DPDK  20.05.0
examples/server_node_efd/server/main.c
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2016-2017 Intel Corporation
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <stdint.h>
#include <stdarg.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <errno.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <rte_common.h>
#include <rte_memory.h>
#include <rte_eal.h>
#include <rte_launch.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_ring.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_mempool.h>
#include <rte_memcpy.h>
#include <rte_mbuf.h>
#include <rte_ether.h>
#include <rte_interrupts.h>
#include <rte_ethdev.h>
#include <rte_byteorder.h>
#include <rte_malloc.h>
#include <rte_string_fns.h>
#include <rte_efd.h>
#include <rte_ip.h>
#include "common.h"
#include "args.h"
#include "init.h"
/*
* When doing reads from the NIC or the node queues,
* use this batch size
*/
#define PACKET_READ_SIZE 32
/*
* Local buffers to put packets in, used to send packets in bursts to the
* nodes
*/
struct node_rx_buf {
struct rte_mbuf *buffer[PACKET_READ_SIZE];
uint16_t count;
};
struct efd_stats {
uint64_t distributed;
uint64_t drop;
} flow_dist_stats;
/* One buffer per node rx queue - dynamically allocate array */
static struct node_rx_buf *cl_rx_buf;
static const char *
get_printable_mac_addr(uint16_t port)
{
static const char err_address[] = "00:00:00:00:00:00";
static char addresses[RTE_MAX_ETHPORTS][sizeof(err_address)];
struct rte_ether_addr mac;
int ret;
if (unlikely(port >= RTE_MAX_ETHPORTS))
return err_address;
if (unlikely(addresses[port][0] == '\0')) {
ret = rte_eth_macaddr_get(port, &mac);
if (ret != 0) {
printf("Failed to get MAC address (port %u): %s\n",
port, rte_strerror(-ret));
return err_address;
}
snprintf(addresses[port], sizeof(addresses[port]),
"%02x:%02x:%02x:%02x:%02x:%02x\n",
mac.addr_bytes[0], mac.addr_bytes[1],
mac.addr_bytes[2], mac.addr_bytes[3],
mac.addr_bytes[4], mac.addr_bytes[5]);
}
return addresses[port];
}
/*
* This function displays the recorded statistics for each port
* and for each node. It uses ANSI terminal codes to clear
* screen when called. It is called from a single non-master
* thread in the server process, when the process is run with more
* than one lcore enabled.
*/
static void
do_stats_display(void)
{
unsigned int i, j;
const char clr[] = {27, '[', '2', 'J', '\0'};
const char topLeft[] = {27, '[', '1', ';', '1', 'H', '\0'};
uint64_t port_tx[RTE_MAX_ETHPORTS], port_tx_drop[RTE_MAX_ETHPORTS];
uint64_t node_tx[MAX_NODES], node_tx_drop[MAX_NODES];
/* to get TX stats, we need to do some summing calculations */
memset(port_tx, 0, sizeof(port_tx));
memset(port_tx_drop, 0, sizeof(port_tx_drop));
memset(node_tx, 0, sizeof(node_tx));
memset(node_tx_drop, 0, sizeof(node_tx_drop));
for (i = 0; i < num_nodes; i++) {
const struct tx_stats *tx = &info->tx_stats[i];
for (j = 0; j < info->num_ports; j++) {
const uint64_t tx_val = tx->tx[info->id[j]];
const uint64_t drop_val = tx->tx_drop[info->id[j]];
port_tx[j] += tx_val;
port_tx_drop[j] += drop_val;
node_tx[i] += tx_val;
node_tx_drop[i] += drop_val;
}
}
/* Clear screen and move to top left */
printf("%s%s", clr, topLeft);
printf("PORTS\n");
printf("-----\n");
for (i = 0; i < info->num_ports; i++)
printf("Port %u: '%s'\t", (unsigned int)info->id[i],
get_printable_mac_addr(info->id[i]));
printf("\n\n");
for (i = 0; i < info->num_ports; i++) {
printf("Port %u - rx: %9"PRIu64"\t"
"tx: %9"PRIu64"\n",
(unsigned int)info->id[i], info->rx_stats.rx[i],
port_tx[i]);
}
printf("\nSERVER\n");
printf("-----\n");
printf("distributed: %9"PRIu64", drop: %9"PRIu64"\n",
flow_dist_stats.distributed, flow_dist_stats.drop);
printf("\nNODES\n");
printf("-------\n");
for (i = 0; i < num_nodes; i++) {
const unsigned long long rx = nodes[i].stats.rx;
const unsigned long long rx_drop = nodes[i].stats.rx_drop;
const struct filter_stats *filter = &info->filter_stats[i];
printf("Node %2u - rx: %9llu, rx_drop: %9llu\n"
" tx: %9"PRIu64", tx_drop: %9"PRIu64"\n"
" filter_passed: %9"PRIu64", "
"filter_drop: %9"PRIu64"\n",
i, rx, rx_drop, node_tx[i], node_tx_drop[i],
filter->passed, filter->drop);
}
printf("\n");
}
/*
* The function called from each non-master lcore used by the process.
* The test_and_set function is used to randomly pick a single lcore on which
* the code to display the statistics will run. Otherwise, the code just
* repeatedly sleeps.
*/
static int
sleep_lcore(__rte_unused void *dummy)
{
/* Used to pick a display thread - static, so zero-initialised */
static rte_atomic32_t display_stats;
/* Only one core should display stats */
if (rte_atomic32_test_and_set(&display_stats)) {
const unsigned int sleeptime = 1;
printf("Core %u displaying statistics\n", rte_lcore_id());
/* Longer initial pause so above printf is seen */
sleep(sleeptime * 3);
/* Loop forever: sleep always returns 0 or <= param */
while (sleep(sleeptime) <= sleeptime)
do_stats_display();
}
return 0;
}
/*
* Function to set all the node statistic values to zero.
* Called at program startup.
*/
static void
clear_stats(void)
{
unsigned int i;
for (i = 0; i < num_nodes; i++)
nodes[i].stats.rx = nodes[i].stats.rx_drop = 0;
}
/*
* send a burst of traffic to a node, assuming there are packets
* available to be sent to this node
*/
static void
flush_rx_queue(uint16_t node)
{
uint16_t j;
struct node *cl;
if (cl_rx_buf[node].count == 0)
return;
cl = &nodes[node];
if (rte_ring_enqueue_bulk(cl->rx_q, (void **)cl_rx_buf[node].buffer,
cl_rx_buf[node].count, NULL) != cl_rx_buf[node].count){
for (j = 0; j < cl_rx_buf[node].count; j++)
rte_pktmbuf_free(cl_rx_buf[node].buffer[j]);
cl->stats.rx_drop += cl_rx_buf[node].count;
} else
cl->stats.rx += cl_rx_buf[node].count;
cl_rx_buf[node].count = 0;
}
/*
* marks a packet down to be sent to a particular node process
*/
static inline void
enqueue_rx_packet(uint8_t node, struct rte_mbuf *buf)
{
cl_rx_buf[node].buffer[cl_rx_buf[node].count++] = buf;
}
/*
* This function takes a group of packets and routes them
* individually to the node process. Very simply round-robins the packets
* without checking any of the packet contents.
*/
static void
process_packets(uint32_t port_num __rte_unused, struct rte_mbuf *pkts[],
uint16_t rx_count, unsigned int socket_id)
{
uint16_t i;
uint8_t node;
efd_value_t data[RTE_EFD_BURST_MAX];
const void *key_ptrs[RTE_EFD_BURST_MAX];
struct rte_ipv4_hdr *ipv4_hdr;
uint32_t ipv4_dst_ip[RTE_EFD_BURST_MAX];
for (i = 0; i < rx_count; i++) {
/* Handle IPv4 header.*/
ipv4_hdr = rte_pktmbuf_mtod_offset(pkts[i],
struct rte_ipv4_hdr *, sizeof(struct rte_ether_hdr));
ipv4_dst_ip[i] = ipv4_hdr->dst_addr;
key_ptrs[i] = (void *)&ipv4_dst_ip[i];
}
rte_efd_lookup_bulk(efd_table, socket_id, rx_count,
(const void **) key_ptrs, data);
for (i = 0; i < rx_count; i++) {
node = (uint8_t) ((uintptr_t)data[i]);
if (node >= num_nodes) {
/*
* Node is out of range, which means that
* flow has not been inserted
*/
flow_dist_stats.drop++;
rte_pktmbuf_free(pkts[i]);
} else {
flow_dist_stats.distributed++;
enqueue_rx_packet(node, pkts[i]);
}
}
for (i = 0; i < num_nodes; i++)
flush_rx_queue(i);
}
/*
* Function called by the master lcore of the DPDK process.
*/
static void
do_packet_forwarding(void)
{
unsigned int port_num = 0; /* indexes the port[] array */
unsigned int socket_id = rte_socket_id();
for (;;) {
struct rte_mbuf *buf[PACKET_READ_SIZE];
uint16_t rx_count;
/* read a port */
rx_count = rte_eth_rx_burst(info->id[port_num], 0,
buf, PACKET_READ_SIZE);
info->rx_stats.rx[port_num] += rx_count;
/* Now process the NIC packets read */
if (likely(rx_count > 0))
process_packets(port_num, buf, rx_count, socket_id);
/* move to next port */
if (++port_num == info->num_ports)
port_num = 0;
}
}
int
main(int argc, char *argv[])
{
/* initialise the system */
if (init(argc, argv) < 0)
return -1;
RTE_LOG(INFO, APP, "Finished Process Init.\n");
cl_rx_buf = calloc(num_nodes, sizeof(cl_rx_buf[0]));
/* clear statistics */
clear_stats();
/* put all other cores to sleep bar master */
do_packet_forwarding();
return 0;
}