#include <stdint.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <fcntl.h>
#include <unistd.h>
#include "ipsec.h"
#include "esp.h"
#include "ipip.h"
int
esp_inbound(
struct rte_mbuf *m,
struct ipsec_sa *sa,
{
struct ip *ip4;
int32_t payload_len, ip_hdr_len;
RTE_ASSERT(sa != NULL);
if (ipsec_get_action_type(sa) ==
return 0;
RTE_ASSERT(m != NULL);
RTE_ASSERT(cop != NULL);
if (
likely(ip4->ip_v == IPVERSION))
ip_hdr_len = ip4->ip_hl * 4;
else if (ip4->ip_v == IP6_VERSION)
ip_hdr_len = sizeof(struct ip6_hdr);
else {
RTE_LOG(ERR, IPSEC_ESP,
"invalid IP packet type %d\n",
ip4->ip_v);
return -EINVAL;
}
sizeof(
struct rte_esp_hdr) - sa->iv_len - sa->digest_len;
if ((payload_len & (sa->block_size - 1)) || (payload_len <= 0)) {
RTE_LOG_DP(DEBUG, IPSEC_ESP,
"payload %d not multiple of %u\n",
payload_len, sa->block_size);
return -EINVAL;
}
sym_cop = get_sym_cop(cop);
struct cnt_blk *icb;
uint8_t *aad;
icb = get_cnt_blk(m);
icb->salt = sa->salt;
memcpy(&icb->iv, iv, 8);
aad = get_aad(m);
} else {
sa->iv_len;
struct cnt_blk *icb;
uint8_t *, IV_OFFSET);
switch (sa->cipher_algo) {
break;
icb = get_cnt_blk(m);
icb->salt = sa->salt;
memcpy(&icb->iv, iv, 8);
break;
default:
RTE_LOG(ERR, IPSEC_ESP,
"unsupported cipher algorithm %u\n",
sa->cipher_algo);
return -EINVAL;
}
switch (sa->auth_algo) {
sa->iv_len + payload_len;
break;
default:
RTE_LOG(ERR, IPSEC_ESP,
"unsupported auth algorithm %u\n",
sa->auth_algo);
return -EINVAL;
}
}
return 0;
}
int
esp_inbound_post(
struct rte_mbuf *m,
struct ipsec_sa *sa,
{
struct ip *ip4, *ip;
struct ip6_hdr *ip6;
uint8_t *nexthdr, *pad_len;
uint8_t *padding;
uint16_t i;
RTE_ASSERT(m != NULL);
RTE_ASSERT(cop != NULL);
ips = ipsec_get_primary_session(
sa);
else
} else
}
RTE_LOG(ERR, IPSEC_ESP,
"%s() failed crypto op\n", __func__);
return -1;
}
} else {
pad_len = nexthdr - 1;
padding = pad_len - *pad_len;
for (i = 0; i < *pad_len; i++) {
if (padding[i] != i + 1) {
RTE_LOG(ERR, IPSEC_ESP,
"invalid padding\n");
return -EINVAL;
}
}
"failed to remove pad_len + digest\n");
return -EINVAL;
}
}
if (
likely(ip->ip_v == IPVERSION)) {
memmove(ip4, ip, ip->ip_hl * 4);
ip4->ip_p = *nexthdr;
} else {
ip6 = (struct ip6_hdr *)ip4;
memmove(ip6, ip, sizeof(struct ip6_hdr));
ip6->ip6_nxt = *nexthdr;
sizeof(struct ip6_hdr));
}
} else
ipip_inbound(m,
sizeof(
struct rte_esp_hdr) + sa->iv_len);
return 0;
}
int
esp_outbound(
struct rte_mbuf *m,
struct ipsec_sa *sa,
{
struct ip *ip4;
struct ip6_hdr *ip6;
uint8_t *padding = NULL, *new_ip, nlp;
int32_t i;
uint16_t pad_payload_len, pad_len, ip_hdr_len;
RTE_ASSERT(m != NULL);
ips = ipsec_get_primary_session(
sa);
ip_hdr_len = 0;
if (
likely(ip4->ip_v == IPVERSION)) {
ip_hdr_len = ip4->ip_hl * 4;
nlp = ip4->ip_p;
} else
nlp = IPPROTO_IPIP;
} else if (ip4->ip_v == IP6_VERSION) {
ip_hdr_len = sizeof(struct ip6_hdr);
ip6 = (struct ip6_hdr *)ip4;
nlp = ip6->ip6_nxt;
} else
nlp = IPPROTO_IPV6;
} else {
RTE_LOG(ERR, IPSEC_ESP,
"invalid IP packet type %d\n",
ip4->ip_v);
return -EINVAL;
}
ip_hdr_len + 2, sa->block_size);
RTE_ASSERT(IS_TUNNEL(sa->flags) || IS_TRANSPORT(sa->flags));
if (
likely(IS_IP4_TUNNEL(sa->flags)))
ip_hdr_len = sizeof(struct ip);
else if (IS_IP6_TUNNEL(sa->flags))
ip_hdr_len = sizeof(struct ip6_hdr);
else if (!IS_TRANSPORT(sa->flags)) {
RTE_LOG(ERR, IPSEC_ESP,
"Unsupported SA flags: 0x%x\n",
sa->flags);
return -EINVAL;
}
pad_payload_len + sa->digest_len > IP_MAXPACKET)) {
RTE_LOG(ERR, IPSEC_ESP,
"ipsec packet is too big\n");
return -EINVAL;
}
!(ips->security.ol_flags &
sa->digest_len);
"not enough mbuf trailing space\n");
return -ENOSPC;
}
}
switch (WITHOUT_TRANSPORT_VERSION(sa->flags)) {
case IP4_TUNNEL:
ip4 = ip4ip_outbound(m,
sizeof(
struct rte_esp_hdr) + sa->iv_len,
&sa->src, &sa->dst);
break;
case IP6_TUNNEL:
ip6 = ip6ip_outbound(m,
sizeof(
struct rte_esp_hdr) + sa->iv_len,
&sa->src, &sa->dst);
break;
case TRANSPORT:
memmove(new_ip, ip4, ip_hdr_len);
ip4 = (struct ip *)new_ip;
if (
likely(ip4->ip_v == IPVERSION)) {
ip4->ip_p = IPPROTO_ESP;
} else {
ip6 = (struct ip6_hdr *)new_ip;
ip6->ip6_nxt = IPPROTO_ESP;
sizeof(struct ip6_hdr));
}
}
sa->seq++;
uint64_t *iv = (uint64_t *)(esp + 1);
} else {
switch (sa->cipher_algo) {
memset(iv, 0, sa->iv_len);
break;
break;
default:
"unsupported cipher algorithm %u\n",
sa->cipher_algo);
return -EINVAL;
}
}
if (ips->security.ol_flags &
} else {
padding[pad_len - 2] = pad_len - 2;
padding[pad_len - 1] = nlp;
}
goto done;
}
RTE_ASSERT(cop != NULL);
sym_cop = get_sym_cop(cop);
uint8_t *aad;
for (i = 0; i < pad_len - 2; i++)
padding[i] = i + 1;
padding[pad_len - 2] = pad_len - 2;
padding[pad_len - 1] = nlp;
struct cnt_blk *icb = get_cnt_blk(m);
icb->salt = sa->salt;
aad = get_aad(m);
memcpy(aad, esp, 8);
} else {
switch (sa->cipher_algo) {
sym_cop->cipher.
data.
length = pad_payload_len + sa->iv_len;
break;
break;
default:
RTE_LOG(ERR, IPSEC_ESP,
"unsupported cipher algorithm %u\n",
sa->cipher_algo);
return -EINVAL;
}
for (i = 0; i < pad_len - 2; i++)
padding[i] = i + 1;
padding[pad_len - 2] = pad_len - 2;
padding[pad_len - 1] = nlp;
struct cnt_blk *icb = get_cnt_blk(m);
icb->salt = sa->salt;
switch (sa->auth_algo) {
sa->iv_len + pad_payload_len;
break;
default:
RTE_LOG(ERR, IPSEC_ESP,
"unsupported auth algorithm %u\n",
sa->auth_algo);
return -EINVAL;
}
}
done:
return 0;
}
int
struct ipsec_sa *sa,
{
RTE_ASSERT(m != NULL);
RTE_ASSERT(sa != NULL);
type = ipsec_get_action_type(sa);
} else {
RTE_ASSERT(cop != NULL);
RTE_LOG(ERR, IPSEC_ESP,
"%s() failed crypto op\n",
__func__);
return -1;
}
}
return 0;
}
static rte_be32_t rte_cpu_to_be_32(uint32_t x)
static rte_be64_t rte_cpu_to_be_64(uint64_t x)
#define RTE_ALIGN_CEIL(val, align)
#define RTE_PTR_ADD(ptr, x)
@ RTE_CRYPTO_OP_STATUS_SUCCESS
@ RTE_CRYPTO_OP_STATUS_ERROR
@ RTE_CRYPTO_OP_STATUS_NOT_PROCESSED
@ RTE_CRYPTO_AUTH_SHA1_HMAC
@ RTE_CRYPTO_AUTH_SHA256_HMAC
@ RTE_CRYPTO_AEAD_AES_GCM
@ RTE_CRYPTO_CIPHER_AES_CTR
@ RTE_CRYPTO_CIPHER_AES_CBC
@ RTE_CRYPTO_CIPHER_3DES_CBC
#define rte_crypto_op_ctod_offset(c, t, o)
#define RTE_LOG(l, t,...)
#define RTE_LOG_DP(l, t,...)
#define rte_pktmbuf_data_len(m)
static char * rte_pktmbuf_prepend(struct rte_mbuf *m, uint16_t len)
static char * rte_pktmbuf_adj(struct rte_mbuf *m, uint16_t len)
static char * rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len)
#define rte_pktmbuf_pkt_len(m)
static int rte_pktmbuf_trim(struct rte_mbuf *m, uint16_t len)
#define rte_pktmbuf_iova_offset(m, o)
#define rte_pktmbuf_mtod(m, t)
#define RTE_MBUF_F_TX_SEC_OFFLOAD
#define RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED
#define RTE_MBUF_F_RX_SEC_OFFLOAD
#define rte_pktmbuf_mtod_offset(m, t, o)
#define RTE_PTYPE_TUNNEL_ESP
static void * rte_memcpy(void *dst, const void *src, size_t n)
static void rte_prefetch0(const volatile void *p)
rte_security_session_action_type
@ RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL
@ RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO
#define RTE_SECURITY_RX_HW_TRAILER_OFFLOAD
#define RTE_SECURITY_TX_HW_TRAILER_OFFLOAD
struct rte_crypto_sym_op::@117::@119::@123 digest
struct rte_crypto_sym_op::@117::@119::@124 aad
struct rte_crypto_sym_op::@117::@119::@122 data
enum rte_security_session_action_type type
uint8_t inner_esp_next_proto