#include <sys/types.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include "ipsec.h"
#include "esp.h"
static inline void
{
if (IS_IP4_TUNNEL(sa->flags)) {
tunnel->
ipv4.ttl = IPDEFTTL;
memcpy((uint8_t *)&tunnel->
ipv4.src_ip,
(uint8_t *)&sa->src.ip.ip4, 4);
memcpy((uint8_t *)&tunnel->
ipv4.dst_ip,
(uint8_t *)&sa->dst.ip.ip4, 4);
}
}
}
int
create_lookaside_session(struct ipsec_ctx *ipsec_ctx, struct ipsec_sa *sa)
{
unsigned long cdev_id_qp = 0;
int32_t ret = 0;
struct cdev_key key = { 0 };
key.cipher_algo = (uint8_t)sa->cipher_algo;
key.auth_algo = (uint8_t)sa->auth_algo;
key.aead_algo = (uint8_t)sa->aead_algo;
(void **)&cdev_id_qp);
if (ret < 0) {
"No cryptodev: core %u, cipher_algo %u, "
"auth_algo %u, aead_algo %u\n",
key.lcore_id,
key.cipher_algo,
key.auth_algo,
key.aead_algo);
return -1;
}
RTE_LOG_DP(DEBUG, IPSEC,
"Create session for SA spi %u on cryptodev "
"%u qp %u\n", sa->spi,
ipsec_ctx->tbl[cdev_id_qp].id,
ipsec_ctx->tbl[cdev_id_qp].qp);
{.ipsec = {
.spi = sa->spi,
.salt = sa->salt,
.options = { 0 },
.direction = sa->direction,
.mode = (IS_TUNNEL(sa->flags)) ?
} },
.userdata = NULL,
};
rte_cryptodev_get_sec_ctx(
ipsec_ctx->tbl[cdev_id_qp].id);
set_ipsec_conf(sa, &(sess_conf.
ipsec));
&sess_conf, ipsec_ctx->session_priv_pool);
if (sa->sec_session == NULL) {
"SEC Session init failed: err: %d\n", ret);
return -1;
}
} else {
RTE_LOG(ERR, IPSEC,
"Inline not supported\n");
return -1;
}
} else {
ipsec_ctx->session_pool);
sa->crypto_session, sa->xforms,
ipsec_ctx->session_priv_pool);
&cdev_info);
}
sa->cdev_id_qp = cdev_id_qp;
return 0;
}
int
create_inline_session(struct socket_ctx *skt_ctx, struct ipsec_sa *sa)
{
int32_t ret = 0;
{.ipsec = {
.spi = sa->spi,
.salt = sa->salt,
.options = { 0 },
.direction = sa->direction,
.mode = (sa->flags == IP4_TUNNEL ||
sa->flags == IP6_TUNNEL) ?
} },
.userdata = NULL,
};
RTE_LOG_DP(DEBUG, IPSEC,
"Create session for SA spi %u on port %u\n",
sa->spi, sa->portid);
int ret = 0;
sa->portid);
if (sec_ctx == NULL) {
" rte_eth_dev_get_sec_ctx failed\n");
return -1;
}
&sess_conf, skt_ctx->session_pool);
if (sa->sec_session == NULL) {
"SEC Session init failed: err: %d\n", ret);
return -1;
}
if (sec_cap->
action == sa->type &&
sec_cap->
ipsec.direction == sa->direction)
break;
sec_cap++;
}
"No suitable security capability found\n");
return -1;
}
sa->security_ctx = sec_ctx;
if (IS_IP6(sa->flags)) {
sa->pattern[1].spec = &sa->ipv6_spec;
memcpy(sa->ipv6_spec.hdr.dst_addr,
sa->dst.ip.ip6.ip6_b, 16);
memcpy(sa->ipv6_spec.hdr.src_addr,
sa->src.ip.ip6.ip6_b, 16);
} else if (IS_IP4(sa->flags)) {
sa->pattern[1].spec = &sa->ipv4_spec;
sa->ipv4_spec.hdr.dst_addr = sa->dst.ip.ip4;
sa->ipv4_spec.hdr.src_addr = sa->src.ip.ip4;
}
sa->pattern[2].spec = &sa->esp_spec;
sa->action[0].conf = sa->sec_session;
sa->attr.egress = (sa->direction ==
sa->attr.ingress = (sa->direction ==
if (sa->attr.ingress) {
uint8_t rss_key[40];
.rss_key_len = 40,
};
uint16_t queue[RTE_MAX_QUEUES_PER_PORT];
unsigned int i;
unsigned int j;
sa->action[1].conf = &action_rss;
for (i = 0, j = 0; i < dev_info.nb_rx_queues; ++i)
queue[j++] = i;
.queue_num = j,
.key = rss_key,
};
sa->pattern, sa->action,
&err);
if (!ret)
goto flow_create;
sa->action[1].conf =
.index = 0,
};
sa->pattern, sa->action,
&err);
sa->action[1].conf = NULL;
sa->pattern, sa->action,
&err);
if (ret)
goto flow_create_failure;
} else if (sa->attr.egress &&
(sa->ol_flags &
sa->action[1].type =
sa->action[2].type =
}
flow_create:
&sa->attr, sa->pattern, sa->action, &err);
if (sa->flow == NULL) {
flow_create_failure:
"Failed to create ipsec flow msg: %s\n",
err.message);
return -1;
}
if (sec_ctx == NULL) {
"Ethernet device doesn't have security features registered\n");
return -1;
}
set_ipsec_conf(sa, &(sess_conf.ipsec));
&sess_conf, skt_ctx->session_pool);
if (sa->sec_session == NULL) {
"SEC Session init failed: err: %d\n", ret);
return -1;
}
if (sec_cap == NULL) {
"No capabilities registered\n");
return -1;
}
if (sec_cap->
action == sa->type &&
sec_cap->
ipsec.direction == sa->direction)
break;
sec_cap++;
}
"No suitable security capability found\n");
return -1;
}
sa->security_ctx = sec_ctx;
}
sa->cdev_id_qp = 0;
return 0;
}
void
enqueue_cop_burst(struct cdev_qp *cqp)
{
uint32_t i, len, ret;
len = cqp->len;
if (ret < len) {
" enqueued %u crypto ops out of %u\n",
cqp->id, cqp->qp, ret, len);
for (i = ret; i < len; i++)
}
cqp->in_flight += ret;
cqp->len = 0;
}
static inline void
{
cqp->buf[cqp->len++] = cop;
if (cqp->len == MAX_PKT_BURST)
enqueue_cop_burst(cqp);
}
static inline void
ipsec_enqueue(ipsec_xform_fn xform_func, struct ipsec_ctx *ipsec_ctx,
struct rte_mbuf *pkts[],
struct ipsec_sa *sas[],
uint16_t nb_pkts)
{
int32_t ret = 0, i;
struct ipsec_mbuf_metadata *priv;
struct ipsec_sa *sa;
for (i = 0; i < nb_pkts; i++) {
continue;
}
priv = get_priv(pkts[i]);
sa = sas[i];
priv->sa = sa;
switch (sa->type) {
if ((
unlikely(sa->sec_session == NULL)) &&
create_lookaside_session(ipsec_ctx, sa)) {
continue;
}
sym_cop = get_sym_cop(&priv->cop);
sym_cop->
m_src = pkts[i];
sa->sec_session);
break;
if ((
unlikely(sa->crypto_session == NULL)) &&
create_lookaside_session(ipsec_ctx, sa)) {
continue;
}
sa->crypto_session);
ret = xform_func(pkts[i], sa, &priv->cop);
continue;
}
break;
RTE_ASSERT(sa->sec_session != NULL);
ipsec_ctx->ol_pkts[ipsec_ctx->ol_pkts_cnt++] = pkts[i];
sa->security_ctx,
sa->sec_session, pkts[i], NULL);
continue;
RTE_ASSERT(sa->sec_session != NULL);
sa->sec_session);
ret = xform_func(pkts[i], sa, &priv->cop);
continue;
}
ipsec_ctx->ol_pkts[ipsec_ctx->ol_pkts_cnt++] = pkts[i];
sa->security_ctx,
sa->sec_session, pkts[i], NULL);
continue;
}
RTE_ASSERT(sa->cdev_id_qp < ipsec_ctx->nb_qps);
enqueue_cop(&ipsec_ctx->tbl[sa->cdev_id_qp], &priv->cop);
}
}
static inline int32_t
ipsec_inline_dequeue(ipsec_xform_fn xform_func, struct ipsec_ctx *ipsec_ctx,
struct rte_mbuf *pkts[], uint16_t max_pkts)
{
int32_t nb_pkts, ret;
struct ipsec_mbuf_metadata *priv;
struct ipsec_sa *sa;
nb_pkts = 0;
while (ipsec_ctx->ol_pkts_cnt > 0 && nb_pkts < max_pkts) {
pkt = ipsec_ctx->ol_pkts[--ipsec_ctx->ol_pkts_cnt];
priv = get_priv(pkt);
sa = priv->sa;
ret = xform_func(pkt, sa, &priv->cop);
continue;
}
pkts[nb_pkts++] = pkt;
}
return nb_pkts;
}
static inline int
ipsec_dequeue(ipsec_xform_fn xform_func, struct ipsec_ctx *ipsec_ctx,
struct rte_mbuf *pkts[], uint16_t max_pkts)
{
int32_t nb_pkts = 0, ret = 0, i, j, nb_cops;
struct ipsec_mbuf_metadata *priv;
struct ipsec_sa *sa;
for (i = 0; i < ipsec_ctx->nb_qps && nb_pkts < max_pkts; i++) {
struct cdev_qp *cqp;
cqp = &ipsec_ctx->tbl[ipsec_ctx->last_qp++];
if (ipsec_ctx->last_qp == ipsec_ctx->nb_qps)
ipsec_ctx->last_qp %= ipsec_ctx->nb_qps;
if (cqp->in_flight == 0)
continue;
cops, max_pkts - nb_pkts);
cqp->in_flight -= nb_cops;
for (j = 0; j < nb_cops; j++) {
priv = get_priv(pkt);
sa = priv->sa;
RTE_ASSERT(sa != NULL);
ret = xform_func(pkt, sa, cops[j]);
continue;
}
}
pkts[nb_pkts++] = pkt;
}
}
return nb_pkts;
}
uint16_t
ipsec_inbound(
struct ipsec_ctx *ctx,
struct rte_mbuf *pkts[],
uint16_t nb_pkts, uint16_t len)
{
struct ipsec_sa *sas[nb_pkts];
inbound_sa_lookup(ctx->sa_ctx, pkts, sas, nb_pkts);
ipsec_enqueue(esp_inbound, ctx, pkts, sas, nb_pkts);
return ipsec_inline_dequeue(esp_inbound_post, ctx, pkts, len);
}
uint16_t
ipsec_inbound_cqp_dequeue(
struct ipsec_ctx *ctx,
struct rte_mbuf *pkts[],
uint16_t len)
{
return ipsec_dequeue(esp_inbound_post, ctx, pkts, len);
}
uint16_t
ipsec_outbound(
struct ipsec_ctx *ctx,
struct rte_mbuf *pkts[],
uint32_t sa_idx[], uint16_t nb_pkts, uint16_t len)
{
struct ipsec_sa *sas[nb_pkts];
outbound_sa_lookup(ctx->sa_ctx, sa_idx, sas, nb_pkts);
ipsec_enqueue(esp_outbound, ctx, pkts, sas, nb_pkts);
return ipsec_inline_dequeue(esp_outbound_post, ctx, pkts, len);
}
uint16_t
ipsec_outbound_cqp_dequeue(
struct ipsec_ctx *ctx,
struct rte_mbuf *pkts[],
uint16_t len)
{
return ipsec_dequeue(esp_outbound_post, ctx, pkts, len);
}