DPDK  19.05.0
examples/distributor/main.c
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2017 Intel Corporation
*/
#include <stdint.h>
#include <inttypes.h>
#include <unistd.h>
#include <signal.h>
#include <getopt.h>
#include <rte_eal.h>
#include <rte_ethdev.h>
#include <rte_cycles.h>
#include <rte_malloc.h>
#include <rte_debug.h>
#include <rte_prefetch.h>
#include <rte_pause.h>
#include <rte_power.h>
#define RX_RING_SIZE 1024
#define TX_RING_SIZE 1024
#define NUM_MBUFS ((64*1024)-1)
#define MBUF_CACHE_SIZE 128
#define BURST_SIZE 64
#define SCHED_RX_RING_SZ 8192
#define SCHED_TX_RING_SZ 65536
#define BURST_SIZE_TX 32
#define RTE_LOGTYPE_DISTRAPP RTE_LOGTYPE_USER1
#define ANSI_COLOR_RED "\x1b[31m"
#define ANSI_COLOR_RESET "\x1b[0m"
/* mask of enabled ports */
static uint32_t enabled_port_mask;
volatile uint8_t quit_signal;
volatile uint8_t quit_signal_rx;
volatile uint8_t quit_signal_dist;
volatile uint8_t quit_signal_work;
unsigned int power_lib_initialised;
static volatile struct app_stats {
struct {
uint64_t rx_pkts;
uint64_t returned_pkts;
uint64_t enqueued_pkts;
uint64_t enqdrop_pkts;
struct {
uint64_t in_pkts;
uint64_t ret_pkts;
uint64_t sent_pkts;
uint64_t enqdrop_pkts;
struct {
uint64_t dequeue_pkts;
uint64_t tx_pkts;
uint64_t enqdrop_pkts;
uint64_t worker_pkts[64] __rte_cache_aligned;
uint64_t worker_bursts[64][8] __rte_cache_aligned;
uint64_t port_rx_pkts[64] __rte_cache_aligned;
uint64_t port_tx_pkts[64] __rte_cache_aligned;
} app_stats;
struct app_stats prev_app_stats;
static const struct rte_eth_conf port_conf_default = {
.rxmode = {
.max_rx_pkt_len = ETHER_MAX_LEN,
},
.txmode = {
.mq_mode = ETH_MQ_TX_NONE,
},
.rx_adv_conf = {
.rss_conf = {
.rss_hf = ETH_RSS_IP | ETH_RSS_UDP |
ETH_RSS_TCP | ETH_RSS_SCTP,
}
},
};
struct output_buffer {
unsigned count;
struct rte_mbuf *mbufs[BURST_SIZE];
};
static void print_stats(void);
/*
* Initialises a given port using global settings and with the rx buffers
* coming from the mbuf_pool passed as parameter
*/
static inline int
port_init(uint16_t port, struct rte_mempool *mbuf_pool)
{
struct rte_eth_conf port_conf = port_conf_default;
const uint16_t rxRings = 1, txRings = rte_lcore_count() - 1;
int retval;
uint16_t q;
uint16_t nb_rxd = RX_RING_SIZE;
uint16_t nb_txd = TX_RING_SIZE;
struct rte_eth_dev_info dev_info;
struct rte_eth_txconf txconf;
return -1;
rte_eth_dev_info_get(port, &dev_info);
if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
port_conf.txmode.offloads |=
dev_info.flow_type_rss_offloads;
if (port_conf.rx_adv_conf.rss_conf.rss_hf !=
port_conf_default.rx_adv_conf.rss_conf.rss_hf) {
printf("Port %u modified RSS hash function based on hardware support,"
"requested:%#"PRIx64" configured:%#"PRIx64"\n",
port,
port_conf_default.rx_adv_conf.rss_conf.rss_hf,
}
retval = rte_eth_dev_configure(port, rxRings, txRings, &port_conf);
if (retval != 0)
return retval;
retval = rte_eth_dev_adjust_nb_rx_tx_desc(port, &nb_rxd, &nb_txd);
if (retval != 0)
return retval;
for (q = 0; q < rxRings; q++) {
retval = rte_eth_rx_queue_setup(port, q, nb_rxd,
NULL, mbuf_pool);
if (retval < 0)
return retval;
}
txconf = dev_info.default_txconf;
txconf.offloads = port_conf.txmode.offloads;
for (q = 0; q < txRings; q++) {
retval = rte_eth_tx_queue_setup(port, q, nb_txd,
&txconf);
if (retval < 0)
return retval;
}
retval = rte_eth_dev_start(port);
if (retval < 0)
return retval;
struct rte_eth_link link;
while (!link.link_status) {
printf("Waiting for Link up on port %"PRIu16"\n", port);
sleep(1);
}
if (!link.link_status) {
printf("Link down on port %"PRIu16"\n", port);
return 0;
}
struct ether_addr addr;
rte_eth_macaddr_get(port, &addr);
printf("Port %u MAC: %02"PRIx8" %02"PRIx8" %02"PRIx8
" %02"PRIx8" %02"PRIx8" %02"PRIx8"\n",
port,
addr.addr_bytes[0], addr.addr_bytes[1],
addr.addr_bytes[2], addr.addr_bytes[3],
addr.addr_bytes[4], addr.addr_bytes[5]);
return 0;
}
struct lcore_params {
unsigned worker_id;
struct rte_distributor *d;
struct rte_ring *rx_dist_ring;
struct rte_ring *dist_tx_ring;
struct rte_mempool *mem_pool;
};
static int
lcore_rx(struct lcore_params *p)
{
const uint16_t nb_ports = rte_eth_dev_count_avail();
const int socket_id = rte_socket_id();
uint16_t port;
struct rte_mbuf *bufs[BURST_SIZE*2];
/* skip ports that are not enabled */
if ((enabled_port_mask & (1 << port)) == 0)
continue;
if (rte_eth_dev_socket_id(port) > 0 &&
rte_eth_dev_socket_id(port) != socket_id)
printf("WARNING, port %u is on remote NUMA node to "
"RX thread.\n\tPerformance will not "
"be optimal.\n", port);
}
printf("\nCore %u doing packet RX.\n", rte_lcore_id());
port = 0;
while (!quit_signal_rx) {
/* skip ports that are not enabled */
if ((enabled_port_mask & (1 << port)) == 0) {
if (++port == nb_ports)
port = 0;
continue;
}
const uint16_t nb_rx = rte_eth_rx_burst(port, 0, bufs,
BURST_SIZE);
if (unlikely(nb_rx == 0)) {
if (++port == nb_ports)
port = 0;
continue;
}
app_stats.rx.rx_pkts += nb_rx;
/*
* You can run the distributor on the rx core with this code. Returned
* packets are then send straight to the tx core.
*/
#if 0
rte_distributor_process(d, bufs, nb_rx);
const uint16_t nb_ret = rte_distributor_returned_pktsd,
bufs, BURST_SIZE*2);
app_stats.rx.returned_pkts += nb_ret;
if (unlikely(nb_ret == 0)) {
if (++port == nb_ports)
port = 0;
continue;
}
struct rte_ring *tx_ring = p->dist_tx_ring;
uint16_t sent = rte_ring_enqueue_burst(tx_ring,
(void *)bufs, nb_ret, NULL);
#else
uint16_t nb_ret = nb_rx;
/*
* Swap the following two lines if you want the rx traffic
* to go directly to tx, no distribution.
*/
struct rte_ring *out_ring = p->rx_dist_ring;
/* struct rte_ring *out_ring = p->dist_tx_ring; */
uint16_t sent = rte_ring_enqueue_burst(out_ring,
(void *)bufs, nb_ret, NULL);
#endif
app_stats.rx.enqueued_pkts += sent;
if (unlikely(sent < nb_ret)) {
app_stats.rx.enqdrop_pkts += nb_ret - sent;
RTE_LOG_DP(DEBUG, DISTRAPP,
"%s:Packet loss due to full ring\n", __func__);
while (sent < nb_ret)
rte_pktmbuf_free(bufs[sent++]);
}
if (++port == nb_ports)
port = 0;
}
if (power_lib_initialised)
/* set worker & tx threads quit flag */
printf("\nCore %u exiting rx task.\n", rte_lcore_id());
quit_signal = 1;
return 0;
}
static inline void
flush_one_port(struct output_buffer *outbuf, uint8_t outp)
{
unsigned int nb_tx = rte_eth_tx_burst(outp, 0,
outbuf->mbufs, outbuf->count);
app_stats.tx.tx_pkts += outbuf->count;
if (unlikely(nb_tx < outbuf->count)) {
app_stats.tx.enqdrop_pkts += outbuf->count - nb_tx;
do {
rte_pktmbuf_free(outbuf->mbufs[nb_tx]);
} while (++nb_tx < outbuf->count);
}
outbuf->count = 0;
}
static inline void
flush_all_ports(struct output_buffer *tx_buffers)
{
uint16_t outp;
/* skip ports that are not enabled */
if ((enabled_port_mask & (1 << outp)) == 0)
continue;
if (tx_buffers[outp].count == 0)
continue;
flush_one_port(&tx_buffers[outp], outp);
}
}
static int
lcore_distributor(struct lcore_params *p)
{
struct rte_ring *in_r = p->rx_dist_ring;
struct rte_ring *out_r = p->dist_tx_ring;
struct rte_mbuf *bufs[BURST_SIZE * 4];
struct rte_distributor *d = p->d;
printf("\nCore %u acting as distributor core.\n", rte_lcore_id());
while (!quit_signal_dist) {
const uint16_t nb_rx = rte_ring_dequeue_burst(in_r,
(void *)bufs, BURST_SIZE*1, NULL);
if (nb_rx) {
app_stats.dist.in_pkts += nb_rx;
/* Distribute the packets */
rte_distributor_process(d, bufs, nb_rx);
/* Handle Returns */
const uint16_t nb_ret =
bufs, BURST_SIZE*2);
if (unlikely(nb_ret == 0))
continue;
app_stats.dist.ret_pkts += nb_ret;
uint16_t sent = rte_ring_enqueue_burst(out_r,
(void *)bufs, nb_ret, NULL);
app_stats.dist.sent_pkts += sent;
if (unlikely(sent < nb_ret)) {
app_stats.dist.enqdrop_pkts += nb_ret - sent;
RTE_LOG(DEBUG, DISTRAPP,
"%s:Packet loss due to full out ring\n",
__func__);
while (sent < nb_ret)
rte_pktmbuf_free(bufs[sent++]);
}
}
}
printf("\nCore %u exiting distributor task.\n", rte_lcore_id());
quit_signal_work = 1;
if (power_lib_initialised)
/* Unblock any returns so workers can exit */
quit_signal_rx = 1;
return 0;
}
static int
lcore_tx(struct rte_ring *in_r)
{
static struct output_buffer tx_buffers[RTE_MAX_ETHPORTS];
const int socket_id = rte_socket_id();
uint16_t port;
/* skip ports that are not enabled */
if ((enabled_port_mask & (1 << port)) == 0)
continue;
if (rte_eth_dev_socket_id(port) > 0 &&
rte_eth_dev_socket_id(port) != socket_id)
printf("WARNING, port %u is on remote NUMA node to "
"TX thread.\n\tPerformance will not "
"be optimal.\n", port);
}
printf("\nCore %u doing packet TX.\n", rte_lcore_id());
while (!quit_signal) {
/* skip ports that are not enabled */
if ((enabled_port_mask & (1 << port)) == 0)
continue;
struct rte_mbuf *bufs[BURST_SIZE_TX];
const uint16_t nb_rx = rte_ring_dequeue_burst(in_r,
(void *)bufs, BURST_SIZE_TX, NULL);
app_stats.tx.dequeue_pkts += nb_rx;
/* if we get no traffic, flush anything we have */
if (unlikely(nb_rx == 0)) {
flush_all_ports(tx_buffers);
continue;
}
/* for traffic we receive, queue it up for transmit */
uint16_t i;
rte_prefetch_non_temporal((void *)bufs[0]);
rte_prefetch_non_temporal((void *)bufs[1]);
rte_prefetch_non_temporal((void *)bufs[2]);
for (i = 0; i < nb_rx; i++) {
struct output_buffer *outbuf;
uint8_t outp;
rte_prefetch_non_temporal((void *)bufs[i + 3]);
/*
* workers should update in_port to hold the
* output port value
*/
outp = bufs[i]->port;
/* skip ports that are not enabled */
if ((enabled_port_mask & (1 << outp)) == 0)
continue;
outbuf = &tx_buffers[outp];
outbuf->mbufs[outbuf->count++] = bufs[i];
if (outbuf->count == BURST_SIZE_TX)
flush_one_port(outbuf, outp);
}
}
}
if (power_lib_initialised)
printf("\nCore %u exiting tx task.\n", rte_lcore_id());
return 0;
}
static void
int_handler(int sig_num)
{
printf("Exiting on signal %d\n", sig_num);
/* set quit flag for rx thread to exit */
quit_signal_dist = 1;
}
static void
print_stats(void)
{
struct rte_eth_stats eth_stats;
unsigned int i, j;
const unsigned int num_workers = rte_lcore_count() - 4;
rte_eth_stats_get(i, &eth_stats);
app_stats.port_rx_pkts[i] = eth_stats.ipackets;
app_stats.port_tx_pkts[i] = eth_stats.opackets;
}
printf("\n\nRX Thread:\n");
printf("Port %u Pktsin : %5.2f\n", i,
(app_stats.port_rx_pkts[i] -
prev_app_stats.port_rx_pkts[i])/1000000.0);
prev_app_stats.port_rx_pkts[i] = app_stats.port_rx_pkts[i];
}
printf(" - Received: %5.2f\n",
(app_stats.rx.rx_pkts -
prev_app_stats.rx.rx_pkts)/1000000.0);
printf(" - Returned: %5.2f\n",
(app_stats.rx.returned_pkts -
prev_app_stats.rx.returned_pkts)/1000000.0);
printf(" - Enqueued: %5.2f\n",
(app_stats.rx.enqueued_pkts -
prev_app_stats.rx.enqueued_pkts)/1000000.0);
printf(" - Dropped: %s%5.2f%s\n", ANSI_COLOR_RED,
(app_stats.rx.enqdrop_pkts -
prev_app_stats.rx.enqdrop_pkts)/1000000.0,
ANSI_COLOR_RESET);
printf("Distributor thread:\n");
printf(" - In: %5.2f\n",
(app_stats.dist.in_pkts -
prev_app_stats.dist.in_pkts)/1000000.0);
printf(" - Returned: %5.2f\n",
(app_stats.dist.ret_pkts -
prev_app_stats.dist.ret_pkts)/1000000.0);
printf(" - Sent: %5.2f\n",
(app_stats.dist.sent_pkts -
prev_app_stats.dist.sent_pkts)/1000000.0);
printf(" - Dropped %s%5.2f%s\n", ANSI_COLOR_RED,
(app_stats.dist.enqdrop_pkts -
prev_app_stats.dist.enqdrop_pkts)/1000000.0,
ANSI_COLOR_RESET);
printf("TX thread:\n");
printf(" - Dequeued: %5.2f\n",
(app_stats.tx.dequeue_pkts -
prev_app_stats.tx.dequeue_pkts)/1000000.0);
printf("Port %u Pktsout: %5.2f\n",
i, (app_stats.port_tx_pkts[i] -
prev_app_stats.port_tx_pkts[i])/1000000.0);
prev_app_stats.port_tx_pkts[i] = app_stats.port_tx_pkts[i];
}
printf(" - Transmitted: %5.2f\n",
(app_stats.tx.tx_pkts -
prev_app_stats.tx.tx_pkts)/1000000.0);
printf(" - Dropped: %s%5.2f%s\n", ANSI_COLOR_RED,
(app_stats.tx.enqdrop_pkts -
prev_app_stats.tx.enqdrop_pkts)/1000000.0,
ANSI_COLOR_RESET);
prev_app_stats.rx.rx_pkts = app_stats.rx.rx_pkts;
prev_app_stats.rx.returned_pkts = app_stats.rx.returned_pkts;
prev_app_stats.rx.enqueued_pkts = app_stats.rx.enqueued_pkts;
prev_app_stats.rx.enqdrop_pkts = app_stats.rx.enqdrop_pkts;
prev_app_stats.dist.in_pkts = app_stats.dist.in_pkts;
prev_app_stats.dist.ret_pkts = app_stats.dist.ret_pkts;
prev_app_stats.dist.sent_pkts = app_stats.dist.sent_pkts;
prev_app_stats.dist.enqdrop_pkts = app_stats.dist.enqdrop_pkts;
prev_app_stats.tx.dequeue_pkts = app_stats.tx.dequeue_pkts;
prev_app_stats.tx.tx_pkts = app_stats.tx.tx_pkts;
prev_app_stats.tx.enqdrop_pkts = app_stats.tx.enqdrop_pkts;
for (i = 0; i < num_workers; i++) {
printf("Worker %02u Pkts: %5.2f. Bursts(1-8): ", i,
(app_stats.worker_pkts[i] -
prev_app_stats.worker_pkts[i])/1000000.0);
for (j = 0; j < 8; j++) {
printf("%"PRIu64" ", app_stats.worker_bursts[i][j]);
app_stats.worker_bursts[i][j] = 0;
}
printf("\n");
prev_app_stats.worker_pkts[i] = app_stats.worker_pkts[i];
}
}
static int
lcore_worker(struct lcore_params *p)
{
struct rte_distributor *d = p->d;
const unsigned id = p->worker_id;
unsigned int num = 0;
unsigned int i;
/*
* for single port, xor_val will be zero so we won't modify the output
* port, otherwise we send traffic from 0 to 1, 2 to 3, and vice versa
*/
const unsigned xor_val = (rte_eth_dev_count_avail() > 1);
struct rte_mbuf *buf[8] __rte_cache_aligned;
for (i = 0; i < 8; i++)
buf[i] = NULL;
app_stats.worker_pkts[p->worker_id] = 1;
printf("\nCore %u acting as worker core.\n", rte_lcore_id());
while (!quit_signal_work) {
num = rte_distributor_get_pkt(d, id, buf, buf, num);
/* Do a little bit of work for each packet */
for (i = 0; i < num; i++) {
uint64_t t = rte_rdtsc()+100;
while (rte_rdtsc() < t)
buf[i]->port ^= xor_val;
}
app_stats.worker_pkts[p->worker_id] += num;
if (num > 0)
app_stats.worker_bursts[p->worker_id][num-1]++;
}
if (power_lib_initialised)
return 0;
}
static int
init_power_library(void)
{
int ret = 0, lcore_id;
/* init power management library */
ret = rte_power_init(lcore_id);
if (ret) {
RTE_LOG(ERR, POWER,
"Library initialization failed on core %u\n",
lcore_id);
/*
* Return on first failure, we'll fall back
* to non-power operation
*/
return ret;
}
}
return ret;
}
/* display usage */
static void
print_usage(const char *prgname)
{
printf("%s [EAL options] -- -p PORTMASK\n"
" -p PORTMASK: hexadecimal bitmask of ports to configure\n",
prgname);
}
static int
parse_portmask(const char *portmask)
{
char *end = NULL;
unsigned long pm;
/* parse hexadecimal string */
pm = strtoul(portmask, &end, 16);
if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
return -1;
if (pm == 0)
return -1;
return pm;
}
/* Parse the argument given in the command line of the application */
static int
parse_args(int argc, char **argv)
{
int opt;
char **argvopt;
int option_index;
char *prgname = argv[0];
static struct option lgopts[] = {
{NULL, 0, 0, 0}
};
argvopt = argv;
while ((opt = getopt_long(argc, argvopt, "p:",
lgopts, &option_index)) != EOF) {
switch (opt) {
/* portmask */
case 'p':
enabled_port_mask = parse_portmask(optarg);
if (enabled_port_mask == 0) {
printf("invalid portmask\n");
print_usage(prgname);
return -1;
}
break;
default:
print_usage(prgname);
return -1;
}
}
if (optind <= 1) {
print_usage(prgname);
return -1;
}
argv[optind-1] = prgname;
optind = 1; /* reset getopt lib */
return 0;
}
/* Main function, does initialization and calls the per-lcore functions */
int
main(int argc, char *argv[])
{
struct rte_mempool *mbuf_pool;
struct rte_distributor *d;
struct rte_ring *dist_tx_ring;
struct rte_ring *rx_dist_ring;
struct rte_power_core_capabilities lcore_cap;
unsigned int lcore_id, worker_id = 0;
int distr_core_id = -1, rx_core_id = -1, tx_core_id = -1;
unsigned nb_ports;
uint16_t portid;
uint16_t nb_ports_available;
uint64_t t, freq;
/* catch ctrl-c so we can print on exit */
signal(SIGINT, int_handler);
/* init EAL */
int ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
argc -= ret;
argv += ret;
/* parse application arguments (after the EAL ones) */
ret = parse_args(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid distributor parameters\n");
if (rte_lcore_count() < 5)
rte_exit(EXIT_FAILURE, "Error, This application needs at "
"least 5 logical cores to run:\n"
"1 lcore for stats (can be core 0)\n"
"1 lcore for packet RX\n"
"1 lcore for distribution\n"
"1 lcore for packet TX\n"
"and at least 1 lcore for worker threads\n");
if (init_power_library() == 0)
power_lib_initialised = 1;
if (nb_ports == 0)
rte_exit(EXIT_FAILURE, "Error: no ethernet ports detected\n");
if (nb_ports != 1 && (nb_ports & 1))
rte_exit(EXIT_FAILURE, "Error: number of ports must be even, except "
"when using a single port\n");
mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL",
NUM_MBUFS * nb_ports, MBUF_CACHE_SIZE, 0,
RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
if (mbuf_pool == NULL)
rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
nb_ports_available = nb_ports;
/* initialize all ports */
/* skip ports that are not enabled */
if ((enabled_port_mask & (1 << portid)) == 0) {
printf("\nSkipping disabled port %d\n", portid);
nb_ports_available--;
continue;
}
/* init port */
printf("Initializing port %u... done\n", portid);
if (port_init(portid, mbuf_pool) != 0)
rte_exit(EXIT_FAILURE, "Cannot initialize port %u\n",
portid);
}
if (!nb_ports_available) {
rte_exit(EXIT_FAILURE,
"All available ports are disabled. Please set portmask.\n");
}
RTE_DIST_ALG_BURST);
if (d == NULL)
rte_exit(EXIT_FAILURE, "Cannot create distributor\n");
/*
* scheduler ring is read by the transmitter core, and written to
* by scheduler core
*/
dist_tx_ring = rte_ring_create("Output_ring", SCHED_TX_RING_SZ,
if (dist_tx_ring == NULL)
rte_exit(EXIT_FAILURE, "Cannot create output ring\n");
rx_dist_ring = rte_ring_create("Input_ring", SCHED_RX_RING_SZ,
if (rx_dist_ring == NULL)
rte_exit(EXIT_FAILURE, "Cannot create output ring\n");
if (power_lib_initialised) {
/*
* Here we'll pre-assign lcore ids to the rx, tx and
* distributor workloads if there's higher frequency
* on those cores e.g. if Turbo Boost is enabled.
* It's also worth mentioning that it will assign cores in a
* specific order, so that if there's less than three
* available, the higher frequency cores will go to the
* distributor first, then rx, then tx.
*/
rte_power_get_capabilities(lcore_id, &lcore_cap);
if (lcore_cap.priority != 1)
continue;
if (distr_core_id < 0) {
distr_core_id = lcore_id;
printf("Distributor on priority core %d\n",
lcore_id);
continue;
}
if (rx_core_id < 0) {
rx_core_id = lcore_id;
printf("Rx on priority core %d\n",
lcore_id);
continue;
}
if (tx_core_id < 0) {
tx_core_id = lcore_id;
printf("Tx on priority core %d\n",
lcore_id);
continue;
}
}
}
/*
* If there's any of the key workloads left without an lcore_id
* after the high performing core assignment above, pre-assign
* them here.
*/
if (lcore_id == (unsigned int)distr_core_id ||
lcore_id == (unsigned int)rx_core_id ||
lcore_id == (unsigned int)tx_core_id)
continue;
if (distr_core_id < 0) {
distr_core_id = lcore_id;
printf("Distributor on core %d\n", lcore_id);
continue;
}
if (rx_core_id < 0) {
rx_core_id = lcore_id;
printf("Rx on core %d\n", lcore_id);
continue;
}
if (tx_core_id < 0) {
tx_core_id = lcore_id;
printf("Tx on core %d\n", lcore_id);
continue;
}
}
printf(" tx id %d, dist id %d, rx id %d\n",
tx_core_id,
distr_core_id,
rx_core_id);
/*
* Kick off all the worker threads first, avoiding the pre-assigned
* lcore_ids for tx, rx and distributor workloads.
*/
if (lcore_id == (unsigned int)distr_core_id ||
lcore_id == (unsigned int)rx_core_id ||
lcore_id == (unsigned int)tx_core_id)
continue;
printf("Starting thread %d as worker, lcore_id %d\n",
worker_id, lcore_id);
struct lcore_params *p =
rte_malloc(NULL, sizeof(*p), 0);
if (!p)
rte_panic("malloc failure\n");
*p = (struct lcore_params){worker_id++, d, rx_dist_ring,
dist_tx_ring, mbuf_pool};
p, lcore_id);
}
/* Start tx core */
dist_tx_ring, tx_core_id);
/* Start distributor core */
struct lcore_params *pd =
rte_malloc(NULL, sizeof(*pd), 0);
if (!pd)
rte_panic("malloc failure\n");
*pd = (struct lcore_params){worker_id++, d,
rx_dist_ring, dist_tx_ring, mbuf_pool};
(lcore_function_t *)lcore_distributor,
pd, distr_core_id);
/* Start rx core */
struct lcore_params *pr =
rte_malloc(NULL, sizeof(*pr), 0);
if (!pr)
rte_panic("malloc failure\n");
*pr = (struct lcore_params){worker_id++, d, rx_dist_ring,
dist_tx_ring, mbuf_pool};
pr, rx_core_id);
freq = rte_get_timer_hz();
t = rte_rdtsc() + freq;
while (!quit_signal_dist) {
if (t < rte_rdtsc()) {
print_stats();
t = rte_rdtsc() + freq;
}
usleep(1000);
}
if (rte_eal_wait_lcore(lcore_id) < 0)
return -1;
}
print_stats();
rte_free(pd);
rte_free(pr);
return 0;
}