DPDK  20.05.0
examples/eventdev_pipeline/pipeline_worker_generic.c
/*
* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2016 Intel Corporation.
* Copyright 2017 Cavium, Inc.
*/
#include "pipeline_common.h"
worker_generic(void *arg)
{
struct rte_event ev;
struct worker_data *data = (struct worker_data *)arg;
uint8_t dev_id = data->dev_id;
uint8_t port_id = data->port_id;
size_t sent = 0, received = 0;
unsigned int lcore_id = rte_lcore_id();
while (!fdata->done) {
if (fdata->cap.scheduler)
fdata->cap.scheduler(lcore_id);
if (!fdata->worker_core[lcore_id]) {
continue;
}
const uint16_t nb_rx = rte_event_dequeue_burst(dev_id, port_id,
&ev, 1, 0);
if (nb_rx == 0) {
continue;
}
received++;
/* The first worker stage does classification */
if (ev.queue_id == cdata.qid[0])
ev.flow_id = ev.mbuf->hash.rss
% cdata.num_fids;
ev.queue_id = cdata.next_qid[ev.queue_id];
ev.sched_type = cdata.queue_type;
work();
while (rte_event_enqueue_burst(dev_id, port_id, &ev, 1) != 1)
sent++;
}
if (!cdata.quiet)
printf(" worker %u thread done. RX=%zu TX=%zu\n",
rte_lcore_id(), received, sent);
return 0;
}
static int
worker_generic_burst(void *arg)
{
struct rte_event events[BATCH_SIZE];
struct worker_data *data = (struct worker_data *)arg;
uint8_t dev_id = data->dev_id;
uint8_t port_id = data->port_id;
size_t sent = 0, received = 0;
unsigned int lcore_id = rte_lcore_id();
while (!fdata->done) {
uint16_t i;
if (fdata->cap.scheduler)
fdata->cap.scheduler(lcore_id);
if (!fdata->worker_core[lcore_id]) {
continue;
}
const uint16_t nb_rx = rte_event_dequeue_burst(dev_id, port_id,
events, RTE_DIM(events), 0);
if (nb_rx == 0) {
continue;
}
received += nb_rx;
for (i = 0; i < nb_rx; i++) {
/* The first worker stage does classification */
if (events[i].queue_id == cdata.qid[0])
events[i].flow_id = events[i].mbuf->hash.rss
% cdata.num_fids;
events[i].queue_id = cdata.next_qid[events[i].queue_id];
events[i].op = RTE_EVENT_OP_FORWARD;
events[i].sched_type = cdata.queue_type;
work();
}
uint16_t nb_tx = rte_event_enqueue_burst(dev_id, port_id,
events, nb_rx);
while (nb_tx < nb_rx && !fdata->done)
nb_tx += rte_event_enqueue_burst(dev_id, port_id,
events + nb_tx,
nb_rx - nb_tx);
sent += nb_tx;
}
if (!cdata.quiet)
printf(" worker %u thread done. RX=%zu TX=%zu\n",
rte_lcore_id(), received, sent);
return 0;
}
static int
setup_eventdev_generic(struct worker_data *worker_data)
{
const uint8_t dev_id = 0;
/* +1 stages is for a SINGLE_LINK TX stage */
const uint8_t nb_queues = cdata.num_stages + 1;
const uint8_t nb_ports = cdata.num_workers;
struct rte_event_dev_config config = {
.nb_event_queues = nb_queues,
.nb_event_ports = nb_ports,
.nb_events_limit = 4096,
.nb_event_queue_flows = 1024,
.nb_event_port_dequeue_depth = 128,
.nb_event_port_enqueue_depth = 128,
};
struct rte_event_port_conf wkr_p_conf = {
.dequeue_depth = cdata.worker_cq_depth,
.enqueue_depth = 64,
.new_event_threshold = 4096,
};
struct rte_event_queue_conf wkr_q_conf = {
.schedule_type = cdata.queue_type,
.nb_atomic_flows = 1024,
.nb_atomic_order_sequences = 1024,
};
struct rte_event_queue_conf tx_q_conf = {
.event_queue_cfg = RTE_EVENT_QUEUE_CFG_SINGLE_LINK,
};
struct port_link worker_queues[MAX_NUM_STAGES];
uint8_t disable_implicit_release;
unsigned int i;
int ret, ndev = rte_event_dev_count();
if (ndev < 1) {
printf("%d: No Eventdev Devices Found\n", __LINE__);
return -1;
}
struct rte_event_dev_info dev_info;
ret = rte_event_dev_info_get(dev_id, &dev_info);
printf("\tEventdev %d: %s\n", dev_id, dev_info.driver_name);
disable_implicit_release = (dev_info.event_dev_cap &
wkr_p_conf.disable_implicit_release = disable_implicit_release;
if (dev_info.max_num_events < config.nb_events_limit)
config.nb_events_limit = dev_info.max_num_events;
if (dev_info.max_event_port_dequeue_depth <
dev_info.max_event_port_dequeue_depth;
if (dev_info.max_event_port_enqueue_depth <
dev_info.max_event_port_enqueue_depth;
ret = rte_event_dev_configure(dev_id, &config);
if (ret < 0) {
printf("%d: Error configuring device\n", __LINE__);
return -1;
}
/* Q creation - one load balanced per pipeline stage*/
printf(" Stages:\n");
for (i = 0; i < cdata.num_stages; i++) {
if (rte_event_queue_setup(dev_id, i, &wkr_q_conf) < 0) {
printf("%d: error creating qid %d\n", __LINE__, i);
return -1;
}
cdata.qid[i] = i;
cdata.next_qid[i] = i+1;
worker_queues[i].queue_id = i;
if (cdata.enable_queue_priorities) {
/* calculate priority stepping for each stage, leaving
* headroom of 1 for the SINGLE_LINK TX below
*/
const uint32_t prio_delta =
/* higher priority for queues closer to tx */
wkr_q_conf.priority =
}
const char *type_str = "Atomic";
switch (wkr_q_conf.schedule_type) {
type_str = "Ordered";
break;
type_str = "Parallel";
break;
}
printf("\tStage %d, Type %s\tPriority = %d\n", i, type_str,
wkr_q_conf.priority);
}
printf("\n");
/* final queue for sending to TX core */
if (rte_event_queue_setup(dev_id, i, &tx_q_conf) < 0) {
printf("%d: error creating qid %d\n", __LINE__, i);
return -1;
}
cdata.tx_queue_id = i;
if (wkr_p_conf.new_event_threshold > config.nb_events_limit)
wkr_p_conf.new_event_threshold = config.nb_events_limit;
if (wkr_p_conf.dequeue_depth > config.nb_event_port_dequeue_depth)
if (wkr_p_conf.enqueue_depth > config.nb_event_port_enqueue_depth)
/* set up one port per worker, linking to all stage queues */
for (i = 0; i < cdata.num_workers; i++) {
struct worker_data *w = &worker_data[i];
w->dev_id = dev_id;
if (rte_event_port_setup(dev_id, i, &wkr_p_conf) < 0) {
printf("Error setting up port %d\n", i);
return -1;
}
uint32_t s;
for (s = 0; s < cdata.num_stages; s++) {
if (rte_event_port_link(dev_id, i,
&worker_queues[s].queue_id,
&worker_queues[s].priority,
1) != 1) {
printf("%d: error creating link for port %d\n",
__LINE__, i);
return -1;
}
}
w->port_id = i;
}
&fdata->evdev_service_id);
if (ret != -ESRCH && ret != 0) {
printf("Error getting the service ID for sw eventdev\n");
return -1;
}
rte_service_runstate_set(fdata->evdev_service_id, 1);
rte_service_set_runstate_mapped_check(fdata->evdev_service_id, 0);
return dev_id;
}
/*
* Initializes a given port using global settings and with the RX buffers
* coming from the mbuf_pool passed as a parameter.
*/
static inline int
port_init(uint8_t port, struct rte_mempool *mbuf_pool)
{
struct rte_eth_rxconf rx_conf;
static const struct rte_eth_conf port_conf_default = {
.rxmode = {
.max_rx_pkt_len = RTE_ETHER_MAX_LEN,
},
.rx_adv_conf = {
.rss_conf = {
.rss_hf = ETH_RSS_IP |
ETH_RSS_TCP |
ETH_RSS_UDP,
}
}
};
const uint16_t rx_rings = 1, tx_rings = 1;
const uint16_t rx_ring_size = 512, tx_ring_size = 512;
struct rte_eth_conf port_conf = port_conf_default;
int retval;
uint16_t q;
struct rte_eth_dev_info dev_info;
struct rte_eth_txconf txconf;
return -1;
retval = rte_eth_dev_info_get(port, &dev_info);
if (retval != 0) {
printf("Error during getting device (port %u) info: %s\n",
port, strerror(-retval));
return retval;
}
if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
port_conf.txmode.offloads |=
if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_RSS_HASH)
port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
rx_conf = dev_info.default_rxconf;
rx_conf.offloads = port_conf.rxmode.offloads;
dev_info.flow_type_rss_offloads;
if (port_conf.rx_adv_conf.rss_conf.rss_hf !=
port_conf_default.rx_adv_conf.rss_conf.rss_hf) {
printf("Port %u modified RSS hash function based on hardware support,"
"requested:%#"PRIx64" configured:%#"PRIx64"\n",
port,
port_conf_default.rx_adv_conf.rss_conf.rss_hf,
}
/* Configure the Ethernet device. */
retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
if (retval != 0)
return retval;
/* Allocate and set up 1 RX queue per Ethernet port. */
for (q = 0; q < rx_rings; q++) {
retval = rte_eth_rx_queue_setup(port, q, rx_ring_size,
rte_eth_dev_socket_id(port), &rx_conf,
mbuf_pool);
if (retval < 0)
return retval;
}
txconf = dev_info.default_txconf;
txconf.offloads = port_conf_default.txmode.offloads;
/* Allocate and set up 1 TX queue per Ethernet port. */
for (q = 0; q < tx_rings; q++) {
retval = rte_eth_tx_queue_setup(port, q, tx_ring_size,
rte_eth_dev_socket_id(port), &txconf);
if (retval < 0)
return retval;
}
/* Display the port MAC address. */
struct rte_ether_addr addr;
retval = rte_eth_macaddr_get(port, &addr);
if (retval != 0) {
printf("Failed to get MAC address (port %u): %s\n",
port, rte_strerror(-retval));
return retval;
}
printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8
" %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n",
(unsigned int)port,
addr.addr_bytes[0], addr.addr_bytes[1],
addr.addr_bytes[2], addr.addr_bytes[3],
addr.addr_bytes[4], addr.addr_bytes[5]);
/* Enable RX in promiscuous mode for the Ethernet device. */
if (retval != 0)
return retval;
return 0;
}
static int
init_ports(uint16_t num_ports)
{
uint16_t portid;
if (!cdata.num_mbuf)
cdata.num_mbuf = 16384 * num_ports;
struct rte_mempool *mp = rte_pktmbuf_pool_create("packet_pool",
/* mbufs */ cdata.num_mbuf,
/* cache_size */ 512,
/* priv_size*/ 0,
/* data_room_size */ RTE_MBUF_DEFAULT_BUF_SIZE,
if (port_init(portid, mp) != 0)
rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu16 "\n",
portid);
return 0;
}
static void
init_adapters(uint16_t nb_ports)
{
int i;
int ret;
uint8_t tx_port_id = 0;
uint8_t evdev_id = 0;
struct rte_event_dev_info dev_info;
ret = rte_event_dev_info_get(evdev_id, &dev_info);
struct rte_event_port_conf adptr_p_conf = {
.dequeue_depth = cdata.worker_cq_depth,
.enqueue_depth = 64,
.new_event_threshold = 4096,
};
if (adptr_p_conf.new_event_threshold > dev_info.max_num_events)
adptr_p_conf.new_event_threshold = dev_info.max_num_events;
if (adptr_p_conf.dequeue_depth > dev_info.max_event_port_dequeue_depth)
adptr_p_conf.dequeue_depth =
dev_info.max_event_port_dequeue_depth;
if (adptr_p_conf.enqueue_depth > dev_info.max_event_port_enqueue_depth)
adptr_p_conf.enqueue_depth =
dev_info.max_event_port_enqueue_depth;
init_ports(nb_ports);
/* Create one adapter for all the ethernet ports. */
ret = rte_event_eth_rx_adapter_create(cdata.rx_adapter_id, evdev_id,
&adptr_p_conf);
if (ret)
rte_exit(EXIT_FAILURE, "failed to create rx adapter[%d]",
cdata.rx_adapter_id);
ret = rte_event_eth_tx_adapter_create(cdata.tx_adapter_id, evdev_id,
&adptr_p_conf);
if (ret)
rte_exit(EXIT_FAILURE, "failed to create tx adapter[%d]",
cdata.tx_adapter_id);
memset(&queue_conf, 0, sizeof(queue_conf));
queue_conf.ev.sched_type = cdata.queue_type;
queue_conf.ev.queue_id = cdata.qid[0];
for (i = 0; i < nb_ports; i++) {
ret = rte_event_eth_rx_adapter_queue_add(cdata.rx_adapter_id, i,
-1, &queue_conf);
if (ret)
rte_exit(EXIT_FAILURE,
"Failed to add queues to Rx adapter");
ret = rte_event_eth_tx_adapter_queue_add(cdata.tx_adapter_id, i,
-1);
if (ret)
rte_exit(EXIT_FAILURE,
"Failed to add queues to Tx adapter");
}
ret = rte_event_eth_tx_adapter_event_port_get(cdata.tx_adapter_id,
&tx_port_id);
if (ret)
rte_exit(EXIT_FAILURE,
"Failed to get Tx adapter port id");
ret = rte_event_port_link(evdev_id, tx_port_id, &cdata.tx_queue_id,
NULL, 1);
if (ret != 1)
rte_exit(EXIT_FAILURE,
"Unable to link Tx adapter port to Tx queue");
ret = rte_event_eth_rx_adapter_service_id_get(cdata.rx_adapter_id,
&fdata->rxadptr_service_id);
if (ret != -ESRCH && ret != 0) {
rte_exit(EXIT_FAILURE,
"Error getting the service ID for Rx adapter\n");
}
rte_service_runstate_set(fdata->rxadptr_service_id, 1);
rte_service_set_runstate_mapped_check(fdata->rxadptr_service_id, 0);
ret = rte_event_eth_tx_adapter_service_id_get(cdata.tx_adapter_id,
&fdata->txadptr_service_id);
if (ret != -ESRCH && ret != 0) {
rte_exit(EXIT_FAILURE,
"Error getting the service ID for Tx adapter\n");
}
rte_service_runstate_set(fdata->txadptr_service_id, 1);
rte_service_set_runstate_mapped_check(fdata->txadptr_service_id, 0);
ret = rte_event_eth_rx_adapter_start(cdata.rx_adapter_id);
if (ret)
rte_exit(EXIT_FAILURE, "Rx adapter[%d] start failed",
cdata.rx_adapter_id);
ret = rte_event_eth_tx_adapter_start(cdata.tx_adapter_id);
if (ret)
rte_exit(EXIT_FAILURE, "Tx adapter[%d] start failed",
cdata.tx_adapter_id);
if (rte_event_dev_start(evdev_id) < 0)
rte_exit(EXIT_FAILURE, "Error starting eventdev");
}
static void
generic_opt_check(void)
{
int i;
int ret;
uint32_t cap = 0;
uint8_t rx_needed = 0;
uint8_t sched_needed = 0;
struct rte_event_dev_info eventdev_info;
memset(&eventdev_info, 0, sizeof(struct rte_event_dev_info));
rte_event_dev_info_get(0, &eventdev_info);
if (cdata.all_type_queues && !(eventdev_info.event_dev_cap &
rte_exit(EXIT_FAILURE,
"Event dev doesn't support all type queues\n");
sched_needed = !(eventdev_info.event_dev_cap &
if (ret)
rte_exit(EXIT_FAILURE,
"failed to get event rx adapter capabilities");
rx_needed |=
}
if (cdata.worker_lcore_mask == 0 ||
(rx_needed && cdata.rx_lcore_mask == 0) ||
(cdata.tx_lcore_mask == 0) ||
(sched_needed && cdata.sched_lcore_mask == 0)) {
printf("Core part of pipeline was not assigned any cores. "
"This will stall the pipeline, please check core masks "
"(use -h for details on setting core masks):\n"
"\trx: %"PRIu64"\n\ttx: %"PRIu64"\n\tsched: %"PRIu64
"\n\tworkers: %"PRIu64"\n",
cdata.rx_lcore_mask, cdata.tx_lcore_mask,
cdata.sched_lcore_mask,
cdata.worker_lcore_mask);
rte_exit(-1, "Fix core masks\n");
}
if (!sched_needed)
memset(fdata->sched_core, 0,
sizeof(unsigned int) * MAX_NUM_CORE);
if (!rx_needed)
memset(fdata->rx_core, 0,
sizeof(unsigned int) * MAX_NUM_CORE);
}
void
set_worker_generic_setup_data(struct setup_data *caps, bool burst)
{
if (burst) {
caps->worker = worker_generic_burst;
} else {
caps->worker = worker_generic;
}
caps->adptr_setup = init_adapters;
caps->scheduler = schedule_devices;
caps->evdev_setup = setup_eventdev_generic;
caps->check_opt = generic_opt_check;
}