRANSFER_MODE, 1, 0, CMD_LINE_OPT_TRANSFER_MODE_NUM},
{CMD_LINE_OPT_SCHEDULE_TYPE, 1, 0, CMD_LINE_OPT_SCHEDULE_TYPE_NUM},
{CMD_LINE_OPT_RX_OFFLOAD, 1, 0, CMD_LINE_OPT_RX_OFFLOAD_NUM},
{CMD_LINE_OPT_TX_OFFLOAD, 1, 0, CMD_LINE_OPT_TX_OFFLOAD_NUM},
{CMD_LINE_OPT_REASSEMBLE, 1, 0, CMD_LINE_OPT_REASSEMBLE_NUM},
{CMD_LINE_OPT_MTU, 1, 0, CMD_LINE_OPT_MTU_NUM},
{CMD_LINE_OPT_FRAG_TTL, 1, 0, CMD_LINE_OPT_FRAG_TTL_NUM},
{CMD_LINE_OPT_EVENT_VECTOR, 0, 0, CMD_LINE_OPT_EVENT_VECTOR_NUM},
{CMD_LINE_OPT_VECTOR_SIZE, 1, 0, CMD_LINE_OPT_VECTOR_SIZE_NUM},
{CMD_LINE_OPT_VECTOR_TIMEOUT, 1, 0, CMD_LINE_OPT_VECTOR_TIMEOUT_NUM},
{NULL, 0, 0, 0}
};
uint32_t unprotected_port_mask;
uint32_t single_sa_idx;
/* mask of enabled ports */
static uint32_t enabled_port_mask;
static uint64_t enabled_cryptodev_mask = UINT64_MAX;
static int32_t promiscuous_on;
static int32_t numa_on = 1;
static uint32_t nb_lcores;
static uint32_t single_sa;
uint32_t nb_bufs_in_pool;
/*
* RX/TX HW offload capabilities to enable/use on ethernet ports.
* By default all capabilities are enabled.
*/
static uint64_t dev_rx_offload = UINT64_MAX;
static uint64_t dev_tx_offload = UINT64_MAX;
/*
* global values that determine multi-seg policy
*/
static uint32_t frag_tbl_sz;
static uint32_t frame_buf_size = RTE_MBUF_DEFAULT_BUF_SIZE;
static uint32_t mtu_size = RTE_ETHER_MTU;
static uint64_t frag_ttl_ns = MAX_FRAG_TTL_NS;
static uint32_t stats_interval;
/* application wide librte_ipsec/SA parameters */
struct app_sa_prm app_sa_prm = {
.enable = 0,
.cache_sz = SA_CACHE_SZ,
.udp_encap = 0
};
static const char *cfgfile;
struct lcore_rx_queue {
uint16_t port_id;
uint8_t queue_id;
struct lcore_params {
uint16_t port_id;
uint8_t queue_id;
uint8_t lcore_id;
static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
static struct lcore_params *lcore_params;
static uint16_t nb_lcore_params;
static struct rte_hash *cdev_map_in;
static struct rte_hash *cdev_map_out;
struct buffer {
uint16_t len;
struct rte_mbuf *m_table[MAX_PKT_BURST] __rte_aligned(sizeof(void *));
};
struct lcore_conf {
uint16_t nb_rx_queue;
struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
struct buffer tx_mbufs[RTE_MAX_ETHPORTS];
struct ipsec_ctx inbound;
struct ipsec_ctx outbound;
struct rt_ctx *rt4_ctx;
struct rt_ctx *rt6_ctx;
struct {
struct rte_ip_frag_tbl *tbl;
struct rte_mempool *pool_dir;
struct rte_mempool *pool_indir;
} frag;
static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
static struct rte_eth_conf port_conf = {
.rxmode = {
.split_hdr_size = 0,
.offloads = RTE_ETH_RX_OFFLOAD_CHECKSUM,
},
.rx_adv_conf = {
.rss_conf = {
.rss_key = NULL,
.rss_hf = RTE_ETH_RSS_IP | RTE_ETH_RSS_UDP |
RTE_ETH_RSS_TCP | RTE_ETH_RSS_SCTP,
},
},
.txmode = {
.mq_mode = RTE_ETH_MQ_TX_NONE,
},
};
struct socket_ctx socket_ctx[NB_SOCKETS];
/*
* Determine is multi-segment support required:
* - either frame buffer size is smaller then mtu
* - or reassemble support is requested
*/
static int
multi_seg_required(void)
{
return (MTU_TO_FRAMELEN(mtu_size) + RTE_PKTMBUF_HEADROOM >
frame_buf_size || frag_tbl_sz != 0);
}
static inline void
adjust_ipv4_pktlen(struct rte_mbuf *m, const struct rte_ipv4_hdr *iph,
uint32_t l2_len)
{
uint32_t plen, trim;
plen = rte_be_to_cpu_16(iph->total_length) + l2_len;
if (plen < m->pkt_len) {
trim = m->pkt_len - plen;
rte_pktmbuf_trim(m, trim);
}
}
static inline void
adjust_ipv6_pktlen(struct rte_mbuf *m, const struct rte_ipv6_hdr *iph,
uint32_t l2_len)
{
uint32_t plen, trim;
plen = rte_be_to_cpu_16(iph->payload_len) + sizeof(*iph) + l2_len;
if (plen < m->pkt_len) {
trim = m->pkt_len - plen;
rte_pktmbuf_trim(m, trim);
}
}
struct ipsec_core_statistics core_statistics[RTE_MAX_LCORE];
/* Print out statistics on packet distribution */
static void
print_stats_cb(__rte_unused void *param)
{
uint64_t total_packets_dropped, total_packets_tx, total_packets_rx;
float burst_percent, rx_per_call, tx_per_call;
unsigned int coreid;
total_packets_dropped = 0;
total_packets_tx = 0;
total_packets_rx = 0;
const char clr[] = { 27, '[', '2', 'J', '\0' };
const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' };
/* Clear screen and move to top left */
printf("%s%s", clr, topLeft);
printf("\nCore statistics ====================================");
for (coreid = 0; coreid < RTE_MAX_LCORE; coreid++) {
/* skip disabled cores */
if (rte_lcore_is_enabled(coreid) == 0)
continue;
burst_percent = (float)(core_statistics[coreid].burst_rx * 100)/
core_statistics[coreid].rx;
rx_per_call = (float)(core_statistics[coreid].rx)/
core_statistics[coreid].rx_call;
tx_per_call = (float)(core_statistics[coreid].tx)/
core_statistics[coreid].tx_call;
printf("\nStatistics for core %u ------------------------------"
"\nPackets received: %20"PRIu64
"\nPackets sent: %24"PRIu64
"\nPackets dropped: %21"PRIu64
"\nBurst percent: %23.2f"
"\nPackets per Rx call: %17.2f"
"\nPackets per Tx call: %17.2f",
coreid,
core_statistics[coreid].rx,
core_statistics[coreid].tx,
core_statistics[coreid].dropped,
burst_percent,
rx_per_call,
tx_per_call);
total_packets_dropped += core_statistics[coreid].dropped;
total_packets_tx += core_statistics[coreid].tx;
total_packets_rx += core_statistics[coreid].rx;
}
printf("\nAggregate statistics ==============================="
"\nTotal packets received: %14"PRIu64
"\nTotal packets sent: %18"PRIu64
"\nTotal packets dropped: %15"PRIu64,
total_packets_rx,
total_packets_tx,
total_packets_dropped);
printf("\n====================================================\n");
rte_eal_alarm_set(stats_interval * US_PER_S, print_stats_cb, NULL);
}
static inline void
prepare_one_packet(struct rte_mbuf *pkt, struct ipsec_traffic *t)
{
const struct rte_ether_hdr *eth;
const struct rte_ipv4_hdr *iph4;
const struct rte_ipv6_hdr *iph6;
const struct rte_udp_hdr *udp;
uint16_t ip4_hdr_len;
uint16_t nat_port;
eth = rte_pktmbuf_mtod(pkt, const struct rte_ether_hdr *);
iph4 = (const struct rte_ipv4_hdr *)rte_pktmbuf_adj(pkt,
adjust_ipv4_pktlen(pkt, iph4, 0);
switch (iph4->next_proto_id) {
case IPPROTO_ESP:
t->ipsec.pkts[(t->ipsec.num)++] = pkt;
break;
case IPPROTO_UDP:
if (app_sa_prm.udp_encap == 1) {
ip4_hdr_len = ((iph4->version_ihl &
struct rte_udp_hdr *, ip4_hdr_len);
nat_port = rte_cpu_to_be_16(IPSEC_NAT_T_PORT);
if (udp->src_port == nat_port ||
udp->dst_port == nat_port){
t->ipsec.pkts[(t->ipsec.num)++] = pkt;
pkt->packet_type |=
MBUF_PTYPE_TUNNEL_ESP_IN_UDP;
break;
}
}
/* Fall through */
default:
t->ip4.data[t->ip4.num] = &iph4->next_proto_id;
t->ip4.pkts[(t->ip4.num)++] = pkt;
}
pkt->l2_len = 0;
pkt->l3_len = sizeof(*iph4);
pkt->l4_len = sizeof(struct rte_tcp_hdr);
else if (pkt->packet_type & RTE_PTYPE_L4_UDP)
pkt->l4_len = sizeof(struct rte_udp_hdr);
int next_proto;
size_t l3len, ext_len;
uint8_t *p;
/* get protocol type */
iph6 = (const struct rte_ipv6_hdr *)rte_pktmbuf_adj(pkt,
adjust_ipv6_pktlen(pkt, iph6, 0);
next_proto = iph6->proto;
/* determine l3 header size up to ESP extension */
l3len = sizeof(struct ip6_hdr);
p = rte_pktmbuf_mtod(pkt, uint8_t *);
while (next_proto != IPPROTO_ESP && l3len < pkt->data_len &&
(next_proto = rte_ipv6_get_next_ext(p + l3len,
next_proto, &ext_len)) >= 0)
l3len += ext_len;
/* drop packet when IPv6 header exceeds first segment length */
if (unlikely(l3len > pkt->data_len)) {
free_pkts(&pkt, 1);
return;
}
switch (next_proto) {
case IPPROTO_ESP:
t->ipsec.pkts[(t->ipsec.num)++] = pkt;
break;
case IPPROTO_UDP:
if (app_sa_prm.udp_encap == 1) {
struct rte_udp_hdr *, l3len);
nat_port = rte_cpu_to_be_16(IPSEC_NAT_T_PORT);
if (udp->src_port == nat_port ||
udp->dst_port == nat_port){
t->ipsec.pkts[(t->ipsec.num)++] = pkt;
pkt->packet_type |=
MBUF_PTYPE_TUNNEL_ESP_IN_UDP;
break;
}
}
/* Fall through */
default:
t->ip6.data[t->ip6.num] = &iph6->proto;
t->ip6.pkts[(t->ip6.num)++] = pkt;
}
pkt->l2_len = 0;
pkt->l3_len = l3len;
} else {
/* Unknown/Unsupported type, drop the packet */
RTE_LOG(ERR, IPSEC, "Unsupported packet type 0x%x\n",
free_pkts(&pkt, 1);
return;
}
/* Check if the packet has been processed inline. For inline protocol
* processed packets, the metadata in the mbuf can be used to identify
* the security processing done on the packet. The metadata will be
* used to retrieve the application registered userdata associated
* with the security session.
*/
struct ipsec_sa *sa;
struct ipsec_mbuf_metadata *priv;
struct rte_security_ctx *ctx = (struct rte_security_ctx *)
pkt->port);
/* Retrieve the userdata registered. Here, the userdata
* registered is the SA pointer.
*/
sa = (struct ipsec_sa *)rte_security_get_userdata(ctx,
if (sa == NULL) {
/* userdata could not be retrieved */
return;
}
/* Save SA as priv member in mbuf. This will be used in the
* IPsec selector(SP-SA) check.
*/
priv = get_priv(pkt);
priv->sa = sa;
}
}
static inline void
prepare_traffic(struct rte_mbuf **pkts, struct ipsec_traffic *t,
uint16_t nb_pkts)
{
int32_t i;
t->ipsec.num = 0;
t->ip4.num = 0;
t->ip6.num = 0;
for (i = 0; i < (nb_pkts - PREFETCH_OFFSET); i++) {
rte_prefetch0(rte_pktmbuf_mtod(pkts[i + PREFETCH_OFFSET],
void *));
prepare_one_packet(pkts[i], t);
}
/* Process left packets */
for (; i < nb_pkts; i++)
prepare_one_packet(pkts[i], t);
}
static inline void
prepare_tx_pkt(struct rte_mbuf *pkt, uint16_t port,
const struct lcore_conf *qconf)
{
struct ip *ip;
struct rte_ether_hdr *ethhdr;
ip = rte_pktmbuf_mtod(pkt, struct ip *);
ethhdr = (struct rte_ether_hdr *)
if (ip->ip_v == IPVERSION) {
pkt->ol_flags |= qconf->outbound.ipv4_offloads;
pkt->l3_len = sizeof(struct ip);
ip->ip_sum = 0;
/* calculate IPv4 cksum in SW */
if ((pkt->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) == 0)
ip->ip_sum = rte_ipv4_cksum((struct rte_ipv4_hdr *)ip);
} else {
pkt->ol_flags |= qconf->outbound.ipv6_offloads;
pkt->l3_len = sizeof(struct ip6_hdr);
}
memcpy(&ethhdr->src_addr, &ethaddr_tbl[port].src,
sizeof(struct rte_ether_addr));
memcpy(&ethhdr->dst_addr, &ethaddr_tbl[port].dst,
sizeof(struct rte_ether_addr));
}
static inline void
prepare_tx_burst(struct rte_mbuf *pkts[], uint16_t nb_pkts, uint16_t port,
const struct lcore_conf *qconf)
{
int32_t i;
const int32_t prefetch_offset = 2;
for (i = 0; i < (nb_pkts - prefetch_offset); i++) {
rte_mbuf_prefetch_part2(pkts[i + prefetch_offset]);
prepare_tx_pkt(pkts[i], port, qconf);
}
/* Process left packets */
for (; i < nb_pkts; i++)
prepare_tx_pkt(pkts[i], port, qconf);
}
/* Send burst of packets on an output interface */
static inline int32_t
send_burst(struct lcore_conf *qconf, uint16_t n, uint16_t port)
{
struct rte_mbuf **m_table;
int32_t ret;
uint16_t queueid;
queueid = qconf->tx_queue_id[port];
m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
prepare_tx_burst(m_table, n, port, qconf);
ret = rte_eth_tx_burst(port, queueid, m_table, n);
core_stats_update_tx(ret);
if (unlikely(ret < n)) {
do {
free_pkts(&m_table[ret], 1);
} while (++ret < n);
}
return 0;
}
/*
* Helper function to fragment and queue for TX one packet.
*/
static inline uint32_t
send_fragment_packet(struct lcore_conf *qconf, struct rte_mbuf *m,
uint16_t port, uint8_t proto)
{
struct buffer *tbl;
uint32_t len, n;
int32_t rc;
tbl = qconf->tx_mbufs + port;
len = tbl->len;
/* free space for new fragments */
if (len + RTE_LIBRTE_IP_FRAG_MAX_FRAG >= RTE_DIM(tbl->m_table)) {
send_burst(qconf, len, port);
len = 0;
}
n = RTE_DIM(tbl->m_table) - len;
if (proto == IPPROTO_IP)
rc = rte_ipv4_fragment_packet(m, tbl->m_table + len,
n, mtu_size, qconf->frag.pool_dir,
qconf->frag.pool_indir);
else
rc = rte_ipv6_fragment_packet(m, tbl->m_table + len,
n, mtu_size, qconf->frag.pool_dir,
qconf->frag.pool_indir);
if (rc >= 0)
len += rc;
else
RTE_LOG(ERR, IPSEC,
"%s: failed to fragment packet with size %u, "
"error code: %d\n",
__func__, m->pkt_len, rte_errno);
free_pkts(&m, 1);
return len;
}
/* Enqueue a single packet, and send burst if queue is filled */
static inline int32_t
send_single_packet(struct rte_mbuf *m, uint16_t port, uint8_t proto)
{
uint32_t lcore_id;
uint16_t len;
struct lcore_conf *qconf;
lcore_id = rte_lcore_id();
qconf = &lcore_conf[lcore_id];
len = qconf->tx_mbufs[port].len;
if (m->pkt_len <= mtu_size) {
qconf->tx_mbufs[port].m_table[len] = m;
len++;
/* need to fragment the packet */
} else if (frag_tbl_sz > 0)
len = send_fragment_packet(qconf, m, port, proto);
else
free_pkts(&m, 1);
/* enough pkts to be sent */
if (unlikely(len == MAX_PKT_BURST)) {
send_burst(qconf, MAX_PKT_BURST, port);
len = 0;
}
qconf->tx_mbufs[port].len = len;
return 0;
}
static inline void
inbound_sp_sa(struct sp_ctx *sp, struct sa_ctx *sa, struct traffic_type *ip,
uint16_t lim, struct ipsec_spd_stats *stats)
{
struct rte_mbuf *m;
uint32_t i, j, res, sa_idx;
if (ip->num == 0 || sp == NULL)
return;
rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
ip->num, DEFAULT_MAX_CATEGORIES);
j = 0;
for (i = 0; i < ip->num; i++) {
m = ip->pkts[i];
res = ip->res[i];
if (res == BYPASS) {
ip->pkts[j++] = m;
stats->bypass++;
continue;
}
if (res == DISCARD) {
free_pkts(&m, 1);
stats->discard++;
continue;
}
/* Only check SPI match for processed IPSec packets */
if (i < lim && ((m->ol_flags & RTE_MBUF_F_RX_SEC_OFFLOAD) == 0)) {
stats->discard++;
free_pkts(&m, 1);
continue;
}
sa_idx = res - 1;
if (!inbound_sa_check(sa, m, sa_idx)) {
stats->discard++;
free_pkts(&m, 1);
continue;
}
ip->pkts[j++] = m;
stats->protect++;
}
ip->num = j;
}
static void
split46_traffic(struct ipsec_traffic *trf, struct rte_mbuf *mb[], uint32_t num)
{
uint32_t i, n4, n6;
struct ip *ip;
struct rte_mbuf *m;
n4 = trf->ip4.num;
n6 = trf->ip6.num;
for (i = 0; i < num; i++) {
m = mb[i];
ip = rte_pktmbuf_mtod(m, struct ip *);
if (ip->ip_v == IPVERSION) {
trf->ip4.pkts[n4] = m;
trf->ip4.data[n4] = rte_pktmbuf_mtod_offset(m,
uint8_t *, offsetof(struct ip, ip_p));
n4++;
} else if (ip->ip_v == IP6_VERSION) {
trf->ip6.pkts[n6] = m;
trf->ip6.data[n6] = rte_pktmbuf_mtod_offset(m,
uint8_t *,
offsetof(struct ip6_hdr, ip6_nxt));
n6++;
} else
free_pkts(&m, 1);
}
trf->ip4.num = n4;
trf->ip6.num = n6;
}
static inline void
process_pkts_inbound(struct ipsec_ctx *ipsec_ctx,
struct ipsec_traffic *traffic)
{
unsigned int lcoreid = rte_lcore_id();
uint16_t nb_pkts_in, n_ip4, n_ip6;
n_ip4 = traffic->ip4.num;
n_ip6 = traffic->ip6.num;
if (app_sa_prm.enable == 0) {
nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
traffic->ipsec.num, MAX_PKT_BURST);
split46_traffic(traffic, traffic->ipsec.pkts, nb_pkts_in);
} else {
inbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.pkts,
traffic->ipsec.saptr, traffic->ipsec.num);
ipsec_process(ipsec_ctx, traffic);
}
inbound_sp_sa(ipsec_ctx->sp4_ctx,
ipsec_ctx->sa_ctx, &traffic->ip4, n_ip4,
&core_statistics[lcoreid].inbound.spd4);
inbound_sp_sa(ipsec_ctx->sp6_ctx,
ipsec_ctx->sa_ctx, &traffic->ip6, n_ip6,
&core_statistics[lcoreid].inbound.spd6);
}
static inline void
outbound_spd_lookup(struct sp_ctx *sp,
struct traffic_type *ip,
struct traffic_type *ipsec,
struct ipsec_spd_stats *stats)
{
struct rte_mbuf *m;
uint32_t i, j, sa_idx;
if (ip->num == 0 || sp == NULL)
return;
rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
ip->num, DEFAULT_MAX_CATEGORIES);
for (i = 0, j = 0; i < ip->num; i++) {
m = ip->pkts[i];
sa_idx = ip->res[i] - 1;
if (unlikely(ip->res[i] == DISCARD)) {
free_pkts(&m, 1);
stats->discard++;
} else if (unlikely(ip->res[i] == BYPASS)) {
ip->pkts[j++] = m;
stats->bypass++;
} else {
ipsec->res[ipsec->num] = sa_idx;
ipsec->pkts[ipsec->num++] = m;
stats->protect++;
}
}
ip->num = j;
}
static inline void
process_pkts_outbound(struct ipsec_ctx *ipsec_ctx,
struct ipsec_traffic *traffic)
{
struct rte_mbuf *m;
uint16_t idx, nb_pkts_out, i;
unsigned int lcoreid = rte_lcore_id();
/* Drop any IPsec traffic from protected ports */
free_pkts(traffic->ipsec.pkts, traffic->ipsec.num);
traffic->ipsec.num = 0;
outbound_spd_lookup(ipsec_ctx->sp4_ctx,
&traffic->ip4, &traffic->ipsec,
&core_statistics[lcoreid].outbound.spd4);
outbound_spd_lookup(ipsec_ctx->sp6_ctx,
&traffic->ip6, &traffic->ipsec,
&core_statistics[lcoreid].outbound.spd6);
if (app_sa_prm.enable == 0) {
nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
traffic->ipsec.res, traffic->ipsec.num,
MAX_PKT_BURST);
for (i = 0; i < nb_pkts_out; i++) {
m = traffic->ipsec.pkts[i];
struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
if (ip->ip_v == IPVERSION) {
idx = traffic->ip4.num++;
traffic->ip4.pkts[idx] = m;
} else {
idx = traffic->ip6.num++;
traffic->ip6.pkts[idx] = m;
}
}
} else {
outbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.res,
traffic->ipsec.saptr, traffic->ipsec.num);
ipsec_process(ipsec_ctx, traffic);
}
}
static inline void
process_pkts_inbound_nosp(struct ipsec_ctx *ipsec_ctx,
struct ipsec_traffic *traffic)
{
struct rte_mbuf *m;
uint32_t nb_pkts_in, i, idx;
if (app_sa_prm.enable == 0) {
nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
traffic->ipsec.num, MAX_PKT_BURST);
for (i = 0; i < nb_pkts_in; i++) {
m = traffic->ipsec.pkts[i];
struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
if (ip->ip_v == IPVERSION) {
idx = traffic->ip4.num++;
traffic->ip4.pkts[idx] = m;
} else {
idx = traffic->ip6.num++;
traffic->ip6.pkts[idx] = m;
}
}
} else {
inbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.pkts,
traffic->ipsec.saptr, traffic->ipsec.num);
ipsec_process(ipsec_ctx, traffic);
}
}
static inline void
process_pkts_outbound_nosp(struct ipsec_ctx *ipsec_ctx,
struct ipsec_traffic *traffic)
{
struct rte_mbuf *m;
uint32_t nb_pkts_out, i, n;
struct ip *ip;
/* Drop any IPsec traffic from protected ports */
free_pkts(traffic->ipsec.pkts, traffic->ipsec.num);
n = 0;
for (i = 0; i < traffic->ip4.num; i++) {
traffic->ipsec.pkts[n] = traffic->ip4.pkts[i];
traffic->ipsec.res[n++] = single_sa_idx;
}
for (i = 0; i < traffic->ip6.num; i++) {
traffic->ipsec.pkts[n] = traffic->ip6.pkts[i];
traffic->ipsec.res[n++] = single_sa_idx;
}
traffic->ip4.num = 0;
traffic->ip6.num = 0;
traffic->ipsec.num = n;
if (app_sa_prm.enable == 0) {
nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
traffic->ipsec.res, traffic->ipsec.num,
MAX_PKT_BURST);
/* They all sue the same SA (ip4 or ip6 tunnel) */
m = traffic->ipsec.pkts[0];
ip = rte_pktmbuf_mtod(m, struct ip *);
if (ip->ip_v == IPVERSION) {
traffic->ip4.num = nb_pkts_out;
for (i = 0; i < nb_pkts_out; i++)
traffic->ip4.pkts[i] = traffic->ipsec.pkts[i];
} else {
traffic->ip6.num = nb_pkts_out;
for (i = 0; i < nb_pkts_out; i++)
traffic->ip6.pkts[i] = traffic->ipsec.pkts[i];
}
} else {
outbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.res,
traffic->ipsec.saptr, traffic->ipsec.num);
ipsec_process(ipsec_ctx, traffic);
}
}
static inline int32_t
get_hop_for_offload_pkt(struct rte_mbuf *pkt, int is_ipv6)
{
struct ipsec_mbuf_metadata *priv;
struct ipsec_sa *sa;
priv = get_priv(pkt);
sa = priv->sa;
if (unlikely(sa == NULL)) {
RTE_LOG(ERR, IPSEC, "SA not saved in private data\n");
goto fail;
}
if (is_ipv6)
return sa->portid;
/* else */
return (sa->portid | RTE_LPM_LOOKUP_SUCCESS);
fail:
if (is_ipv6)
return -1;
/* else */
return 0;
}
static inline void
route4_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
{
uint32_t hop[MAX_PKT_BURST * 2];
uint32_t dst_ip[MAX_PKT_BURST * 2];
int32_t pkt_hop = 0;
uint16_t i, offset;
uint16_t lpm_pkts = 0;
unsigned int lcoreid = rte_lcore_id();
if (nb_pkts == 0)
return;
/* Need to do an LPM lookup for non-inline packets. Inline packets will
* have port ID in the SA
*/
for (i = 0; i < nb_pkts; i++) {
if (!(pkts[i]->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD)) {
/* Security offload not enabled. So an LPM lookup is
* required to get the hop
*/
offset = offsetof(struct ip, ip_dst);
dst_ip[lpm_pkts] = *rte_pktmbuf_mtod_offset(pkts[i],
uint32_t *, offset);
dst_ip[lpm_pkts] = rte_be_to_cpu_32(dst_ip[lpm_pkts]);
lpm_pkts++;
}
}
rte_lpm_lookup_bulk((struct rte_lpm *)rt_ctx, dst_ip, hop, lpm_pkts);
lpm_pkts = 0;
for (i = 0; i < nb_pkts; i++) {
if (pkts[i]->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD) {
/* Read hop from the SA */
pkt_hop = get_hop_for_offload_pkt(pkts[i], 0);
} else {
/* Need to use hop returned by lookup */
pkt_hop = hop[lpm_pkts++];
}
if ((pkt_hop & RTE_LPM_LOOKUP_SUCCESS) == 0) {
core_statistics[lcoreid].lpm4.miss++;
free_pkts(&pkts[i], 1);
continue;
}
send_single_packet(pkts[i], pkt_hop & 0xff, IPPROTO_IP);
}
}
static inline void
route6_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
{
int32_t hop[MAX_PKT_BURST * 2];
uint8_t dst_ip[MAX_PKT_BURST * 2][16];
uint8_t *ip6_dst;
int32_t pkt_hop = 0;
uint16_t i, offset;
uint16_t lpm_pkts = 0;
unsigned int lcoreid = rte_lcore_id();
if (nb_pkts == 0)
return;
/* Need to do an LPM lookup for non-inline packets. Inline packets will
* have port ID in the SA
*/
for (i = 0; i < nb_pkts; i++) {
if (!(pkts[i]->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD)) {
/* Security offload not enabled. So an LPM lookup is
* required to get the hop
*/
offset = offsetof(struct ip6_hdr, ip6_dst);
ip6_dst = rte_pktmbuf_mtod_offset(pkts[i], uint8_t *,
offset);
memcpy(&dst_ip[lpm_pkts][0], ip6_dst, 16);
lpm_pkts++;
}
}
rte_lpm6_lookup_bulk_func((struct rte_lpm6 *)rt_ctx, dst_ip, hop,
lpm_pkts);
lpm_pkts = 0;
for (i = 0; i < nb_pkts; i++) {
if (pkts[i]->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD) {
/* Read hop from the SA */
pkt_hop = get_hop_for_offload_pkt(pkts[i], 1);
} else {
/* Need to use hop returned by lookup */
pkt_hop = hop[lpm_pkts++];
}
if (pkt_hop == -1) {
core_statistics[lcoreid].lpm6.miss++;
free_pkts(&pkts[i], 1);
continue;
}
send_single_packet(pkts[i], pkt_hop & 0xff, IPPROTO_IPV6);
}
}
static inline void
process_pkts(struct lcore_conf *qconf, struct rte_mbuf **pkts,
uint8_t nb_pkts, uint16_t portid)
{
struct ipsec_traffic traffic;
prepare_traffic(pkts, &traffic, nb_pkts);
if (unlikely(single_sa)) {
if (is_unprotected_port(portid))
process_pkts_inbound_nosp(&qconf->inbound, &traffic);
else
process_pkts_outbound_nosp(&qconf->outbound, &traffic);
} else {
if (is_unprotected_port(portid))
process_pkts_inbound(&qconf->inbound, &traffic);
else
process_pkts_outbound(&qconf->outbound, &traffic);
}
route4_pkts(qconf->rt4_ctx, traffic.ip4.pkts, traffic.ip4.num);
route6_pkts(qconf->rt6_ctx, traffic.ip6.pkts, traffic.ip6.num);
}
static inline void
drain_tx_buffers(struct lcore_conf *qconf)
{
struct buffer *buf;
uint32_t portid;
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
buf = &qconf->tx_mbufs[portid];
if (buf->len == 0)
continue;
send_burst(qconf, buf->len, portid);
buf->len = 0;
}
}
static inline void
drain_crypto_buffers(struct lcore_conf *qconf)
{
uint32_t i;
struct ipsec_ctx *ctx;
/* drain inbound buffers*/
ctx = &qconf->inbound;
for (i = 0; i != ctx->nb_qps; i++) {
if (ctx->tbl[i].len != 0)
enqueue_cop_burst(ctx->tbl + i);
}
/* drain outbound buffers*/
ctx = &qconf->outbound;
for (i = 0; i != ctx->nb_qps; i++) {
if (ctx->tbl[i].len != 0)
enqueue_cop_burst(ctx->tbl + i);
}
}
static void
drain_inbound_crypto_queues(const struct lcore_conf *qconf,
struct ipsec_ctx *ctx)
{
uint32_t n;
struct ipsec_traffic trf;
unsigned int lcoreid = rte_lcore_id();
if (app_sa_prm.enable == 0) {
/* dequeue packets from crypto-queue */
n = ipsec_inbound_cqp_dequeue(ctx, trf.ipsec.pkts,
RTE_DIM(trf.ipsec.pkts));
trf.ip4.num = 0;
trf.ip6.num = 0;
/* split traffic by ipv4-ipv6 */
split46_traffic(&trf, trf.ipsec.pkts, n);
} else
ipsec_cqp_process(ctx, &trf);
/* process ipv4 packets */
if (trf.ip4.num != 0) {
inbound_sp_sa(ctx->sp4_ctx, ctx->sa_ctx, &trf.ip4, 0,
&core_statistics[lcoreid].inbound.spd4);
route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num);
}
/* process ipv6 packets */
if (trf.ip6.num != 0) {
inbound_sp_sa(ctx->sp6_ctx, ctx->sa_ctx, &trf.ip6, 0,
&core_statistics[lcoreid].inbound.spd6);
route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num);
}
}
static void
drain_outbound_crypto_queues(const struct lcore_conf *qconf,
struct ipsec_ctx *ctx)
{
uint32_t n;
struct ipsec_traffic trf;
if (app_sa_prm.enable == 0) {
/* dequeue packets from crypto-queue */
n = ipsec_outbound_cqp_dequeue(ctx, trf.ipsec.pkts,
RTE_DIM(trf.ipsec.pkts));
trf.ip4.num = 0;
trf.ip6.num = 0;
/* split traffic by ipv4-ipv6 */
split46_traffic(&trf, trf.ipsec.pkts, n);
} else
ipsec_cqp_process(ctx, &trf);
/* process ipv4 packets */
if (trf.ip4.num != 0)
route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num);
/* process ipv6 packets */
if (trf.ip6.num != 0)
route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num);
}
/* main processing loop */
void
ipsec_poll_mode_worker(void)
{
struct rte_mbuf *pkts[MAX_PKT_BURST];
uint32_t lcore_id;
uint64_t prev_tsc, diff_tsc, cur_tsc;
int32_t i, nb_rx;
uint16_t portid;
uint8_t queueid;
struct lcore_conf *qconf;
int32_t rc, socket_id;
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1)
/ US_PER_S * BURST_TX_DRAIN_US;
struct lcore_rx_queue *rxql;
prev_tsc = 0;
lcore_id = rte_lcore_id();
qconf = &lcore_conf[lcore_id];
rxql = qconf->rx_queue_list;
socket_id = rte_lcore_to_socket_id(lcore_id);
qconf->rt4_ctx = socket_ctx[socket_id].rt_ip4;
qconf->rt6_ctx = socket_ctx[socket_id].rt_ip6;
qconf->inbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_in;
qconf->inbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_in;
qconf->inbound.sa_ctx = socket_ctx[socket_id].sa_in;
qconf->inbound.cdev_map = cdev_map_in;
qconf->inbound.session_pool = socket_ctx[socket_id].session_pool;
qconf->inbound.session_priv_pool =
socket_ctx[socket_id].session_priv_pool;
qconf->outbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_out;
qconf->outbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_out;
qconf->outbound.sa_ctx = socket_ctx[socket_id].sa_out;
qconf->outbound.cdev_map = cdev_map_out;
qconf->outbound.session_pool = socket_ctx[socket_id].session_pool;
qconf->outbound.session_priv_pool =
socket_ctx[socket_id].session_priv_pool;
qconf->frag.pool_dir = socket_ctx[socket_id].mbuf_pool;
qconf->frag.pool_indir = socket_ctx[socket_id].mbuf_pool_indir;
rc = ipsec_sad_lcore_cache_init(app_sa_prm.cache_sz);
if (rc != 0) {
RTE_LOG(ERR, IPSEC,
"SAD cache init on lcore %u, failed with code: %d\n",
lcore_id, rc);
return;
}
if (qconf->nb_rx_queue == 0) {
RTE_LOG(DEBUG, IPSEC, "lcore %u has nothing to do\n",
lcore_id);
return;
}
RTE_LOG(INFO, IPSEC, "entering main loop on lcore %u\n", lcore_id);
for (i = 0; i < qconf->nb_rx_queue; i++) {
portid = rxql[i].port_id;
queueid = rxql[i].queue_id;
RTE_LOG(INFO, IPSEC,
" -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
lcore_id, portid, queueid);
}
while (!force_quit) {
cur_tsc = rte_rdtsc();
/* TX queue buffer drain */
diff_tsc = cur_tsc - prev_tsc;
if (unlikely(diff_tsc > drain_tsc)) {
drain_tx_buffers(qconf);
drain_crypto_buffers(qconf);
prev_tsc = cur_tsc;
}
for (i = 0; i < qconf->nb_rx_queue; ++i) {
/* Read packets from RX queues */
portid = rxql[i].port_id;
queueid = rxql[i].queue_id;
nb_rx = rte_eth_rx_burst(portid, queueid,
pkts, MAX_PKT_BURST);
if (nb_rx > 0) {
core_stats_update_rx(nb_rx);
process_pkts(qconf, pkts, nb_rx, portid);
}
/* dequeue and process completed crypto-ops */
if (is_unprotected_port(portid))
drain_inbound_crypto_queues(qconf,
&qconf->inbound);
else
drain_outbound_crypto_queues(qconf,
&qconf->outbound);
}
}
}
int
check_flow_params(uint16_t fdir_portid, uint8_t fdir_qid)
{
uint16_t i;
uint16_t portid;
uint8_t queueid;
for (i = 0; i < nb_lcore_params; ++i) {
portid = lcore_params_array[i].port_id;
if (portid == fdir_portid) {
queueid = lcore_params_array[i].queue_id;
if (queueid == fdir_qid)
break;
}
if (i == nb_lcore_params - 1)
return -1;
}
return 1;
}
static int32_t
check_poll_mode_params(struct eh_conf *eh_conf)
{
uint8_t lcore;
uint16_t portid;
uint16_t i;
int32_t socket_id;
if (!eh_conf)
return -EINVAL;
if (eh_conf->mode != EH_PKT_TRANSFER_MODE_POLL)
return 0;
if (lcore_params == NULL) {
printf("Error: No port/queue/core mappings\n");
return -1;
}
for (i = 0; i < nb_lcore_params; ++i) {
lcore = lcore_params[i].lcore_id;
if (!rte_lcore_is_enabled(lcore)) {
printf("error: lcore %hhu is not enabled in "
"lcore mask\n", lcore);
return -1;
}
socket_id = rte_lcore_to_socket_id(lcore);
if (socket_id != 0 && numa_on == 0) {
printf("warning: lcore %hhu is on socket %d "
"with numa off\n",
lcore, socket_id);
}
portid = lcore_params[i].port_id;
if ((enabled_port_mask & (1 << portid)) == 0) {
printf("port %u is not enabled in port mask\n", portid);
return -1;
}
if (!rte_eth_dev_is_valid_port(portid)) {
printf("port %u is not present on the board\n", portid);
return -1;
}
}
return 0;
}
static uint8_t
get_port_nb_rx_queues(const uint16_t port)
{
int32_t queue = -1;
uint16_t i;
for (i = 0; i < nb_lcore_params; ++i) {
if (lcore_params[i].port_id == port &&
lcore_params[i].queue_id > queue)
queue = lcore_params[i].queue_id;
}
return (uint8_t)(++queue);
}
static int32_t
init_lcore_rx_queues(void)
{
uint16_t i, nb_rx_queue;
uint8_t lcore;
for (i = 0; i < nb_lcore_params; ++i) {
lcore = lcore_params[i].lcore_id;
nb_rx_queue = lcore_conf[lcore].nb_rx_queue;
if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
printf("error: too many queues (%u) for lcore: %u\n",
nb_rx_queue + 1, lcore);
return -1;
}
lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
lcore_params[i].port_id;
lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
lcore_params[i].queue_id;
lcore_conf[lcore].nb_rx_queue++;
}
return 0;
}
/* display usage */
static void
print_usage(const char *prgname)
{
fprintf(stderr, "%s [EAL options] --"
" -p PORTMASK"
" [-P]"
" [-u PORTMASK]"
" [-j FRAMESIZE]"
" [-l]"
" [-w REPLAY_WINDOW_SIZE]"
" [-e]"
" [-a]"
" [-c]"
" [-t STATS_INTERVAL]"
" [-s NUMBER_OF_MBUFS_IN_PKT_POOL]"
" -f CONFIG_FILE"
" --config (port,queue,lcore)[,(port,queue,lcore)]"
" [--single-sa SAIDX]"
" [--cryptodev_mask MASK]"
" [--transfer-mode MODE]"
" [--event-schedule-type TYPE]"
" [--" CMD_LINE_OPT_RX_OFFLOAD " RX_OFFLOAD_MASK]"
" [--" CMD_LINE_OPT_TX_OFFLOAD " TX_OFFLOAD_MASK]"
" [--" CMD_LINE_OPT_REASSEMBLE " REASSEMBLE_TABLE_SIZE]"
" [--" CMD_LINE_OPT_MTU " MTU]"
" [--event-vector]"
" [--vector-size SIZE]"
" [--vector-tmo TIMEOUT in ns]"
"\n\n"
" -p PORTMASK: Hexadecimal bitmask of ports to configure\n"
" -P : Enable promiscuous mode\n"
" -u PORTMASK: Hexadecimal bitmask of unprotected ports\n"
" -j FRAMESIZE: Data buffer size, minimum (and default)\n"
" value: RTE_MBUF_DEFAULT_BUF_SIZE\n"
" -l enables code-path that uses librte_ipsec\n"
" -w REPLAY_WINDOW_SIZE specifies IPsec SQN replay window\n"
" size for each SA\n"
" -e enables ESN\n"
" -a enables SA SQN atomic behaviour\n"
" -c specifies inbound SAD cache size,\n"
" zero value disables the cache (default value: 128)\n"
" -t specifies statistics screen update interval,\n"
" zero disables statistics screen (default value: 0)\n"
" -s number of mbufs in packet pool, if not specified number\n"
" of mbufs will be calculated based on number of cores,\n"
" ports and crypto queues\n"
" -f CONFIG_FILE: Configuration file\n"
" --config (port,queue,lcore): Rx queue configuration. In poll\n"
" mode determines which queues from\n"
" which ports are mapped to which cores.\n"
" In event mode this option is not used\n"
" as packets are dynamically scheduled\n"
" to cores by HW.\n"
" --single-sa SAIDX: In poll mode use single SA index for\n"
" outbound traffic, bypassing the SP\n"
" In event mode selects driver submode,\n"
" SA index value is ignored\n"
" --cryptodev_mask MASK: Hexadecimal bitmask of the crypto\n"
" devices to configure\n"
" --transfer-mode MODE\n"
" \"poll\" : Packet transfer via polling (default)\n"
" \"event\" : Packet transfer via event device\n"
" --event-schedule-type TYPE queue schedule type, used only when\n"
" transfer mode is set to event\n"
" \"ordered\" : Ordered (default)\n"
" \"atomic\" : Atomic\n"
" \"parallel\" : Parallel\n"
" --" CMD_LINE_OPT_RX_OFFLOAD
": bitmask of the RX HW offload capabilities to enable/use\n"
" (RTE_ETH_RX_OFFLOAD_*)\n"
" --" CMD_LINE_OPT_TX_OFFLOAD
": bitmask of the TX HW offload capabilities to enable/use\n"
" (RTE_ETH_TX_OFFLOAD_*)\n"
" --" CMD_LINE_OPT_REASSEMBLE " NUM"
": max number of entries in reassemble(fragment) table\n"
" (zero (default value) disables reassembly)\n"
" --" CMD_LINE_OPT_MTU " MTU"
": MTU value on all ports (default value: 1500)\n"
" outgoing packets with bigger size will be fragmented\n"
" incoming packets with bigger size will be discarded\n"
" --" CMD_LINE_OPT_FRAG_TTL " FRAG_TTL_NS"
": fragments lifetime in nanoseconds, default\n"
" and maximum value is 10.000.000.000 ns (10 s)\n"
" --event-vector enables event vectorization\n"
" --vector-size Max vector size (default value: 16)\n"
" --vector-tmo Max vector timeout in nanoseconds"
" (default value: 102400)\n"
"\n",
prgname);
}
static int
parse_mask(const char *str, uint64_t *val)
{
char *end;
unsigned long t;
errno = 0;
t = strtoul(str, &end, 0);
if (errno != 0 || end[0] != 0)
return -EINVAL;
*val = t;
return 0;
}
static int32_t
parse_portmask(const char *portmask)
{
char *end = NULL;
unsigned long pm;
errno = 0;
/* parse hexadecimal string */
pm = strtoul(portmask, &end, 16);
if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
return -1;
if ((pm == 0) && errno)
return -1;
return pm;
}
static int64_t
parse_decimal(const char *str)
{
char *end = NULL;
uint64_t num;
num = strtoull(str, &end, 10);
if ((str[0] == '\0') || (end == NULL) || (*end != '\0')
|| num > INT64_MAX)
return -1;
return num;
}
static int32_t
parse_config(const char *q_arg)
{
char s[256];
const char *p, *p0 = q_arg;
char *end;
enum fieldnames {
FLD_PORT = 0,
FLD_QUEUE,
FLD_LCORE,
_NUM_FLD
};
unsigned long int_fld[_NUM_FLD];
char *str_fld[_NUM_FLD];
int32_t i;
uint32_t size;
nb_lcore_params = 0;
while ((p = strchr(p0, '(')) != NULL) {
++p;
p0 = strchr(p, ')');
if (p0 == NULL)
return -1;
size = p0 - p;
if (size >= sizeof(s))
return -1;
snprintf(s, sizeof(s), "%.*s", size, p);
if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
_NUM_FLD)
return -1;
for (i = 0; i < _NUM_FLD; i++) {
errno = 0;
int_fld[i] = strtoul(str_fld[i], &end, 0);
if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
return -1;
}
if (nb_lcore_params >= MAX_LCORE_PARAMS) {
printf("exceeded max number of lcore params: %hu\n",
nb_lcore_params);
return -1;
}
lcore_params_array[nb_lcore_params].port_id =
(uint8_t)int_fld[FLD_PORT];
lcore_params_array[nb_lcore_params].queue_id =
(uint8_t)int_fld[FLD_QUEUE];
lcore_params_array[nb_lcore_params].lcore_id =
(uint8_t)int_fld[FLD_LCORE];
++nb_lcore_params;
}
lcore_params = lcore_params_array;
return 0;
}
static void
print_app_sa_prm(const struct app_sa_prm *prm)
{
printf("librte_ipsec usage: %s\n",
(prm->enable == 0) ? "disabled" : "enabled");
printf("replay window size: %u\n", prm->window_size);
printf("ESN: %s\n", (prm->enable_esn == 0) ? "disabled" : "enabled");
printf("SA flags: %#" PRIx64 "\n", prm->flags);
printf("Frag TTL: %" PRIu64 " ns\n", frag_ttl_ns);
}
static int
parse_transfer_mode(struct eh_conf *conf, const char *optarg)
{
if (!strcmp(CMD_LINE_ARG_POLL, optarg))
conf->mode = EH_PKT_TRANSFER_MODE_POLL;
else if (!strcmp(CMD_LINE_ARG_EVENT, optarg))
conf->mode = EH_PKT_TRANSFER_MODE_EVENT;
else {
printf("Unsupported packet transfer mode\n");
return -EINVAL;
}
return 0;
}
static int
parse_schedule_type(struct eh_conf *conf, const char *optarg)
{
struct eventmode_conf *em_conf = NULL;
/* Get eventmode conf */
em_conf = conf->mode_params;
if (!strcmp(CMD_LINE_ARG_ORDERED, optarg))
em_conf->ext_params.sched_type = RTE_SCHED_TYPE_ORDERED;
else if (!strcmp(CMD_LINE_ARG_ATOMIC, optarg))
em_conf->ext_params.sched_type = RTE_SCHED_TYPE_ATOMIC;
else if (!strcmp(CMD_LINE_ARG_PARALLEL, optarg))
em_conf->ext_params.sched_type = RTE_SCHED_TYPE_PARALLEL;
else {
printf("Unsupported queue schedule type\n");
return -EINVAL;
}
return 0;
}
static int32_t
parse_args(int32_t argc, char **argv, struct eh_conf *eh_conf)
{
int opt;
int64_t ret;
char **argvopt;
int32_t option_index;
char *prgname = argv[0];
int32_t f_present = 0;
struct eventmode_conf *em_conf = NULL;
argvopt = argv;
while ((opt = getopt_long(argc, argvopt, "aelp:Pu:f:j:w:c:t:s:",
lgopts, &option_index)) != EOF) {
switch (opt) {
case 'p':
enabled_port_mask = parse_portmask(optarg);
if (enabled_port_mask == 0) {
printf("invalid portmask\n");
print_usage(prgname);
return -1;
}
break;
case 'P':
printf("Promiscuous mode selected\n");
promiscuous_on = 1;
break;
case 'u':
unprotected_port_mask = parse_portmask(optarg);
if (unprotected_port_mask == 0) {
printf("invalid unprotected portmask\n");
print_usage(prgname);
return -1;
}
break;
case 'f':
if (f_present == 1) {
printf("\"-f\" option present more than "
"once!\n");
print_usage(prgname);
return -1;
}
cfgfile = optarg;
f_present = 1;
break;
case 's':
ret = parse_decimal(optarg);
if (ret < 0) {
printf("Invalid number of buffers in a pool: "
"%s\n", optarg);
print_usage(prgname);
return -1;
}
nb_bufs_in_pool = ret;
break;
case 'j':
ret = parse_decimal(optarg);
if (ret < RTE_MBUF_DEFAULT_BUF_SIZE ||
ret > UINT16_MAX) {
printf("Invalid frame buffer size value: %s\n",
optarg);
print_usage(prgname);
return -1;
}
frame_buf_size = ret;
printf("Custom frame buffer size %u\n", frame_buf_size);
break;
case 'l':
app_sa_prm.enable = 1;
break;
case 'w':
app_sa_prm.window_size = parse_decimal(optarg);
break;
case 'e':
app_sa_prm.enable_esn = 1;
break;
case 'a':
app_sa_prm.enable = 1;
app_sa_prm.flags |= RTE_IPSEC_SAFLAG_SQN_ATOM;
break;
case 'c':
ret = parse_decimal(optarg);
if (ret < 0) {
printf("Invalid SA cache size: %s\n", optarg);
print_usage(prgname);
return -1;
}
app_sa_prm.cache_sz = ret;
break;
case 't':
ret = parse_decimal(optarg);
if (ret < 0) {
printf("Invalid interval value: %s\n", optarg);
print_usage(prgname);
return -1;
}
stats_interval = ret;
break;
case CMD_LINE_OPT_CONFIG_NUM:
ret = parse_config(optarg);
if (ret) {
printf("Invalid config\n");
print_usage(prgname);
return -1;
}
break;
case CMD_LINE_OPT_SINGLE_SA_NUM:
ret = parse_decimal(optarg);
if (ret == -1 || ret > UINT32_MAX) {
printf("Invalid argument[sa_idx]\n");
print_usage(prgname);
return -1;
}
/* else */
single_sa = 1;
single_sa_idx = ret;
eh_conf->ipsec_mode = EH_IPSEC_MODE_TYPE_DRIVER;
printf("Configured with single SA index %u\n",
single_sa_idx);
break;
case CMD_LINE_OPT_CRYPTODEV_MASK_NUM:
ret = parse_portmask(optarg);
if (ret == -1) {
printf("Invalid argument[portmask]\n");
print_usage(prgname);
return -1;
}
/* else */
enabled_cryptodev_mask = ret;
break;
case CMD_LINE_OPT_TRANSFER_MODE_NUM:
ret = parse_transfer_mode(eh_conf, optarg);
if (ret < 0) {
printf("Invalid packet transfer mode\n");
print_usage(prgname);
return -1;
}
break;
case CMD_LINE_OPT_SCHEDULE_TYPE_NUM:
ret = parse_schedule_type(eh_conf, optarg);
if (ret < 0) {
printf("Invalid queue schedule type\n");
print_usage(prgname);
return -1;
}
break;
case CMD_LINE_OPT_RX_OFFLOAD_NUM:
ret = parse_mask(optarg, &dev_rx_offload);
if (ret != 0) {
printf("Invalid argument for \'%s\': %s\n",
CMD_LINE_OPT_RX_OFFLOAD, optarg);
print_usage(prgname);
return -1;
}
break;
case CMD_LINE_OPT_TX_OFFLOAD_NUM:
ret = parse_mask(optarg, &dev_tx_offload);
if (ret != 0) {
printf("Invalid argument for \'%s\': %s\n",
CMD_LINE_OPT_TX_OFFLOAD, optarg);
print_usage(prgname);
return -1;
}
break;
case CMD_LINE_OPT_REASSEMBLE_NUM:
ret = parse_decimal(optarg);
if (ret < 0 || ret > UINT32_MAX) {
printf("Invalid argument for \'%s\': %s\n",
CMD_LINE_OPT_REASSEMBLE, optarg);
print_usage(prgname);
return -1;
}
frag_tbl_sz = ret;
break;
case CMD_LINE_OPT_MTU_NUM:
ret = parse_decimal(optarg);
if (ret < 0 || ret > RTE_IPV4_MAX_PKT_LEN) {
printf("Invalid argument for \'%s\': %s\n",
CMD_LINE_OPT_MTU, optarg);
print_usage(prgname);
return -1;
}
mtu_size = ret;
break;
case CMD_LINE_OPT_FRAG_TTL_NUM:
ret = parse_decimal(optarg);
if (ret < 0 || ret > MAX_FRAG_TTL_NS) {
printf("Invalid argument for \'%s\': %s\n",
CMD_LINE_OPT_MTU, optarg);
print_usage(prgname);
return -1;
}
frag_ttl_ns = ret;
break;
case CMD_LINE_OPT_EVENT_VECTOR_NUM:
em_conf = eh_conf->mode_params;
em_conf->ext_params.event_vector = 1;
break;
case CMD_LINE_OPT_VECTOR_SIZE_NUM:
ret = parse_decimal(optarg);
if (ret > MAX_PKT_BURST) {
printf("Invalid argument for \'%s\': %s\n",
CMD_LINE_OPT_VECTOR_SIZE, optarg);
print_usage(prgname);
return -1;
}
em_conf = eh_conf->mode_params;
em_conf->ext_params.vector_size = ret;
break;
case CMD_LINE_OPT_VECTOR_TIMEOUT_NUM:
ret = parse_decimal(optarg);
em_conf = eh_conf->mode_params;
em_conf->vector_tmo_ns = ret;
break;
default:
print_usage(prgname);
return -1;
}
}
if (f_present == 0) {
printf("Mandatory option \"-f\" not present\n");
return -1;
}
/* check do we need to enable multi-seg support */
if (multi_seg_required()) {
/* legacy mode doesn't support multi-seg */
app_sa_prm.enable = 1;
printf("frame buf size: %u, mtu: %u, "
"number of reassemble entries: %u\n"
"multi-segment support is required\n",
frame_buf_size, mtu_size, frag_tbl_sz);
}
print_app_sa_prm(&app_sa_prm);
if (optind >= 0)
argv[optind-1] = prgname;
ret = optind-1;
optind = 1; /* reset getopt lib */
return ret;
}
static void
print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
{
char buf[RTE_ETHER_ADDR_FMT_SIZE];
rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
printf("%s%s", name, buf);
}
/*
* Update destination ethaddr for the port.
*/
int
add_dst_ethaddr(uint16_t port, const struct rte_ether_addr *addr)
{
if (port >= RTE_DIM(ethaddr_tbl))
return -EINVAL;
ethaddr_tbl[port].dst = ETHADDR_TO_UINT64(addr);
return 0;
}
/* Check the link status of all ports in up to 9s, and print them finally */
static void
check_all_ports_link_status(uint32_t port_mask)
{
#define CHECK_INTERVAL 100 /* 100ms */
#define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
uint16_t portid;
uint8_t count, all_ports_up, print_flag = 0;
struct rte_eth_link link;
int ret;
char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
printf("\nChecking link status");
fflush(stdout);
for (count = 0; count <= MAX_CHECK_TIME; count++) {
all_ports_up = 1;
if ((port_mask & (1 << portid)) == 0)
continue;
memset(&link, 0, sizeof(link));
ret = rte_eth_link_get_nowait(portid, &link);
if (ret < 0) {
all_ports_up = 0;
if (print_flag == 1)
printf("Port %u link get failed: %s\n",
portid, rte_strerror(-ret));
continue;
}
/* print link status if flag set */
if (print_flag == 1) {
rte_eth_link_to_str(link_status_text,
sizeof(link_status_text), &link);
printf("Port %d %s\n", portid,
link_status_text);
continue;
}
/* clear all_ports_up flag if any link down */
if (link.link_status == RTE_ETH_LINK_DOWN) {
all_ports_up = 0;
break;
}
}
/* after finally printing all link status, get out */
if (print_flag == 1)
break;
if (all_ports_up == 0) {
printf(".");
fflush(stdout);
rte_delay_ms(CHECK_INTERVAL);
}
/* set the print_flag if all ports up or timeout */
if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
print_flag = 1;
printf("done\n");
}
}
}
static int32_t
add_mapping(struct rte_hash *map, const char *str, uint16_t cdev_id,
uint16_t qp, struct lcore_params *params,
struct ipsec_ctx *ipsec_ctx,
const struct rte_cryptodev_capabilities *cipher,
const struct rte_cryptodev_capabilities *auth,
const struct rte_cryptodev_capabilities *aead)
{
int32_t ret = 0;
unsigned long i;
struct cdev_key key = { 0 };
key.lcore_id = params->lcore_id;
if (cipher)
key.cipher_algo = cipher->sym.cipher.algo;
if (auth)
key.auth_algo = auth->sym.auth.algo;
if (aead)
key.aead_algo = aead->sym.aead.algo;
ret = rte_hash_lookup(map, &key);
if (ret != -ENOENT)
return 0;
for (i = 0; i < ipsec_ctx->nb_qps; i++)
if (ipsec_ctx->tbl[i].id == cdev_id)
break;
if (i == ipsec_ctx->nb_qps) {
if (ipsec_ctx->nb_qps == MAX_QP_PER_LCORE) {
printf("Maximum number of crypto devices assigned to "
"a core, increase MAX_QP_PER_LCORE value\n");
return 0;
}
ipsec_ctx->tbl[i].id = cdev_id;
ipsec_ctx->tbl[i].qp = qp;
ipsec_ctx->nb_qps++;
printf("%s cdev mapping: lcore %u using cdev %u qp %u "
"(cdev_id_qp %lu)\n", str, key.lcore_id,
cdev_id, qp, i);
}
ret = rte_hash_add_key_data(map, &key, (void *)i);
if (ret < 0) {
printf("Failed to insert cdev mapping for (lcore %u, "
"cdev %u, qp %u), errno %d\n",
key.lcore_id, ipsec_ctx->tbl[i].id,
ipsec_ctx->tbl[i].qp, ret);
return 0;
}
return 1;
}
static int32_t
add_cdev_mapping(struct rte_cryptodev_info *dev_info, uint16_t cdev_id,
uint16_t qp, struct lcore_params *params)
{
int32_t ret = 0;
const struct rte_cryptodev_capabilities *i, *j;
struct rte_hash *map;
struct lcore_conf *qconf;
struct ipsec_ctx *ipsec_ctx;
const char *str;
qconf = &lcore_conf[params->lcore_id];
if ((unprotected_port_mask & (1 << params->port_id)) == 0) {
map = cdev_map_out;
ipsec_ctx = &qconf->outbound;
str = "Outbound";
} else {
map = cdev_map_in;
ipsec_ctx = &qconf->inbound;
str = "Inbound";
}
/* Required cryptodevs with operation chaining */
if (!(dev_info->feature_flags &
return ret;
for (i = dev_info->capabilities;
continue;
ret |= add_mapping(map, str, cdev_id, qp, params,
ipsec_ctx, NULL, NULL, i);
continue;
}
continue;
for (j = dev_info->capabilities;
continue;
continue;
ret |= add_mapping(map, str, cdev_id, qp, params,
ipsec_ctx, i, j, NULL);
}
}
return ret;
}
/* Check if the device is enabled by cryptodev_mask */
static int
check_cryptodev_mask(uint8_t cdev_id)
{
if (enabled_cryptodev_mask & (1 << cdev_id))
return 0;
return -1;
}
static uint16_t
cryptodevs_init(uint16_t req_queue_num)
{
struct rte_cryptodev_config dev_conf;
struct rte_cryptodev_qp_conf qp_conf;
uint16_t idx, max_nb_qps, qp, total_nb_qps, i;
int16_t cdev_id;
struct rte_hash_parameters params = { 0 };
const uint64_t mseg_flag = multi_seg_required() ?
params.entries = CDEV_MAP_ENTRIES;
params.key_len = sizeof(struct cdev_key);
params.hash_func = rte_jhash;
params.hash_func_init_val = 0;
params.name = "cdev_map_in";
cdev_map_in = rte_hash_create(&params);
if (cdev_map_in == NULL)
rte_panic("Failed to create cdev_map hash table, errno = %d\n",
params.name = "cdev_map_out";
cdev_map_out = rte_hash_create(&params);
if (cdev_map_out == NULL)
rte_panic("Failed to create cdev_map hash table, errno = %d\n",
printf("lcore/cryptodev/qp mappings:\n");
idx = 0;
total_nb_qps = 0;
for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
struct rte_cryptodev_info cdev_info;
if (check_cryptodev_mask((uint8_t)cdev_id))
continue;
rte_cryptodev_info_get(cdev_id, &cdev_info);
if ((mseg_flag & cdev_info.feature_flags) != mseg_flag)
rte_exit(EXIT_FAILURE,
"Device %hd does not support \'%s\' feature\n",
cdev_id,
if (nb_lcore_params > cdev_info.max_nb_queue_pairs)
max_nb_qps = cdev_info.max_nb_queue_pairs;
else
max_nb_qps = nb_lcore_params;
qp = 0;
i = 0;
while (qp < max_nb_qps && i < nb_lcore_params) {
if (add_cdev_mapping(&cdev_info, cdev_id, qp,
&lcore_params[idx]))
qp++;
idx++;
idx = idx % nb_lcore_params;
i++;
}
qp = RTE_MIN(max_nb_qps, RTE_MAX(req_queue_num, qp));
if (qp == 0)
continue;
total_nb_qps += qp;
dev_conf.socket_id = rte_cryptodev_socket_id(cdev_id);
dev_conf.nb_queue_pairs = qp;
dev_conf.ff_disable = RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO;
uint32_t dev_max_sess = cdev_info.sym.max_nb_sessions;
if (dev_max_sess != 0 &&
dev_max_sess < get_nb_crypto_sessions())
rte_exit(EXIT_FAILURE,
"Device does not support at least %u "
"sessions", get_nb_crypto_sessions());
if (rte_cryptodev_configure(cdev_id, &dev_conf))
rte_panic("Failed to initialize cryptodev %u\n",
cdev_id);
qp_conf.nb_descriptors = CDEV_QUEUE_DESC;
qp_conf.mp_session =
socket_ctx[dev_conf.socket_id].session_pool;
qp_conf.mp_session_private =
socket_ctx[dev_conf.socket_id].session_priv_pool;
for (qp = 0; qp < dev_conf.nb_queue_pairs; qp++)
&qp_conf, dev_conf.socket_id))
rte_panic("Failed to setup queue %u for "
"cdev_id %u\n", 0, cdev_id);
if (rte_cryptodev_start(cdev_id))
rte_panic("Failed to start cryptodev %u\n",
cdev_id);
}
printf("\n");
return total_nb_qps;
}
static void
port_init(uint16_t portid, uint64_t req_rx_offloads, uint64_t req_tx_offloads)
{
struct rte_eth_dev_info dev_info;
struct rte_eth_txconf *txconf;
uint16_t nb_tx_queue, nb_rx_queue;
uint16_t tx_queueid, rx_queueid, queue, lcore_id;
int32_t ret, socket_id;
struct lcore_conf *qconf;
struct rte_ether_addr ethaddr;
struct rte_eth_conf local_port_conf = port_conf;
ret = rte_eth_dev_info_get(portid, &dev_info);
if (ret != 0)
rte_exit(EXIT_FAILURE,
"Error during getting device (port %u) info: %s\n",
portid, strerror(-ret));
/* limit allowed HW offloads, as user requested */
dev_info.rx_offload_capa &= dev_rx_offload;
dev_info.tx_offload_capa &= dev_tx_offload;
printf("Configuring device port %u:\n", portid);
ret = rte_eth_macaddr_get(portid, &ethaddr);
if (ret != 0)
rte_exit(EXIT_FAILURE,
"Error getting MAC address (port %u): %s\n",
portid, rte_strerror(-ret));
ethaddr_tbl[portid].src = ETHADDR_TO_UINT64(&ethaddr);
print_ethaddr("Address: ", &ethaddr);
printf("\n");
nb_rx_queue = get_port_nb_rx_queues(portid);
nb_tx_queue = nb_lcores;
if (nb_rx_queue > dev_info.max_rx_queues)
rte_exit(EXIT_FAILURE, "Error: queue %u not available "
"(max rx queue is %u)\n",
nb_rx_queue, dev_info.max_rx_queues);
if (nb_tx_queue > dev_info.max_tx_queues)
rte_exit(EXIT_FAILURE, "Error: queue %u not available "
"(max tx queue is %u)\n",
nb_tx_queue, dev_info.max_tx_queues);
printf("Creating queues: nb_rx_queue=%d nb_tx_queue=%u...\n",
nb_rx_queue, nb_tx_queue);
local_port_conf.rxmode.mtu = mtu_size;
if (multi_seg_required()) {
local_port_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
}
local_port_conf.rxmode.offloads |= req_rx_offloads;
local_port_conf.txmode.offloads |= req_tx_offloads;
/* Check that all required capabilities are supported */
if ((local_port_conf.rxmode.offloads & dev_info.rx_offload_capa) !=
local_port_conf.rxmode.offloads)
rte_exit(EXIT_FAILURE,
"Error: port %u required RX offloads: 0x%" PRIx64
", available RX offloads: 0x%" PRIx64 "\n",
portid, local_port_conf.rxmode.offloads,
dev_info.rx_offload_capa);
if ((local_port_conf.txmode.offloads & dev_info.tx_offload_capa) !=
local_port_conf.txmode.offloads)
rte_exit(EXIT_FAILURE,
"Error: port %u required TX offloads: 0x%" PRIx64
", available TX offloads: 0x%" PRIx64 "\n",
portid, local_port_conf.txmode.offloads,
dev_info.tx_offload_capa);
if (dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE)
local_port_conf.txmode.offloads |=
if (dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)
local_port_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM;
printf("port %u configuring rx_offloads=0x%" PRIx64
", tx_offloads=0x%" PRIx64 "\n",
portid, local_port_conf.rxmode.offloads,
local_port_conf.txmode.offloads);
local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
dev_info.flow_type_rss_offloads;
if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
printf("Port %u modified RSS hash function based on hardware support,"
"requested:%#"PRIx64" configured:%#"PRIx64"\n",
portid,
local_port_conf.rx_adv_conf.rss_conf.rss_hf);
}
ret = rte_eth_dev_configure(portid, nb_rx_queue, nb_tx_queue,
&local_port_conf);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Cannot configure device: "
"err=%d, port=%d\n", ret, portid);
ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, &nb_txd);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Cannot adjust number of descriptors: "
"err=%d, port=%d\n", ret, portid);
/* init one TX queue per lcore */
tx_queueid = 0;
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;
if (numa_on)
socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
else
socket_id = 0;
/* init TX queue */
printf("Setup txq=%u,%d,%d\n", lcore_id, tx_queueid, socket_id);
txconf = &dev_info.default_txconf;
txconf->offloads = local_port_conf.txmode.offloads;
ret = rte_eth_tx_queue_setup(portid, tx_queueid, nb_txd,
socket_id, txconf);
if (ret < 0)
rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
"err=%d, port=%d\n", ret, portid);
qconf = &lcore_conf[lcore_id];
qconf->tx_queue_id[portid] = tx_queueid;
tx_queueid++;
/* init RX queues */
for (queue = 0; queue < qconf->nb_rx_queue; ++queue) {
struct rte_eth_rxconf rxq_conf;
if (portid != qconf->rx_queue_list[queue].port_id)
continue;
rx_queueid = qconf->rx_queue_list[queue].queue_id;
printf("Setup rxq=%d,%d,%d\n", portid, rx_queueid,
socket_id);
rxq_conf = dev_info.default_rxconf;
rxq_conf.offloads = local_port_conf.rxmode.offloads;
ret = rte_eth_rx_queue_setup(portid, rx_queueid,
nb_rxd, socket_id, &rxq_conf,
socket_ctx[socket_id].mbuf_pool);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"rte_eth_rx_queue_setup: err=%d, "
"port=%d\n", ret, portid);
}
}
printf("\n");
}
static size_t
max_session_size(void)
{
size_t max_sz, sz;
void *sec_ctx;
int16_t cdev_id, port_id, n;
max_sz = 0;
for (cdev_id = 0; cdev_id != n; cdev_id++) {
if (sz > max_sz)
max_sz = sz;
/*
* If crypto device is security capable, need to check the
* size of security session as well.
*/
/* Get security context of the crypto device */
sec_ctx = rte_cryptodev_get_sec_ctx(cdev_id);
if (sec_ctx == NULL)
continue;
/* Get size of security session */
if (sz > max_sz)
max_sz = sz;
}
if ((enabled_port_mask & (1 << port_id)) == 0)
continue;
sec_ctx = rte_eth_dev_get_sec_ctx(port_id);
if (sec_ctx == NULL)
continue;
if (sz > max_sz)
max_sz = sz;
}
return max_sz;
}
static void
session_pool_init(struct socket_ctx *ctx, int32_t socket_id, size_t sess_sz)
{
char mp_name[RTE_MEMPOOL_NAMESIZE];
struct rte_mempool *sess_mp;
uint32_t nb_sess;
snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
"sess_mp_%u", socket_id);
nb_sess = (get_nb_crypto_sessions() + CDEV_MP_CACHE_SZ *
nb_sess = RTE_MAX(nb_sess, CDEV_MP_CACHE_SZ *
CDEV_MP_CACHE_MULTIPLIER);
mp_name, nb_sess, sess_sz, CDEV_MP_CACHE_SZ, 0,
ctx->session_pool = sess_mp;
if (ctx->session_pool == NULL)
rte_exit(EXIT_FAILURE,
"Cannot init session pool on socket %d\n", socket_id);
else
printf("Allocated session pool on socket %d\n", socket_id);
}
static void
session_priv_pool_init(struct socket_ctx *ctx, int32_t socket_id,
size_t sess_sz)
{
char mp_name[RTE_MEMPOOL_NAMESIZE];
struct rte_mempool *sess_mp;
uint32_t nb_sess;
snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
"sess_mp_priv_%u", socket_id);
nb_sess = (get_nb_crypto_sessions() + CDEV_MP_CACHE_SZ *
nb_sess = RTE_MAX(nb_sess, CDEV_MP_CACHE_SZ *
CDEV_MP_CACHE_MULTIPLIER);
sess_mp = rte_mempool_create(mp_name,
nb_sess,
sess_sz,
CDEV_MP_CACHE_SZ,
0, NULL, NULL, NULL,
NULL, socket_id,
0);
ctx->session_priv_pool = sess_mp;
if (ctx->session_priv_pool == NULL)
rte_exit(EXIT_FAILURE,
"Cannot init session priv pool on socket %d\n",
else
printf("Allocated session priv pool on socket %d\n",
}
static void
pool_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t nb_mbuf)
{
char s[64];
int32_t ms;
snprintf(s, sizeof(s), "mbuf_pool_%d", socket_id);
ctx->mbuf_pool = rte_pktmbuf_pool_create(s, nb_mbuf,
MEMPOOL_CACHE_SIZE, ipsec_metadata_size(),
frame_buf_size, socket_id);
/*
* if multi-segment support is enabled, then create a pool
* for indirect mbufs.
*/
ms = multi_seg_required();
if (ms != 0) {
snprintf(s, sizeof(s), "mbuf_pool_indir_%d", socket_id);
ctx->mbuf_pool_indir = rte_pktmbuf_pool_create(s, nb_mbuf,
MEMPOOL_CACHE_SIZE, 0, 0, socket_id);
}
if (ctx->mbuf_pool == NULL || (ms != 0 && ctx->mbuf_pool_indir == NULL))
rte_exit(EXIT_FAILURE, "Cannot init mbuf pool on socket %d\n",
else
printf("Allocated mbuf pool on socket %d\n", socket_id);
}
static inline int
inline_ipsec_event_esn_overflow(struct rte_security_ctx *ctx, uint64_t md)
{
struct ipsec_sa *sa;
/* For inline protocol processing, the metadata in the event will
* uniquely identify the security session which raised the event.
* Application would then need the userdata it had registered with the
* security session to process the event.
*/
sa = (struct ipsec_sa *)rte_security_get_userdata(ctx, md);
if (sa == NULL) {
/* userdata could not be retrieved */
return -1;
}
/* Sequence number over flow. SA need to be re-established */
return 0;
}
static int
inline_ipsec_event_callback(uint16_t port_id, enum rte_eth_event_type type,
void *param, void *ret_param)
{
uint64_t md;
struct rte_eth_event_ipsec_desc *event_desc = NULL;
struct rte_security_ctx *ctx = (struct rte_security_ctx *)
RTE_SET_USED(param);
if (type != RTE_ETH_EVENT_IPSEC)
return -1;
event_desc = ret_param;
if (event_desc == NULL) {
printf("Event descriptor not set\n");
return -1;
}
md = event_desc->metadata;
return inline_ipsec_event_esn_overflow(ctx, md);
else if (event_desc->subtype >= RTE_ETH_EVENT_IPSEC_MAX) {
printf("Invalid IPsec event reported\n");
return -1;
}
return -1;
}
static int
ethdev_reset_event_callback(uint16_t port_id,
enum rte_eth_event_type type,
void *param __rte_unused, void *ret_param __rte_unused)
{
printf("Reset Event on port id %d type %d\n", port_id, type);
printf("Force quit application");
force_quit = true;
return 0;
}
static uint16_t
rx_callback(__rte_unused uint16_t port, __rte_unused uint16_t queue,
struct rte_mbuf *pkt[], uint16_t nb_pkts,
__rte_unused uint16_t max_pkts, void *user_param)
{
uint64_t tm;
uint32_t i, k;
struct lcore_conf *lc;
struct rte_mbuf *mb;
struct rte_ether_hdr *eth;
lc = user_param;
k = 0;
tm = 0;
for (i = 0; i != nb_pkts; i++) {
mb = pkt[i];
eth = rte_pktmbuf_mtod(mb, struct rte_ether_hdr *);
struct rte_ipv4_hdr *iph;
iph = (struct rte_ipv4_hdr *)(eth + 1);
mb->l2_len = sizeof(*eth);
mb->l3_len = sizeof(*iph);
tm = (tm != 0) ? tm : rte_rdtsc();
lc->frag.tbl, &lc->frag.dr,
mb, tm, iph);
if (mb != NULL) {
/* fix ip cksum after reassemble. */
struct rte_ipv4_hdr *,
mb->l2_len);
iph->hdr_checksum = 0;
}
}
} else if (eth->ether_type ==
struct rte_ipv6_hdr *iph;
struct rte_ipv6_fragment_ext *fh;
iph = (struct rte_ipv6_hdr *)(eth + 1);
if (fh != NULL) {
mb->l2_len = sizeof(*eth);
mb->l3_len = (uintptr_t)fh - (uintptr_t)iph +
sizeof(*fh);
tm = (tm != 0) ? tm : rte_rdtsc();
lc->frag.tbl, &lc->frag.dr,
mb, tm, iph, fh);
if (mb != NULL)
/* fix l3_len after reassemble. */
mb->l3_len = mb->l3_len - sizeof(*fh);
}
}
pkt[k] = mb;
k += (mb != NULL);
}
/* some fragments were encountered, drain death row */
if (tm != 0)
rte_ip_frag_free_death_row(&lc->frag.dr, 0);
return k;
}
static int
reassemble_lcore_init(struct lcore_conf *lc, uint32_t cid)
{
int32_t sid;
uint32_t i;
uint64_t frag_cycles;
const struct lcore_rx_queue *rxq;
const struct rte_eth_rxtx_callback *cb;
/* create fragment table */
frag_cycles = (rte_get_tsc_hz() + NS_PER_S - 1) /
NS_PER_S * frag_ttl_ns;
lc->frag.tbl = rte_ip_frag_table_create(frag_tbl_sz,
FRAG_TBL_BUCKET_ENTRIES, frag_tbl_sz, frag_cycles, sid);
if (lc->frag.tbl == NULL) {
printf("%s(%u): failed to create fragment table of size: %u, "
"error code: %d\n",
__func__, cid, frag_tbl_sz, rte_errno);
return -ENOMEM;
}
/* setup reassemble RX callbacks for all queues */
for (i = 0; i != lc->nb_rx_queue; i++) {
rxq = lc->rx_queue_list + i;
cb = rte_eth_add_rx_callback(rxq->port_id, rxq->queue_id,
rx_callback, lc);
if (cb == NULL) {
printf("%s(%u): failed to install RX callback for "
"portid=%u, queueid=%u, error code: %d\n",
__func__, cid,
rxq->port_id, rxq->queue_id, rte_errno);
return -ENOMEM;
}
}
return 0;
}
static int
reassemble_init(void)
{
int32_t rc;
uint32_t i, lc;
rc = 0;
for (i = 0; i != nb_lcore_params; i++) {
lc = lcore_params[i].lcore_id;
rc = reassemble_lcore_init(lcore_conf + lc, lc);
if (rc != 0)
break;
}
return rc;
}
static void
create_default_ipsec_flow(uint16_t port_id, uint64_t rx_offloads)
{
struct rte_flow_action action[2];
struct rte_flow_item pattern[2];
struct rte_flow_attr attr = {0};
struct rte_flow_error err;
struct rte_flow *flow;
int ret;
if (!(rx_offloads & RTE_ETH_RX_OFFLOAD_SECURITY))
return;
/* Add the default rte_flow to enable SECURITY for all ESP packets */
pattern[0].spec = NULL;
pattern[0].mask = NULL;
pattern[0].last = NULL;
pattern[1].type = RTE_FLOW_ITEM_TYPE_END;
action[0].conf = NULL;
action[1].type = RTE_FLOW_ACTION_TYPE_END;
action[1].conf = NULL;
attr.ingress = 1;
ret = rte_flow_validate(port_id, &attr, pattern, action, &err);
if (ret)
return;
flow = rte_flow_create(port_id, &attr, pattern, action, &err);
if (flow == NULL)
return;
flow_info_tbl[port_id].rx_def_flow = flow;
RTE_LOG(INFO, IPSEC,
"Created default flow enabling SECURITY for all ESP traffic on port %d\n",
port_id);
}
static void
signal_handler(int signum)
{
if (signum == SIGINT || signum == SIGTERM) {
printf("\n\nSignal %d received, preparing to exit...\n",
signum);
force_quit = true;
}
}
static void
ev_mode_sess_verify(struct ipsec_sa *sa, int nb_sa)
{
struct rte_ipsec_session *ips;
int32_t i;
if (!sa || !nb_sa)
return;
for (i = 0; i < nb_sa; i++) {
ips = ipsec_get_primary_session(&sa[i]);
rte_exit(EXIT_FAILURE, "Event mode supports only "
"inline protocol sessions\n");
}
}
static int32_t
check_event_mode_params(struct eh_conf *eh_conf)
{
struct eventmode_conf *em_conf = NULL;
struct lcore_params *params;
uint16_t portid;
if (!eh_conf || !eh_conf->mode_params)
return -EINVAL;
/* Get eventmode conf */
em_conf = eh_conf->mode_params;
if (eh_conf->mode == EH_PKT_TRANSFER_MODE_POLL &&
em_conf->ext_params.sched_type != SCHED_TYPE_NOT_SET) {
printf("error: option --event-schedule-type applies only to "
"event mode\n");
return -EINVAL;
}
if (eh_conf->mode != EH_PKT_TRANSFER_MODE_EVENT)
return 0;
/* Set schedule type to ORDERED if it wasn't explicitly set by user */
if (em_conf->ext_params.sched_type == SCHED_TYPE_NOT_SET)
em_conf->ext_params.sched_type = RTE_SCHED_TYPE_ORDERED;
/*
* Event mode currently supports only inline protocol sessions.
* If there are other types of sessions configured then exit with
* error.
*/
ev_mode_sess_verify(sa_in, nb_sa_in);
ev_mode_sess_verify(sa_out, nb_sa_out);
/* Option --config does not apply to event mode */
if (nb_lcore_params > 0) {
printf("error: option --config applies only to poll mode\n");
return -EINVAL;
}
/*
* In order to use the same port_init routine for both poll and event
* modes initialize lcore_params with one queue for each eth port
*/
lcore_params = lcore_params_array;
if ((enabled_port_mask & (1 << portid)) == 0)
continue;
params = &lcore_params[nb_lcore_params++];
params->port_id = portid;
params->queue_id = 0;
params->lcore_id = rte_get_next_lcore(0, 0, 1);
}
return 0;
}
static void
inline_sessions_free(struct sa_ctx *sa_ctx)
{
struct rte_ipsec_session *ips;
struct ipsec_sa *sa;
int32_t ret;
uint32_t i;
if (!sa_ctx)
return;
for (i = 0; i < sa_ctx->nb_sa; i++) {
sa = &sa_ctx->sa[i];
if (!sa->spi)
continue;
ips = ipsec_get_primary_session(sa);
continue;
if (!rte_eth_dev_is_valid_port(sa->portid))
continue;
ips->security.ses);
if (ret)
RTE_LOG(ERR, IPSEC, "Failed to destroy security "
"session type %d, spi %d\n",
ips->type, sa->spi);
}
}
static uint32_t
calculate_nb_mbufs(uint16_t nb_ports, uint16_t nb_crypto_qp, uint32_t nb_rxq,
uint32_t nb_txq)
{
return RTE_MAX((nb_rxq * nb_rxd +
nb_ports * nb_lcores * MAX_PKT_BURST +
nb_ports * nb_txq * nb_txd +
nb_lcores * MEMPOOL_CACHE_SIZE +
nb_crypto_qp * CDEV_QUEUE_DESC +
nb_lcores * frag_tbl_sz *
FRAG_TBL_BUCKET_ENTRIES),
8192U);
}
static int
handle_telemetry_cmd_ipsec_secgw_stats(const char *cmd __rte_unused,
const char *params, struct rte_tel_data *data)
{
uint64_t total_pkts_dropped = 0, total_pkts_tx = 0, total_pkts_rx = 0;
unsigned int coreid;
if (params) {
coreid = (uint32_t)atoi(params);
if (rte_lcore_is_enabled(coreid) == 0)
return -EINVAL;
total_pkts_dropped = core_statistics[coreid].dropped;
total_pkts_tx = core_statistics[coreid].tx;
total_pkts_rx = core_statistics[coreid].rx;
} else {
for (coreid = 0; coreid < RTE_MAX_LCORE; coreid++) {
/* skip disabled cores */
if (rte_lcore_is_enabled(coreid) == 0)
continue;
total_pkts_dropped += core_statistics[coreid].dropped;
total_pkts_tx += core_statistics[coreid].tx;
total_pkts_rx += core_statistics[coreid].rx;
}
}
/* add telemetry key/values pairs */
rte_tel_data_add_dict_u64(data, "packets received",
total_pkts_rx);
rte_tel_data_add_dict_u64(data, "packets transmitted",
total_pkts_tx);
rte_tel_data_add_dict_u64(data, "packets dropped",
total_pkts_dropped);
return 0;
}
static void
update_lcore_statistics(struct ipsec_core_statistics *total, uint32_t coreid)
{
struct ipsec_core_statistics *lcore_stats;
/* skip disabled cores */
if (rte_lcore_is_enabled(coreid) == 0)
return;
lcore_stats = &core_statistics[coreid];
total->rx = lcore_stats->rx;
total->dropped = lcore_stats->dropped;
total->tx = lcore_stats->tx;
/* outbound stats */
total->outbound.spd6.protect += lcore_stats->outbound.spd6.protect;
total->outbound.spd6.bypass += lcore_stats->outbound.spd6.bypass;
total->outbound.spd6.discard += lcore_stats->outbound.spd6.discard;
total->outbound.spd4.protect += lcore_stats->outbound.spd4.protect;
total->outbound.spd4.bypass += lcore_stats->outbound.spd4.bypass;
total->outbound.spd4.discard += lcore_stats->outbound.spd4.discard;
total->outbound.sad.miss += lcore_stats->outbound.sad.miss;
/* inbound stats */
total->inbound.spd6.protect += lcore_stats->inbound.spd6.protect;
total->inbound.spd6.bypass += lcore_stats->inbound.spd6.bypass;
total->inbound.spd6.discard += lcore_stats->inbound.spd6.discard;
total->inbound.spd4.protect += lcore_stats->inbound.spd4.protect;
total->inbound.spd4.bypass += lcore_stats->inbound.spd4.bypass;
total->inbound.spd4.discard += lcore_stats->inbound.spd4.discard;
total->inbound.sad.miss += lcore_stats->inbound.sad.miss;
/* routing stats */
total->lpm4.miss += lcore_stats->lpm4.miss;
total->lpm6.miss += lcore_stats->lpm6.miss;
}
static void
update_statistics(struct ipsec_core_statistics *total, uint32_t coreid)
{
memset(total, 0, sizeof(*total));
if (coreid != UINT32_MAX) {
update_lcore_statistics(total, coreid);
} else {
for (coreid = 0; coreid < RTE_MAX_LCORE; coreid++)
update_lcore_statistics(total, coreid);
}
}
static int
handle_telemetry_cmd_ipsec_secgw_stats_outbound(const char *cmd __rte_unused,
const char *params, struct rte_tel_data *data)
{
struct ipsec_core_statistics total_stats;
struct rte_tel_data *spd4_data = rte_tel_data_alloc();
struct rte_tel_data *spd6_data = rte_tel_data_alloc();
struct rte_tel_data *sad_data = rte_tel_data_alloc();
unsigned int coreid = UINT32_MAX;
int rc = 0;
/* verify allocated telemetry data structures */
if (!spd4_data || !spd6_data || !sad_data) {
rc = -ENOMEM;
goto exit;
}
/* initialize telemetry data structs as dicts */
if (params) {
coreid = (uint32_t)atoi(params);
if (rte_lcore_is_enabled(coreid) == 0) {
rc = -EINVAL;
goto exit;
}
}
update_statistics(&total_stats, coreid);
/* add spd 4 telemetry key/values pairs */
rte_tel_data_add_dict_u64(spd4_data, "protect",
total_stats.outbound.spd4.protect);
rte_tel_data_add_dict_u64(spd4_data, "bypass",
total_stats.outbound.spd4.bypass);
rte_tel_data_add_dict_u64(spd4_data, "discard",
total_stats.outbound.spd4.discard);
rte_tel_data_add_dict_container(data, "spd4", spd4_data, 0);
/* add spd 6 telemetry key/values pairs */
rte_tel_data_add_dict_u64(spd6_data, "protect",
total_stats.outbound.spd6.protect);
rte_tel_data_add_dict_u64(spd6_data, "bypass",
total_stats.outbound.spd6.bypass);
rte_tel_data_add_dict_u64(spd6_data, "discard",
total_stats.outbound.spd6.discard);
rte_tel_data_add_dict_container(data, "spd6", spd6_data, 0);
/* add sad telemetry key/values pairs */
rte_tel_data_add_dict_u64(sad_data, "miss",
total_stats.outbound.sad.miss);
rte_tel_data_add_dict_container(data, "sad", sad_data, 0);
exit:
if (rc) {
rte_tel_data_free(spd4_data);
rte_tel_data_free(spd6_data);
rte_tel_data_free(sad_data);
}
return rc;
}
static int
handle_telemetry_cmd_ipsec_secgw_stats_inbound(const char *cmd __rte_unused,
const char *params, struct rte_tel_data *data)
{
struct ipsec_core_statistics total_stats;
struct rte_tel_data *spd4_data = rte_tel_data_alloc();
struct rte_tel_data *spd6_data = rte_tel_data_alloc();
struct rte_tel_data *sad_data = rte_tel_data_alloc();
unsigned int coreid = UINT32_MAX;
int rc = 0;
/* verify allocated telemetry data structures */
if (!spd4_data || !spd6_data || !sad_data) {
rc = -ENOMEM;
goto exit;
}
/* initialize telemetry data structs as dicts */
/* add children dicts to parent dict */
if (params) {
coreid = (uint32_t)atoi(params);
if (rte_lcore_is_enabled(coreid) == 0) {
rc = -EINVAL;
goto exit;
}
}
update_statistics(&total_stats, coreid);
/* add sad telemetry key/values pairs */
rte_tel_data_add_dict_u64(sad_data, "miss",
total_stats.inbound.sad.miss);
rte_tel_data_add_dict_container(data, "sad", sad_data, 0);
/* add spd 4 telemetry key/values pairs */
rte_tel_data_add_dict_u64(spd4_data, "protect",
total_stats.inbound.spd4.protect);
rte_tel_data_add_dict_u64(spd4_data, "bypass",
total_stats.inbound.spd4.bypass);
rte_tel_data_add_dict_u64(spd4_data, "discard",
total_stats.inbound.spd4.discard);
rte_tel_data_add_dict_container(data, "spd4", spd4_data, 0);
/* add spd 6 telemetry key/values pairs */
rte_tel_data_add_dict_u64(spd6_data, "protect",
total_stats.inbound.spd6.protect);
rte_tel_data_add_dict_u64(spd6_data, "bypass",
total_stats.inbound.spd6.bypass);
rte_tel_data_add_dict_u64(spd6_data, "discard",
total_stats.inbound.spd6.discard);
rte_tel_data_add_dict_container(data, "spd6", spd6_data, 0);
exit:
if (rc) {
rte_tel_data_free(spd4_data);
rte_tel_data_free(spd6_data);
rte_tel_data_free(sad_data);
}
return rc;
}
static int
handle_telemetry_cmd_ipsec_secgw_stats_routing(const char *cmd __rte_unused,
const char *params, struct rte_tel_data *data)
{
struct ipsec_core_statistics total_stats;
struct rte_tel_data *lpm4_data = rte_tel_data_alloc();
struct rte_tel_data *lpm6_data = rte_tel_data_alloc();
unsigned int coreid = UINT32_MAX;
int rc = 0;
/* verify allocated telemetry data structures */
if (!lpm4_data || !lpm6_data) {
rc = -ENOMEM;
goto exit;
}
/* initialize telemetry data structs as dicts */
if (params) {
coreid = (uint32_t)atoi(params);
if (rte_lcore_is_enabled(coreid) == 0) {
rc = -EINVAL;
goto exit;
}
}
update_statistics(&total_stats, coreid);
/* add lpm 4 telemetry key/values pairs */
rte_tel_data_add_dict_u64(lpm4_data, "miss",
total_stats.lpm4.miss);
rte_tel_data_add_dict_container(data, "IPv4 LPM", lpm4_data, 0);
/* add lpm 6 telemetry key/values pairs */
rte_tel_data_add_dict_u64(lpm6_data, "miss",
total_stats.lpm6.miss);
rte_tel_data_add_dict_container(data, "IPv6 LPM", lpm6_data, 0);
exit:
if (rc) {
rte_tel_data_free(lpm4_data);
rte_tel_data_free(lpm6_data);
}
return rc;
}
static void
ipsec_secgw_telemetry_init(void)
{
rte_telemetry_register_cmd("/examples/ipsec-secgw/stats",
handle_telemetry_cmd_ipsec_secgw_stats,
"Returns global stats. "
"Optional Parameters: int <logical core id>");
rte_telemetry_register_cmd("/examples/ipsec-secgw/stats/outbound",
handle_telemetry_cmd_ipsec_secgw_stats_outbound,
"Returns outbound global stats. "
"Optional Parameters: int <logical core id>");
rte_telemetry_register_cmd("/examples/ipsec-secgw/stats/inbound",
handle_telemetry_cmd_ipsec_secgw_stats_inbound,
"Returns inbound global stats. "
"Optional Parameters: int <logical core id>");
rte_telemetry_register_cmd("/examples/ipsec-secgw/stats/routing",
handle_telemetry_cmd_ipsec_secgw_stats_routing,
"Returns routing stats. "
"Optional Parameters: int <logical core id>");
}
int32_t
main(int32_t argc, char **argv)
{
int32_t ret;
uint32_t lcore_id, nb_txq, nb_rxq = 0;
uint32_t cdev_id;
uint32_t i;
uint8_t socket_id;
uint16_t portid, nb_crypto_qp, nb_ports = 0;
uint64_t req_rx_offloads[RTE_MAX_ETHPORTS];
uint64_t req_tx_offloads[RTE_MAX_ETHPORTS];
struct eh_conf *eh_conf = NULL;
uint32_t ipv4_cksum_port_mask = 0;
size_t sess_sz;
nb_bufs_in_pool = 0;
/* init EAL */
ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
argc -= ret;
argv += ret;
force_quit = false;
signal(SIGINT, signal_handler);
signal(SIGTERM, signal_handler);
/* initialize event helper configuration */
eh_conf = eh_conf_init();
if (eh_conf == NULL)
rte_exit(EXIT_FAILURE, "Failed to init event helper config");
/* parse application arguments (after the EAL ones) */
ret = parse_args(argc, argv, eh_conf);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid parameters\n");
ipsec_secgw_telemetry_init();
/* parse configuration file */
if (parse_cfg_file(cfgfile) < 0) {
printf("parsing file \"%s\" failed\n",
optarg);
print_usage(argv[0]);
return -1;
}
if ((unprotected_port_mask & enabled_port_mask) !=
unprotected_port_mask)
rte_exit(EXIT_FAILURE, "Invalid unprotected portmask 0x%x\n",
unprotected_port_mask);
if (check_poll_mode_params(eh_conf) < 0)
rte_exit(EXIT_FAILURE, "check_poll_mode_params failed\n");
if (check_event_mode_params(eh_conf) < 0)
rte_exit(EXIT_FAILURE, "check_event_mode_params failed\n");
ret = init_lcore_rx_queues();
if (ret < 0)
rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
nb_lcores = rte_lcore_count();
sess_sz = max_session_size();
/*
* In event mode request minimum number of crypto queues
* to be reserved equal to number of ports.
*/
if (eh_conf->mode == EH_PKT_TRANSFER_MODE_EVENT)
nb_crypto_qp = rte_eth_dev_count_avail();
else
nb_crypto_qp = 0;
nb_crypto_qp = cryptodevs_init(nb_crypto_qp);
if (nb_bufs_in_pool == 0) {
if ((enabled_port_mask & (1 << portid)) == 0)
continue;
nb_ports++;
nb_rxq += get_port_nb_rx_queues(portid);
}
nb_txq = nb_lcores;
nb_bufs_in_pool = calculate_nb_mbufs(nb_ports, nb_crypto_qp,
nb_rxq, nb_txq);
}
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;
if (numa_on)
socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
else
socket_id = 0;
/* mbuf_pool is initialised by the pool_init() function*/
if (socket_ctx[socket_id].mbuf_pool)
continue;
pool_init(&socket_ctx[socket_id], socket_id, nb_bufs_in_pool);
session_pool_init(&socket_ctx[socket_id], socket_id, sess_sz);
session_priv_pool_init(&socket_ctx[socket_id], socket_id,
sess_sz);
}
printf("Number of mbufs in packet pool %d\n", nb_bufs_in_pool);
if ((enabled_port_mask & (1 << portid)) == 0)
continue;
sa_check_offloads(portid, &req_rx_offloads[portid],
&req_tx_offloads[portid]);
port_init(portid, req_rx_offloads[portid],
req_tx_offloads[portid]);
if ((req_tx_offloads[portid] & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM))
ipv4_cksum_port_mask |= 1U << portid;
}
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;
/* Pre-populate pkt offloads based on capabilities */
lcore_conf[lcore_id].outbound.ipv4_offloads = RTE_MBUF_F_TX_IPV4;
lcore_conf[lcore_id].outbound.ipv6_offloads = RTE_MBUF_F_TX_IPV6;
/* Update per lcore checksum offload support only if all ports support it */
if (ipv4_cksum_port_mask == enabled_port_mask)
lcore_conf[lcore_id].outbound.ipv4_offloads |= RTE_MBUF_F_TX_IP_CKSUM;
}
/*
* Set the enabled port mask in helper config for use by helper
* sub-system. This will be used while initializing devices using
* helper sub-system.
*/
eh_conf->eth_portmask = enabled_port_mask;
/* Initialize eventmode components */
ret = eh_devs_init(eh_conf);
if (ret < 0)
rte_exit(EXIT_FAILURE, "eh_devs_init failed, err=%d\n", ret);
/* start ports */
if ((enabled_port_mask & (1 << portid)) == 0)
continue;
ret = rte_eth_dev_start(portid);
if (ret < 0)
rte_exit(EXIT_FAILURE, "rte_eth_dev_start: "
"err=%d, port=%d\n", ret, portid);
/* Create flow after starting the device */
create_default_ipsec_flow(portid, req_rx_offloads[portid]);
/*
* If enabled, put device in promiscuous mode.
* This allows IO forwarding mode to forward packets
* to itself through 2 cross-connected ports of the
* target machine.
*/
if (promiscuous_on) {
if (ret != 0)
rte_exit(EXIT_FAILURE,
"rte_eth_promiscuous_enable: err=%s, port=%d\n",
rte_strerror(-ret), portid);
}
ethdev_reset_event_callback, NULL);
RTE_ETH_EVENT_IPSEC, inline_ipsec_event_callback, NULL);
}
/* fragment reassemble is enabled */
if (frag_tbl_sz != 0) {
ret = reassemble_init();
if (ret != 0)
rte_exit(EXIT_FAILURE, "failed at reassemble init");
}
/* Replicate each context per socket */
for (i = 0; i < NB_SOCKETS && i < rte_socket_count(); i++) {
socket_id = rte_socket_id_by_idx(i);
if ((socket_ctx[socket_id].mbuf_pool != NULL) &&
(socket_ctx[socket_id].sa_in == NULL) &&
(socket_ctx[socket_id].sa_out == NULL)) {
sa_init(&socket_ctx[socket_id], socket_id);
sp4_init(&socket_ctx[socket_id], socket_id);
sp6_init(&socket_ctx[socket_id], socket_id);
rt_init(&socket_ctx[socket_id], socket_id);
}
}
flow_init();
check_all_ports_link_status(enabled_port_mask);
if (stats_interval > 0)
rte_eal_alarm_set(stats_interval * US_PER_S,
print_stats_cb, NULL);
else
RTE_LOG(INFO, IPSEC, "Stats display disabled\n");
/* launch per-lcore init on every lcore */
rte_eal_mp_remote_launch(ipsec_launch_one_lcore, eh_conf, CALL_MAIN);
if (rte_eal_wait_lcore(lcore_id) < 0)
return -1;
}
/* Uninitialize eventmode components */
ret = eh_devs_uninit(eh_conf);
if (ret < 0)
rte_exit(EXIT_FAILURE, "eh_devs_uninit failed, err=%d\n", ret);
/* Free eventmode configuration memory */
eh_conf_uninit(eh_conf);
/* Destroy inline inbound and outbound sessions */
for (i = 0; i < NB_SOCKETS && i < rte_socket_count(); i++) {
socket_id = rte_socket_id_by_idx(i);
inline_sessions_free(socket_ctx[socket_id].sa_in);
inline_sessions_free(socket_ctx[socket_id].sa_out);
}
for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
printf("Closing cryptodev %d...", cdev_id);
printf(" Done\n");
}
if ((enabled_port_mask & (1 << portid)) == 0)
continue;
printf("Closing port %d...", portid);
if (flow_info_tbl[portid].rx_def_flow) {
struct rte_flow_error err;
ret = rte_flow_destroy(portid,
flow_info_tbl[portid].rx_def_flow, &err);
if (ret)
RTE_LOG(ERR, IPSEC, "Failed to destroy flow "
" for port %u, err msg: %s\n", portid,
err.message);
}
ret = rte_eth_dev_stop(portid);
if (ret != 0)
RTE_LOG(ERR, IPSEC,
"rte_eth_dev_stop: err=%s, port=%u\n",
rte_strerror(-ret), portid);
printf(" Done\n");
}
/* clean up the EAL */
printf("Bye...\n");
return 0;
}
int rte_acl_classify(const struct rte_acl_ctx *ctx, const uint8_t **data, uint32_t *results, uint32_t num, uint32_t categories)
int rte_eal_alarm_set(uint64_t us, rte_eal_alarm_callback cb, void *cb_arg)
#define unlikely(x)
static uint16_t rte_be_to_cpu_16(rte_be16_t x)
static uint32_t rte_be_to_cpu_32(rte_be32_t x)
static rte_be16_t rte_cpu_to_be_16(uint16_t x)
#define offsetof(TYPE, MEMBER)
Definition: rte_common.h:773
#define __rte_cache_aligned
Definition: rte_common.h:420
#define RTE_MIN(a, b)
Definition: rte_common.h:593
#define RTE_MAX(a, b)
Definition: rte_common.h:603
#define RTE_SET_USED(x)
Definition: rte_common.h:138
__rte_noreturn void rte_exit(int exit_code, const char *format,...) __rte_format_printf(2
#define RTE_DIM(a)
Definition: rte_common.h:837
#define __rte_unused
Definition: rte_common.h:123
@ RTE_CRYPTO_OP_TYPE_SYMMETRIC
Definition: rte_crypto.h:32
@ RTE_CRYPTO_OP_TYPE_UNDEFINED
Definition: rte_crypto.h:30
@ RTE_CRYPTO_SYM_XFORM_AUTH
@ RTE_CRYPTO_SYM_XFORM_AEAD
@ RTE_CRYPTO_SYM_XFORM_CIPHER
int rte_cryptodev_close(uint8_t dev_id)
uint8_t rte_cryptodev_count(void)
int rte_cryptodev_start(uint8_t dev_id)
#define RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING
unsigned int rte_cryptodev_sym_get_private_session_size(uint8_t dev_id)
void rte_cryptodev_stop(uint8_t dev_id)
#define RTE_CRYPTODEV_FF_IN_PLACE_SGL
int rte_cryptodev_configure(uint8_t dev_id, struct rte_cryptodev_config *config)
#define RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO
void * rte_cryptodev_get_sec_ctx(uint8_t dev_id)
const char * rte_cryptodev_get_feature_name(uint64_t flag)
int rte_cryptodev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id, const struct rte_cryptodev_qp_conf *qp_conf, int socket_id)
__rte_experimental struct rte_mempool * rte_cryptodev_sym_session_pool_create(const char *name, uint32_t nb_elts, uint32_t elt_size, uint32_t cache_size, uint16_t priv_size, int socket_id)
void rte_cryptodev_info_get(uint8_t dev_id, struct rte_cryptodev_info *dev_info)
uint64_t rte_get_tsc_hz(void)
static void rte_delay_ms(unsigned ms)
Definition: rte_cycles.h:148
#define rte_panic(...)
Definition: rte_debug.h:43
int rte_eal_init(int argc, char **argv)
int rte_eal_cleanup(void)
const char * rte_strerror(int errnum)
#define rte_errno
Definition: rte_errno.h:29
@ RTE_ETH_EVENT_IPSEC_MAX
Definition: rte_ethdev.h:3763
@ RTE_ETH_EVENT_IPSEC_ESN_OVERFLOW
Definition: rte_ethdev.h:3757
int rte_eth_dev_configure(uint16_t port_id, uint16_t nb_rx_queue, uint16_t nb_tx_queue, const struct rte_eth_conf *eth_conf)
rte_eth_event_type
Definition: rte_ethdev.h:3793
@ RTE_ETH_EVENT_IPSEC
Definition: rte_ethdev.h:3805
@ RTE_ETH_EVENT_INTR_RESET
Definition: rte_ethdev.h:3799
int rte_eth_dev_is_valid_port(uint16_t port_id)
#define RTE_ETH_LINK_DOWN
Definition: rte_ethdev.h:379
int rte_eth_rx_queue_setup(uint16_t port_id, uint16_t rx_queue_id, uint16_t nb_rx_desc, unsigned int socket_id, const struct rte_eth_rxconf *rx_conf, struct rte_mempool *mb_pool)
static uint16_t rte_eth_rx_burst(uint16_t port_id, uint16_t queue_id, struct rte_mbuf **rx_pkts, const uint16_t nb_pkts)
Definition: rte_ethdev.h:5312
#define RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE
Definition: rte_ethdev.h:1650
const struct rte_eth_rxtx_callback * rte_eth_add_rx_callback(uint16_t port_id, uint16_t queue_id, rte_rx_callback_fn fn, void *user_param)
@ RTE_ETH_MQ_TX_NONE
Definition: rte_ethdev.h:451
@ RTE_ETH_MQ_RX_RSS
Definition: rte_ethdev.h:420
int rte_eth_promiscuous_enable(uint16_t port_id)
__rte_experimental int rte_eth_link_to_str(char *str, size_t len, const struct rte_eth_link *eth_link)
int rte_eth_dev_stop(uint16_t port_id)
int rte_eth_dev_info_get(uint16_t port_id, struct rte_eth_dev_info *dev_info)
int rte_eth_tx_queue_setup(uint16_t port_id, uint16_t tx_queue_id, uint16_t nb_tx_desc, unsigned int socket_id, const struct rte_eth_txconf *tx_conf)
#define RTE_ETH_LINK_MAX_STR_LEN
Definition: rte_ethdev.h:387
static uint16_t rte_eth_tx_burst(uint16_t port_id, uint16_t queue_id, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
Definition: rte_ethdev.h:5636
int rte_eth_macaddr_get(uint16_t port_id, struct rte_ether_addr *mac_addr)
uint16_t rte_eth_dev_count_avail(void)
void * rte_eth_dev_get_sec_ctx(uint16_t port_id)
int rte_eth_dev_callback_register(uint16_t port_id, enum rte_eth_event_type event, rte_eth_dev_cb_fn cb_fn, void *cb_arg)
int rte_eth_dev_close(uint16_t port_id)
int rte_eth_link_get_nowait(uint16_t port_id, struct rte_eth_link *link)
int rte_eth_dev_adjust_nb_rx_tx_desc(uint16_t port_id, uint16_t *nb_rx_desc, uint16_t *nb_tx_desc)
#define RTE_ETH_FOREACH_DEV(p)
Definition: rte_ethdev.h:2145
__extension__ struct rte_eth_link __rte_aligned(8)
#define RTE_ETH_TX_OFFLOAD_MULTI_SEGS
Definition: rte_ethdev.h:1643
int rte_eth_dev_start(uint16_t port_id)
#define RTE_ETHER_TYPE_IPV4
Definition: rte_ether.h:307
#define RTE_ETHER_MTU
Definition: rte_ether.h:34
#define RTE_ETHER_HDR_LEN
Definition: rte_ether.h:29
#define RTE_ETHER_TYPE_IPV6
Definition: rte_ether.h:308
void rte_ether_format_addr(char *buf, uint16_t size, const struct rte_ether_addr *eth_addr)
#define RTE_SCHED_TYPE_ORDERED
#define RTE_SCHED_TYPE_ATOMIC
#define RTE_SCHED_TYPE_PARALLEL
int rte_flow_destroy(uint16_t port_id, struct rte_flow *flow, struct rte_flow_error *error)
int rte_flow_validate(uint16_t port_id, const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct rte_flow_error *error)
@ RTE_FLOW_ACTION_TYPE_END
Definition: rte_flow.h:2215
@ RTE_FLOW_ACTION_TYPE_SECURITY
Definition: rte_flow.h:2363
struct rte_flow * rte_flow_create(uint16_t port_id, const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct rte_flow_error *error)
@ RTE_FLOW_ITEM_TYPE_ESP
Definition: rte_flow.h:388
@ RTE_FLOW_ITEM_TYPE_END
Definition: rte_flow.h:160
int rte_hash_add_key_data(const struct rte_hash *h, const void *key, void *data)
int32_t rte_hash_lookup(const struct rte_hash *h, const void *key)
struct rte_hash * rte_hash_create(const struct rte_hash_parameters *params)
static __rte_experimental int rte_ipv6_get_next_ext(const uint8_t *p, int proto, size_t *ext_len)
Definition: rte_ip.h:616
#define RTE_IPV4_MAX_PKT_LEN
Definition: rte_ip.h:73
static uint16_t rte_ipv4_cksum(const struct rte_ipv4_hdr *ipv4_hdr)
Definition: rte_ip.h:301
#define RTE_IPV4_HDR_IHL_MASK
Definition: rte_ip.h:76
#define RTE_IPV4_IHL_MULTIPLIER
Definition: rte_ip.h:81
int32_t rte_ipv4_fragment_packet(struct rte_mbuf *pkt_in, struct rte_mbuf **pkts_out, uint16_t nb_pkts_out, uint16_t mtu_size, struct rte_mempool *pool_direct, struct rte_mempool *pool_indirect)
static int rte_ipv4_frag_pkt_is_fragmented(const struct rte_ipv4_hdr *hdr)
Definition: rte_ip_frag.h:213
static struct rte_ipv6_fragment_ext * rte_ipv6_frag_get_ipv6_fragment_header(struct rte_ipv6_hdr *hdr)
Definition: rte_ip_frag.h:143
struct rte_mbuf * rte_ipv4_frag_reassemble_packet(struct rte_ip_frag_tbl *tbl, struct rte_ip_frag_death_row *dr, struct rte_mbuf *mb, uint64_t tms, struct rte_ipv4_hdr *ip_hdr)
struct rte_ip_frag_tbl * rte_ip_frag_table_create(uint32_t bucket_num, uint32_t bucket_entries, uint32_t max_entries, uint64_t max_cycles, int socket_id)
struct rte_mbuf * rte_ipv6_frag_reassemble_packet(struct rte_ip_frag_tbl *tbl, struct rte_ip_frag_death_row *dr, struct rte_mbuf *mb, uint64_t tms, struct rte_ipv6_hdr *ip_hdr, struct rte_ipv6_fragment_ext *frag_hdr)
int32_t rte_ipv6_fragment_packet(struct rte_mbuf *pkt_in, struct rte_mbuf **pkts_out, uint16_t nb_pkts_out, uint16_t mtu_size, struct rte_mempool *pool_direct, struct rte_mempool *pool_indirect)
void rte_ip_frag_free_death_row(struct rte_ip_frag_death_row *dr, uint32_t prefetch)
#define RTE_IPSEC_SAFLAG_SQN_ATOM
Definition: rte_ipsec_sa.h:70
static uint32_t rte_jhash(const void *key, uint32_t length, uint32_t initval)
Definition: rte_jhash.h:280
@ CALL_MAIN
Definition: rte_launch.h:74
int rte_eal_mp_remote_launch(lcore_function_t *f, void *arg, enum rte_rmt_call_main_t call_main)
int rte_eal_wait_lcore(unsigned worker_id)
unsigned int rte_lcore_to_socket_id(unsigned int lcore_id)
unsigned int rte_lcore_count(void)
int rte_lcore_is_enabled(unsigned int lcore_id)
int rte_socket_id_by_idx(unsigned int idx)
unsigned int rte_socket_id(void)
#define RTE_LCORE_FOREACH_WORKER(i)
Definition: rte_lcore.h:232
unsigned int rte_get_next_lcore(unsigned int i, int skip_main, int wrap)
unsigned int rte_socket_count(void)
static unsigned rte_lcore_id(void)
Definition: rte_lcore.h:76
#define RTE_LOG(l, t,...)
Definition: rte_log.h:341
int rte_lpm6_lookup_bulk_func(const struct rte_lpm6 *lpm, uint8_t ips[][RTE_LPM6_IPV6_ADDR_SIZE], int32_t *next_hops, unsigned int n)
#define rte_lpm_lookup_bulk(lpm, ips, next_hops, n)
Definition: rte_lpm.h:337
#define RTE_LPM_LOOKUP_SUCCESS
Definition: rte_lpm.h:65
static void rte_mbuf_prefetch_part2(struct rte_mbuf *m)
Definition: rte_mbuf.h:128
static char * rte_pktmbuf_prepend(struct rte_mbuf *m, uint16_t len)
Definition: rte_mbuf.h:1548
static char * rte_pktmbuf_adj(struct rte_mbuf *m, uint16_t len)
Definition: rte_mbuf.h:1612
struct rte_mempool * rte_pktmbuf_pool_create(const char *name, unsigned n, unsigned cache_size, uint16_t priv_size, uint16_t data_room_size, int socket_id)
static int rte_pktmbuf_trim(struct rte_mbuf *m, uint16_t len)
Definition: rte_mbuf.h:1642
#define rte_pktmbuf_mtod(m, t)
#define RTE_MBUF_F_TX_IP_CKSUM
#define RTE_MBUF_F_TX_SEC_OFFLOAD
#define RTE_MBUF_F_RX_SEC_OFFLOAD
#define RTE_MBUF_F_TX_IPV4
#define rte_pktmbuf_mtod_offset(m, t, o)
#define RTE_MBUF_F_TX_IPV6
#define RTE_PTYPE_L4_UDP
#define RTE_PTYPE_L3_IPV6
#define RTE_PTYPE_L4_TCP
#define RTE_PTYPE_L3_IPV4
struct rte_mempool * rte_mempool_create(const char *name, unsigned n, unsigned elt_size, unsigned cache_size, unsigned private_data_size, rte_mempool_ctor_t *mp_init, void *mp_init_arg, rte_mempool_obj_cb_t *obj_init, void *obj_init_arg, int socket_id, unsigned flags)
static void rte_prefetch0(const volatile void *p)
@ RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL
Definition: rte_security.h:464
@ RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO
Definition: rte_security.h:460
static __rte_experimental void * rte_security_get_userdata(struct rte_security_ctx *instance, uint64_t md)
Definition: rte_security.h:687
int rte_security_session_destroy(struct rte_security_ctx *instance, struct rte_security_session *sess)
unsigned int rte_security_session_get_size(struct rte_security_ctx *instance)
static __rte_experimental bool rte_security_dynfield_is_registered(void)
Definition: rte_security.h:623
static __rte_experimental rte_security_dynfield_t * rte_security_dynfield(struct rte_mbuf *mbuf)
Definition: rte_security.h:607
int rte_strsplit(char *string, int stringlen, char **tokens, int maxtokens, char delim)
struct rte_tel_data * rte_tel_data_alloc(void)
int rte_tel_data_add_dict_u64(struct rte_tel_data *d, const char *name, uint64_t val)
int rte_telemetry_register_cmd(const char *cmd, telemetry_cb fn, const char *help)
int rte_tel_data_add_dict_container(struct rte_tel_data *d, const char *name, struct rte_tel_data *val, int keep)
int rte_tel_data_start_dict(struct rte_tel_data *d)
enum rte_crypto_op_type op
struct rte_cryptodev_symmetric_capability sym
const struct rte_cryptodev_capabilities * capabilities
enum rte_crypto_auth_algorithm algo
struct rte_cryptodev_symmetric_capability::@130::@132 auth
struct rte_cryptodev_symmetric_capability::@130::@133 cipher
enum rte_crypto_sym_xform_type xform_type
struct rte_eth_txmode txmode
Definition: rte_ethdev.h:1514
struct rte_eth_rxmode rxmode
Definition: rte_ethdev.h:1513
struct rte_eth_conf::@147 rx_adv_conf
struct rte_eth_rss_conf rss_conf
Definition: rte_ethdev.h:1521
enum rte_eth_event_ipsec_subtype subtype
Definition: rte_ethdev.h:3772
uint64_t rss_hf
Definition: rte_ethdev.h:526
uint32_t mtu
Definition: rte_ethdev.h:467
uint64_t offloads
Definition: rte_ethdev.h:476
enum rte_eth_rx_mq_mode mq_mode
Definition: rte_ethdev.h:466
uint64_t offloads
Definition: rte_ethdev.h:1255
uint64_t offloads
Definition: rte_ethdev.h:1134
rte_be16_t ether_type
Definition: rte_ether.h:291
struct rte_ether_addr src_addr
Definition: rte_ether.h:290
struct rte_ether_addr dst_addr
Definition: rte_ether.h:289
uint32_t ingress
Definition: rte_flow.h:100
enum rte_flow_error_type type
Definition: rte_flow.h:3844
uint32_t hash_func_init_val
Definition: rte_hash.h:88
uint32_t entries
Definition: rte_hash.h:84
uint32_t key_len
Definition: rte_hash.h:86
const char * name
Definition: rte_hash.h:83
rte_hash_function hash_func
Definition: rte_hash.h:87
struct rte_ipsec_sa * sa
Definition: rte_ipsec.h:63
enum rte_security_session_action_type type
Definition: rte_ipsec.h:65
uint8_t version_ihl
Definition: rte_ip.h:44
rte_be16_t hdr_checksum
Definition: rte_ip.h:61
uint8_t next_proto_id
Definition: rte_ip.h:60
rte_be16_t total_length
Definition: rte_ip.h:56
rte_be16_t payload_len
Definition: rte_ip.h:439
uint8_t proto
Definition: rte_ip.h:440
uint64_t ol_flags
uint64_t l4_len
uint32_t pkt_len
uint64_t l3_len
uint32_t packet_type
uint16_t port
uint64_t l2_len
uint16_t data_len
rte_be16_t dst_port
Definition: rte_udp.h:30
rte_be16_t src_port
Definition: rte_udp.h:29