#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <string.h>
#include <sys/queue.h>
#include <stdarg.h>
#include <errno.h>
#include <getopt.h>
#include "ipsec.h"
#include "parser.h"
#define RTE_LOGTYPE_IPSEC RTE_LOGTYPE_USER1
#define MAX_JUMBO_PKT_LEN 9600
#define MEMPOOL_CACHE_SIZE 256
#define NB_MBUF (32000)
#define CDEV_QUEUE_DESC 2048
#define CDEV_MAP_ENTRIES 1024
#define CDEV_MP_NB_OBJS 2048
#define CDEV_MP_CACHE_SZ 64
#define MAX_QUEUE_PAIRS 1
#define OPTION_CONFIG "config"
#define OPTION_SINGLE_SA "single-sa"
#define BURST_TX_DRAIN_US 100
#define NB_SOCKETS 4
#define PREFETCH_OFFSET 3
#define MAX_RX_QUEUE_PER_LCORE 16
#define MAX_LCORE_PARAMS 1024
#define UNPROTECTED_PORT(port) (unprotected_port_mask & (1 << portid))
#define IPSEC_SECGW_RX_DESC_DEFAULT 128
#define IPSEC_SECGW_TX_DESC_DEFAULT 512
static uint16_t nb_rxd = IPSEC_SECGW_RX_DESC_DEFAULT;
static uint16_t nb_txd = IPSEC_SECGW_TX_DESC_DEFAULT;
#if RTE_BYTE_ORDER != RTE_LITTLE_ENDIAN
#define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \
(((uint64_t)((a) & 0xff) << 56) | \
((uint64_t)((b) & 0xff) << 48) | \
((uint64_t)((c) & 0xff) << 40) | \
((uint64_t)((d) & 0xff) << 32) | \
((uint64_t)((e) & 0xff) << 24) | \
((uint64_t)((f) & 0xff) << 16) | \
((uint64_t)((g) & 0xff) << 8) | \
((uint64_t)(h) & 0xff))
#else
#define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \
(((uint64_t)((h) & 0xff) << 56) | \
((uint64_t)((g) & 0xff) << 48) | \
((uint64_t)((f) & 0xff) << 40) | \
((uint64_t)((e) & 0xff) << 32) | \
((uint64_t)((d) & 0xff) << 24) | \
((uint64_t)((c) & 0xff) << 16) | \
((uint64_t)((b) & 0xff) << 8) | \
((uint64_t)(a) & 0xff))
#endif
#define ETHADDR(a, b, c, d, e, f) (__BYTES_TO_UINT64(a, b, c, d, e, f, 0, 0))
#define ETHADDR_TO_UINT64(addr) __BYTES_TO_UINT64( \
addr.addr_bytes[0], addr.addr_bytes[1], \
addr.addr_bytes[2], addr.addr_bytes[3], \
addr.addr_bytes[4], addr.addr_bytes[5], \
0, 0)
struct ethaddr_info {
uint64_t src, dst;
};
struct ethaddr_info ethaddr_tbl[RTE_MAX_ETHPORTS] = {
{ 0, ETHADDR(0x00, 0x16, 0x3e, 0x7e, 0x94, 0x9a) },
{ 0, ETHADDR(0x00, 0x16, 0x3e, 0x22, 0xa1, 0xd9) },
{ 0, ETHADDR(0x00, 0x16, 0x3e, 0x08, 0x69, 0x26) },
{ 0, ETHADDR(0x00, 0x16, 0x3e, 0x49, 0x9e, 0xdd) }
};
static uint32_t enabled_port_mask;
static uint32_t unprotected_port_mask;
static int32_t promiscuous_on = 1;
static int32_t numa_on = 1;
static uint32_t nb_lcores;
static uint32_t single_sa;
static uint32_t single_sa_idx;
struct lcore_rx_queue {
uint8_t port_id;
uint8_t queue_id;
struct lcore_params {
uint8_t port_id;
uint8_t queue_id;
uint8_t lcore_id;
static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
static struct lcore_params *lcore_params;
static uint16_t nb_lcore_params;
struct buffer {
uint16_t len;
};
struct lcore_conf {
uint16_t nb_rx_queue;
struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
struct buffer tx_mbufs[RTE_MAX_ETHPORTS];
struct ipsec_ctx inbound;
struct ipsec_ctx outbound;
struct rt_ctx *rt4_ctx;
struct rt_ctx *rt6_ctx;
static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
.split_hdr_size = 0,
.header_split = 0,
.hw_ip_checksum = 1,
.hw_vlan_filter = 0,
.jumbo_frame = 0,
.hw_strip_crc = 1,
},
.rx_adv_conf = {
.rss_conf = {
.rss_key = NULL,
.rss_hf = ETH_RSS_IP | ETH_RSS_UDP |
ETH_RSS_TCP | ETH_RSS_SCTP,
},
},
.txmode = {
},
};
static struct socket_ctx socket_ctx[NB_SOCKETS];
struct traffic_type {
const uint8_t *data[MAX_PKT_BURST * 2];
struct rte_mbuf *pkts[MAX_PKT_BURST * 2];
uint32_t res[MAX_PKT_BURST * 2];
uint32_t num;
};
struct ipsec_traffic {
struct traffic_type ipsec;
struct traffic_type ip4;
struct traffic_type ip6;
};
static inline void
prepare_one_packet(
struct rte_mbuf *pkt,
struct ipsec_traffic *t)
{
uint8_t *nlp;
if (*nlp == IPPROTO_ESP)
t->ipsec.pkts[(t->ipsec.num)++] = pkt;
else {
t->ip4.data[t->ip4.num] = nlp;
t->ip4.pkts[(t->ip4.num)++] = pkt;
}
if (*nlp == IPPROTO_ESP)
t->ipsec.pkts[(t->ipsec.num)++] = pkt;
else {
t->ip6.data[t->ip6.num] = nlp;
t->ip6.pkts[(t->ip6.num)++] = pkt;
}
} else {
RTE_LOG(ERR, IPSEC,
"Unsupported packet type\n");
}
}
static inline void
prepare_traffic(
struct rte_mbuf **pkts,
struct ipsec_traffic *t,
uint16_t nb_pkts)
{
int32_t i;
t->ipsec.num = 0;
t->ip4.num = 0;
t->ip6.num = 0;
for (i = 0; i < (nb_pkts - PREFETCH_OFFSET); i++) {
void *));
prepare_one_packet(pkts[i], t);
}
for (; i < nb_pkts; i++)
prepare_one_packet(pkts[i], t);
}
static inline void
{
struct ip *ip;
if (ip->ip_v == IPVERSION) {
pkt->
l3_len =
sizeof(
struct ip);
} else {
pkt->
l3_len =
sizeof(
struct ip6_hdr);
}
memcpy(ðhdr->
s_addr, ðaddr_tbl[port].src,
memcpy(ðhdr->
d_addr, ðaddr_tbl[port].dst,
}
static inline void
prepare_tx_burst(
struct rte_mbuf *pkts[], uint16_t nb_pkts, uint8_t port)
{
int32_t i;
const int32_t prefetch_offset = 2;
for (i = 0; i < (nb_pkts - prefetch_offset); i++) {
prepare_tx_pkt(pkts[i], port);
}
for (; i < nb_pkts; i++)
prepare_tx_pkt(pkts[i], port);
}
static inline int32_t
send_burst(struct lcore_conf *qconf, uint16_t n, uint8_t port)
{
int32_t ret;
uint16_t queueid;
queueid = qconf->tx_queue_id[
port];
m_table = (
struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
prepare_tx_burst(m_table, n, port);
do {
} while (++ret < n);
}
return 0;
}
static inline int32_t
send_single_packet(
struct rte_mbuf *m, uint8_t port)
{
uint32_t lcore_id;
uint16_t len;
struct lcore_conf *qconf;
qconf = &lcore_conf[lcore_id];
len = qconf->tx_mbufs[port].len;
qconf->tx_mbufs[port].m_table[len] = m;
len++;
send_burst(qconf, MAX_PKT_BURST, port);
len = 0;
}
qconf->tx_mbufs[port].len = len;
return 0;
}
static inline void
inbound_sp_sa(struct sp_ctx *sp, struct sa_ctx *sa, struct traffic_type *ip,
uint16_t lim)
{
uint32_t i, j, res, sa_idx;
if (ip->num == 0 || sp == NULL)
return;
ip->num, DEFAULT_MAX_CATEGORIES);
j = 0;
for (i = 0; i < ip->num; i++) {
m = ip->pkts[i];
res = ip->res[i];
if (res & BYPASS) {
ip->pkts[j++] = m;
continue;
}
if (res & DISCARD || i < lim) {
continue;
}
sa_idx = ip->res[i] & PROTECT_MASK;
if (sa_idx == 0 || !inbound_sa_check(sa, m, sa_idx)) {
continue;
}
ip->pkts[j++] = m;
}
ip->num = j;
}
static inline void
process_pkts_inbound(struct ipsec_ctx *ipsec_ctx,
struct ipsec_traffic *traffic)
{
uint16_t idx, nb_pkts_in, i, n_ip4, n_ip6;
nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
traffic->ipsec.num, MAX_PKT_BURST);
n_ip4 = traffic->ip4.num;
n_ip6 = traffic->ip6.num;
for (i = 0; i < nb_pkts_in; i++) {
m = traffic->ipsec.pkts[i];
if (ip->ip_v == IPVERSION) {
idx = traffic->ip4.num++;
traffic->ip4.pkts[idx] = m;
} else if (ip->ip_v == IP6_VERSION) {
idx = traffic->ip6.num++;
traffic->ip6.pkts[idx] = m;
uint8_t *,
} else
}
inbound_sp_sa(ipsec_ctx->sp4_ctx, ipsec_ctx->sa_ctx, &traffic->ip4,
n_ip4);
inbound_sp_sa(ipsec_ctx->sp6_ctx, ipsec_ctx->sa_ctx, &traffic->ip6,
n_ip6);
}
static inline void
outbound_sp(struct sp_ctx *sp, struct traffic_type *ip,
struct traffic_type *ipsec)
{
uint32_t i, j, sa_idx;
if (ip->num == 0 || sp == NULL)
return;
ip->num, DEFAULT_MAX_CATEGORIES);
j = 0;
for (i = 0; i < ip->num; i++) {
m = ip->pkts[i];
sa_idx = ip->res[i] & PROTECT_MASK;
if ((ip->res[i] == 0) || (ip->res[i] & DISCARD))
else if (sa_idx != 0) {
ipsec->res[ipsec->num] = sa_idx;
ipsec->pkts[ipsec->num++] = m;
} else
ip->pkts[j++] = m;
}
ip->num = j;
}
static inline void
process_pkts_outbound(struct ipsec_ctx *ipsec_ctx,
struct ipsec_traffic *traffic)
{
uint16_t idx, nb_pkts_out, i;
for (i = 0; i < traffic->ipsec.num; i++)
traffic->ipsec.num = 0;
outbound_sp(ipsec_ctx->sp4_ctx, &traffic->ip4, &traffic->ipsec);
outbound_sp(ipsec_ctx->sp6_ctx, &traffic->ip6, &traffic->ipsec);
nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
traffic->ipsec.res, traffic->ipsec.num,
MAX_PKT_BURST);
for (i = 0; i < nb_pkts_out; i++) {
m = traffic->ipsec.pkts[i];
if (ip->ip_v == IPVERSION) {
idx = traffic->ip4.num++;
traffic->ip4.pkts[idx] = m;
} else {
idx = traffic->ip6.num++;
traffic->ip6.pkts[idx] = m;
}
}
}
static inline void
process_pkts_inbound_nosp(struct ipsec_ctx *ipsec_ctx,
struct ipsec_traffic *traffic)
{
uint32_t nb_pkts_in, i, idx;
for (i = 0; i < traffic->ip4.num; i++)
traffic->ip4.num = 0;
for (i = 0; i < traffic->ip6.num; i++)
traffic->ip6.num = 0;
nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
traffic->ipsec.num, MAX_PKT_BURST);
for (i = 0; i < nb_pkts_in; i++) {
m = traffic->ipsec.pkts[i];
if (ip->ip_v == IPVERSION) {
idx = traffic->ip4.num++;
traffic->ip4.pkts[idx] = m;
} else {
idx = traffic->ip6.num++;
traffic->ip6.pkts[idx] = m;
}
}
}
static inline void
process_pkts_outbound_nosp(struct ipsec_ctx *ipsec_ctx,
struct ipsec_traffic *traffic)
{
uint32_t nb_pkts_out, i;
struct ip *ip;
for (i = 0; i < traffic->ipsec.num; i++)
traffic->ipsec.num = 0;
for (i = 0; i < traffic->ip4.num; i++)
traffic->ip4.res[i] = single_sa_idx;
for (i = 0; i < traffic->ip6.num; i++)
traffic->ip6.res[i] = single_sa_idx;
nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ip4.pkts,
traffic->ip4.res, traffic->ip4.num,
MAX_PKT_BURST);
m = traffic->ipsec.pkts[i];
if (ip->ip_v == IPVERSION)
traffic->ip4.num = nb_pkts_out;
else
traffic->ip6.num = nb_pkts_out;
}
static inline void
route4_pkts(
struct rt_ctx *rt_ctx,
struct rte_mbuf *pkts[], uint8_t nb_pkts)
{
uint32_t hop[MAX_PKT_BURST * 2];
uint32_t dst_ip[MAX_PKT_BURST * 2];
uint16_t i, offset;
if (nb_pkts == 0)
return;
for (i = 0; i < nb_pkts; i++) {
uint32_t *, offset);
}
for (i = 0; i < nb_pkts; i++) {
continue;
}
send_single_packet(pkts[i], hop[i] & 0xff);
}
}
static inline void
route6_pkts(
struct rt_ctx *rt_ctx,
struct rte_mbuf *pkts[], uint8_t nb_pkts)
{
int32_t hop[MAX_PKT_BURST * 2];
uint8_t dst_ip[MAX_PKT_BURST * 2][16];
uint8_t *ip6_dst;
uint16_t i, offset;
if (nb_pkts == 0)
return;
for (i = 0; i < nb_pkts; i++) {
offset =
offsetof(
struct ip6_hdr, ip6_dst);
memcpy(&dst_ip[i][0], ip6_dst, 16);
}
hop, nb_pkts);
for (i = 0; i < nb_pkts; i++) {
if (hop[i] == -1) {
continue;
}
send_single_packet(pkts[i], hop[i] & 0xff);
}
}
static inline void
process_pkts(
struct lcore_conf *qconf,
struct rte_mbuf **pkts,
uint8_t nb_pkts, uint8_t portid)
{
struct ipsec_traffic traffic;
prepare_traffic(pkts, &traffic, nb_pkts);
if (UNPROTECTED_PORT(portid))
process_pkts_inbound_nosp(&qconf->inbound, &traffic);
else
process_pkts_outbound_nosp(&qconf->outbound, &traffic);
} else {
if (UNPROTECTED_PORT(portid))
process_pkts_inbound(&qconf->inbound, &traffic);
else
process_pkts_outbound(&qconf->outbound, &traffic);
}
route4_pkts(qconf->rt4_ctx, traffic.ip4.pkts, traffic.ip4.num);
route6_pkts(qconf->rt6_ctx, traffic.ip6.pkts, traffic.ip6.num);
}
static inline void
drain_buffers(struct lcore_conf *qconf)
{
struct buffer *buf;
uint32_t portid;
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
buf = &qconf->tx_mbufs[portid];
if (buf->len == 0)
continue;
send_burst(qconf, buf->len, portid);
buf->len = 0;
}
}
static int32_t
main_loop(__attribute__((unused)) void *dummy)
{
uint32_t lcore_id;
uint64_t prev_tsc, diff_tsc, cur_tsc;
int32_t i, nb_rx;
uint8_t portid, queueid;
struct lcore_conf *qconf;
int32_t socket_id;
/ US_PER_S * BURST_TX_DRAIN_US;
struct lcore_rx_queue *rxql;
prev_tsc = 0;
qconf = &lcore_conf[lcore_id];
rxql = qconf->rx_queue_list;
qconf->rt4_ctx = socket_ctx[socket_id].rt_ip4;
qconf->rt6_ctx = socket_ctx[socket_id].rt_ip6;
qconf->inbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_in;
qconf->inbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_in;
qconf->inbound.sa_ctx = socket_ctx[socket_id].sa_in;
qconf->inbound.cdev_map = cdev_map_in;
qconf->inbound.session_pool = socket_ctx[socket_id].session_pool;
qconf->outbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_out;
qconf->outbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_out;
qconf->outbound.sa_ctx = socket_ctx[socket_id].sa_out;
qconf->outbound.cdev_map = cdev_map_out;
qconf->outbound.session_pool = socket_ctx[socket_id].session_pool;
if (qconf->nb_rx_queue == 0) {
RTE_LOG(INFO, IPSEC,
"lcore %u has nothing to do\n", lcore_id);
return 0;
}
RTE_LOG(INFO, IPSEC,
"entering main loop on lcore %u\n", lcore_id);
for (i = 0; i < qconf->nb_rx_queue; i++) {
portid = rxql[i].port_id;
queueid = rxql[i].queue_id;
" -- lcoreid=%u portid=%hhu rxqueueid=%hhu\n",
lcore_id, portid, queueid);
}
while (1) {
cur_tsc = rte_rdtsc();
diff_tsc = cur_tsc - prev_tsc;
drain_buffers(qconf);
prev_tsc = cur_tsc;
}
for (i = 0; i < qconf->nb_rx_queue; ++i) {
portid = rxql[i].port_id;
queueid = rxql[i].queue_id;
pkts, MAX_PKT_BURST);
if (nb_rx > 0)
process_pkts(qconf, pkts, nb_rx, portid);
}
}
}
static int32_t
check_params(void)
{
uint8_t lcore, portid, nb_ports;
uint16_t i;
int32_t socket_id;
if (lcore_params == NULL) {
printf("Error: No port/queue/core mappings\n");
return -1;
}
for (i = 0; i < nb_lcore_params; ++i) {
lcore = lcore_params[i].lcore_id;
printf("error: lcore %hhu is not enabled in "
"lcore mask\n", lcore);
return -1;
}
if (socket_id != 0 && numa_on == 0) {
printf("warning: lcore %hhu is on socket %d "
"with numa off\n",
lcore, socket_id);
}
portid = lcore_params[i].port_id;
if ((enabled_port_mask & (1 << portid)) == 0) {
printf("port %u is not enabled in port mask\n", portid);
return -1;
}
if (portid >= nb_ports) {
printf("port %u is not present on the board\n", portid);
return -1;
}
}
return 0;
}
static uint8_t
get_port_nb_rx_queues(const uint8_t port)
{
int32_t queue = -1;
uint16_t i;
for (i = 0; i < nb_lcore_params; ++i) {
if (lcore_params[i].port_id == port &&
lcore_params[i].queue_id > queue)
queue = lcore_params[i].queue_id;
}
return (uint8_t)(++queue);
}
static int32_t
init_lcore_rx_queues(void)
{
uint16_t i, nb_rx_queue;
uint8_t lcore;
for (i = 0; i < nb_lcore_params; ++i) {
lcore = lcore_params[i].lcore_id;
nb_rx_queue = lcore_conf[lcore].nb_rx_queue;
if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
printf("error: too many queues (%u) for lcore: %u\n",
nb_rx_queue + 1, lcore);
return -1;
}
lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
lcore_params[i].port_id;
lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
lcore_params[i].queue_id;
lcore_conf[lcore].nb_rx_queue++;
}
return 0;
}
static void
print_usage(const char *prgname)
{
printf("%s [EAL options] -- -p PORTMASK -P -u PORTMASK"
" --"OPTION_CONFIG" (port,queue,lcore)[,(port,queue,lcore]"
" --single-sa SAIDX -f CONFIG_FILE\n"
" -p PORTMASK: hexadecimal bitmask of ports to configure\n"
" -P : enable promiscuous mode\n"
" -u PORTMASK: hexadecimal bitmask of unprotected ports\n"
" --"OPTION_CONFIG": (port,queue,lcore): "
"rx queues configuration\n"
" --single-sa SAIDX: use single SA index for outbound, "
"bypassing the SP\n"
" -f CONFIG_FILE: Configuration file path\n",
prgname);
}
static int32_t
parse_portmask(const char *portmask)
{
char *end = NULL;
unsigned long pm;
pm = strtoul(portmask, &end, 16);
if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
return -1;
if ((pm == 0) && errno)
return -1;
return pm;
}
static int32_t
parse_decimal(const char *str)
{
char *end = NULL;
unsigned long num;
num = strtoul(str, &end, 10);
if ((str[0] == '\0') || (end == NULL) || (*end != '\0'))
return -1;
return num;
}
static int32_t
parse_config(const char *q_arg)
{
char s[256];
const char *p, *p0 = q_arg;
char *end;
enum fieldnames {
FLD_PORT = 0,
FLD_QUEUE,
FLD_LCORE,
_NUM_FLD
};
unsigned long int_fld[_NUM_FLD];
char *str_fld[_NUM_FLD];
int32_t i;
uint32_t size;
nb_lcore_params = 0;
while ((p = strchr(p0, '(')) != NULL) {
++p;
p0 = strchr(p, ')');
if (p0 == NULL)
return -1;
size = p0 - p;
if (size >= sizeof(s))
return -1;
snprintf(s, sizeof(s), "%.*s", size, p);
_NUM_FLD)
return -1;
for (i = 0; i < _NUM_FLD; i++) {
errno = 0;
int_fld[i] = strtoul(str_fld[i], &end, 0);
if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
return -1;
}
if (nb_lcore_params >= MAX_LCORE_PARAMS) {
printf("exceeded max number of lcore params: %hu\n",
nb_lcore_params);
return -1;
}
lcore_params_array[nb_lcore_params].port_id =
(uint8_t)int_fld[FLD_PORT];
lcore_params_array[nb_lcore_params].queue_id =
(uint8_t)int_fld[FLD_QUEUE];
lcore_params_array[nb_lcore_params].lcore_id =
(uint8_t)int_fld[FLD_LCORE];
++nb_lcore_params;
}
lcore_params = lcore_params_array;
return 0;
}
#define __STRNCMP(name, opt) (!strncmp(name, opt, sizeof(opt)))
static int32_t
parse_args_long_options(struct option *lgopts, int32_t option_index)
{
int32_t ret = -1;
const char *optname = lgopts[option_index].name;
if (__STRNCMP(optname, OPTION_CONFIG)) {
ret = parse_config(optarg);
if (ret)
printf("invalid config\n");
}
if (__STRNCMP(optname, OPTION_SINGLE_SA)) {
ret = parse_decimal(optarg);
if (ret != -1) {
single_sa = 1;
single_sa_idx = ret;
printf("Configured with single SA index %u\n",
single_sa_idx);
ret = 0;
}
}
return ret;
}
#undef __STRNCMP
static int32_t
parse_args(int32_t argc, char **argv)
{
int32_t opt, ret;
char **argvopt;
int32_t option_index;
char *prgname = argv[0];
static struct option lgopts[] = {
{OPTION_CONFIG, 1, 0, 0},
{OPTION_SINGLE_SA, 1, 0, 0},
{NULL, 0, 0, 0}
};
int32_t f_present = 0;
argvopt = argv;
while ((opt = getopt_long(argc, argvopt, "p:Pu:f:",
lgopts, &option_index)) != EOF) {
switch (opt) {
case 'p':
enabled_port_mask = parse_portmask(optarg);
if (enabled_port_mask == 0) {
printf("invalid portmask\n");
print_usage(prgname);
return -1;
}
break;
case 'P':
printf("Promiscuous mode selected\n");
promiscuous_on = 1;
break;
case 'u':
unprotected_port_mask = parse_portmask(optarg);
if (unprotected_port_mask == 0) {
printf("invalid unprotected portmask\n");
print_usage(prgname);
return -1;
}
break;
case 'f':
if (f_present == 1) {
printf("\"-f\" option present more than "
"once!\n");
print_usage(prgname);
return -1;
}
if (parse_cfg_file(optarg) < 0) {
printf("parsing file \"%s\" failed\n",
optarg);
print_usage(prgname);
return -1;
}
f_present = 1;
break;
case 0:
if (parse_args_long_options(lgopts, option_index)) {
print_usage(prgname);
return -1;
}
break;
default:
print_usage(prgname);
return -1;
}
}
if (f_present == 0) {
printf("Mandatory option \"-f\" not present\n");
return -1;
}
if (optind >= 0)
argv[optind-1] = prgname;
ret = optind-1;
optind = 1;
return ret;
}
static void
print_ethaddr(
const char *name,
const struct ether_addr *eth_addr)
{
char buf[ETHER_ADDR_FMT_SIZE];
printf("%s%s", name, buf);
}
static void
check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
{
#define CHECK_INTERVAL 100
#define MAX_CHECK_TIME 90
uint8_t portid, count, all_ports_up, print_flag = 0;
printf("\nChecking link status");
fflush(stdout);
for (count = 0; count <= MAX_CHECK_TIME; count++) {
all_ports_up = 1;
for (portid = 0; portid < port_num; portid++) {
if ((port_mask & (1 << portid)) == 0)
continue;
memset(&link, 0, sizeof(link));
if (print_flag == 1) {
if (link.link_status)
printf("Port %d Link Up - speed %u "
"Mbps - %s\n", (uint8_t)portid,
(uint32_t)link.link_speed,
("full-duplex") : ("half-duplex\n"));
else
printf("Port %d Link Down\n",
(uint8_t)portid);
continue;
}
all_ports_up = 0;
break;
}
}
if (print_flag == 1)
break;
if (all_ports_up == 0) {
printf(".");
fflush(stdout);
}
if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
print_flag = 1;
printf("done\n");
}
}
}
static int32_t
add_mapping(
struct rte_hash *map,
const char *str, uint16_t cdev_id,
uint16_t qp, struct lcore_params *params,
struct ipsec_ctx *ipsec_ctx,
{
int32_t ret = 0;
unsigned long i;
struct cdev_key key = { 0 };
key.lcore_id = params->lcore_id;
if (cipher)
if (auth)
key.auth_algo = auth->
sym.
auth.algo;
if (aead)
key.aead_algo = aead->
sym.
aead.algo;
if (ret != -ENOENT)
return 0;
for (i = 0; i < ipsec_ctx->nb_qps; i++)
if (ipsec_ctx->tbl[i].id == cdev_id)
break;
if (i == ipsec_ctx->nb_qps) {
if (ipsec_ctx->nb_qps == MAX_QP_PER_LCORE) {
printf("Maximum number of crypto devices assigned to "
"a core, increase MAX_QP_PER_LCORE value\n");
return 0;
}
ipsec_ctx->tbl[i].id = cdev_id;
ipsec_ctx->tbl[i].qp = qp;
ipsec_ctx->nb_qps++;
printf("%s cdev mapping: lcore %u using cdev %u qp %u "
"(cdev_id_qp %lu)\n", str, key.lcore_id,
cdev_id, qp, i);
}
if (ret < 0) {
printf("Faled to insert cdev mapping for (lcore %u, "
"cdev %u, qp %u), errno %d\n",
key.lcore_id, ipsec_ctx->tbl[i].id,
ipsec_ctx->tbl[i].qp, ret);
return 0;
}
return 1;
}
static int32_t
uint16_t qp, struct lcore_params *params)
{
int32_t ret = 0;
struct lcore_conf *qconf;
struct ipsec_ctx *ipsec_ctx;
const char *str;
qconf = &lcore_conf[params->lcore_id];
if ((unprotected_port_mask & (1 << params->port_id)) == 0) {
map = cdev_map_out;
ipsec_ctx = &qconf->outbound;
str = "Outbound";
} else {
map = cdev_map_in;
ipsec_ctx = &qconf->inbound;
str = "Inbound";
}
return ret;
continue;
ret |= add_mapping(map, str, cdev_id, qp, params,
ipsec_ctx, NULL, NULL, i);
continue;
}
continue;
continue;
continue;
ret |= add_mapping(map, str, cdev_id, qp, params,
ipsec_ctx, i, j, NULL);
}
}
return ret;
}
static int32_t
cryptodevs_init(void)
{
uint16_t idx, max_nb_qps, qp, i;
int16_t cdev_id;
params.
key_len =
sizeof(
struct cdev_key);
params.
name =
"cdev_map_in";
if (cdev_map_in == NULL)
rte_panic(
"Failed to create cdev_map hash table, errno = %d\n",
params.
name =
"cdev_map_out";
if (cdev_map_out == NULL)
rte_panic(
"Failed to create cdev_map hash table, errno = %d\n",
printf("lcore/cryptodev/qp mappings:\n");
uint32_t max_sess_sz = 0, sess_sz;
if (sess_sz > max_sess_sz)
max_sess_sz = sess_sz;
}
idx = 0;
if (nb_lcore_params > cdev_info.max_nb_queue_pairs)
max_nb_qps = cdev_info.max_nb_queue_pairs;
else
max_nb_qps = nb_lcore_params;
qp = 0;
i = 0;
while (qp < max_nb_qps && i < nb_lcore_params) {
if (add_cdev_mapping(&cdev_info, cdev_id, qp,
&lcore_params[idx]))
qp++;
idx++;
idx = idx % nb_lcore_params;
i++;
}
if (qp == 0)
continue;
dev_conf.socket_id = rte_cryptodev_socket_id(cdev_id);
dev_conf.nb_queue_pairs = qp;
if (!socket_ctx[dev_conf.socket_id].session_pool) {
char mp_name[RTE_MEMPOOL_NAMESIZE];
snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
"sess_mp_%u", dev_conf.socket_id);
CDEV_MP_NB_OBJS,
max_sess_sz,
CDEV_MP_CACHE_SZ,
0, NULL, NULL, NULL,
NULL, dev_conf.socket_id,
0);
if (sess_mp == NULL)
"Cannot create session pool on socket %d\n",
dev_conf.socket_id);
else
printf("Allocated session pool on socket %d\n",
dev_conf.socket_id);
socket_ctx[dev_conf.socket_id].session_pool = sess_mp;
}
rte_panic(
"Failed to initialize cryptodev %u\n",
cdev_id);
qp_conf.nb_descriptors = CDEV_QUEUE_DESC;
for (qp = 0; qp < dev_conf.nb_queue_pairs; qp++)
&qp_conf, dev_conf.socket_id,
socket_ctx[dev_conf.socket_id].session_pool))
"cdev_id %u\n", 0, cdev_id);
cdev_id);
}
printf("\n");
return 0;
}
static void
port_init(uint8_t portid)
{
uint16_t nb_tx_queue, nb_rx_queue;
uint16_t tx_queueid, rx_queueid, queue, lcore_id;
int32_t ret, socket_id;
struct lcore_conf *qconf;
printf("Configuring device port %u:\n", portid);
ethaddr_tbl[portid].src = ETHADDR_TO_UINT64(ethaddr);
print_ethaddr("Address: ", ðaddr);
printf("\n");
nb_rx_queue = get_port_nb_rx_queues(portid);
nb_tx_queue = nb_lcores;
if (nb_rx_queue > dev_info.max_rx_queues)
rte_exit(EXIT_FAILURE,
"Error: queue %u not available "
"(max rx queue is %u)\n",
nb_rx_queue, dev_info.max_rx_queues);
if (nb_tx_queue > dev_info.max_tx_queues)
rte_exit(EXIT_FAILURE,
"Error: queue %u not available "
"(max tx queue is %u)\n",
nb_tx_queue, dev_info.max_tx_queues);
printf("Creating queues: nb_rx_queue=%d nb_tx_queue=%u...\n",
nb_rx_queue, nb_tx_queue);
&port_conf);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Cannot configure device: "
"err=%d, port=%d\n", ret, portid);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Cannot adjust number of descriptors: "
"err=%d, port=%d\n", ret, portid);
tx_queueid = 0;
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
continue;
if (numa_on)
else
socket_id = 0;
printf("Setup txq=%u,%d,%d\n", lcore_id, tx_queueid, socket_id);
txconf = &dev_info.default_txconf;
socket_id, txconf);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"rte_eth_tx_queue_setup: "
"err=%d, port=%d\n", ret, portid);
qconf = &lcore_conf[lcore_id];
qconf->tx_queue_id[portid] = tx_queueid;
tx_queueid++;
for (queue = 0; queue < qconf->nb_rx_queue; ++queue) {
if (portid != qconf->rx_queue_list[queue].port_id)
continue;
rx_queueid = qconf->rx_queue_list[queue].queue_id;
printf("Setup rxq=%d,%d,%d\n", portid, rx_queueid,
socket_id);
nb_rxd, socket_id, NULL,
socket_ctx[socket_id].mbuf_pool);
if (ret < 0)
"rte_eth_rx_queue_setup: err=%d, "
"port=%d\n", ret, portid);
}
}
printf("\n");
}
static void
pool_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t nb_mbuf)
{
char s[64];
snprintf(s, sizeof(s), "mbuf_pool_%d", socket_id);
MEMPOOL_CACHE_SIZE, ipsec_metadata_size(),
RTE_MBUF_DEFAULT_BUF_SIZE,
socket_id);
if (ctx->mbuf_pool == NULL)
rte_exit(EXIT_FAILURE,
"Cannot init mbuf pool on socket %d\n",
socket_id);
else
printf("Allocated mbuf pool on socket %d\n", socket_id);
}
int32_t
main(int32_t argc, char **argv)
{
int32_t ret;
uint32_t lcore_id, nb_ports;
uint8_t portid, socket_id;
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Invalid EAL parameters\n");
argc -= ret;
argv += ret;
ret = parse_args(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Invalid parameters\n");
if ((unprotected_port_mask & enabled_port_mask) !=
unprotected_port_mask)
rte_exit(EXIT_FAILURE,
"Invalid unprotected portmask 0x%x\n",
unprotected_port_mask);
if (check_params() < 0)
rte_exit(EXIT_FAILURE,
"check_params failed\n");
ret = init_lcore_rx_queues();
if (ret < 0)
rte_exit(EXIT_FAILURE,
"init_lcore_rx_queues failed\n");
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
continue;
if (numa_on)
else
socket_id = 0;
if (socket_ctx[socket_id].mbuf_pool)
continue;
sa_init(&socket_ctx[socket_id], socket_id);
sp4_init(&socket_ctx[socket_id], socket_id);
sp6_init(&socket_ctx[socket_id], socket_id);
rt_init(&socket_ctx[socket_id], socket_id);
pool_init(&socket_ctx[socket_id], socket_id, NB_MBUF);
}
for (portid = 0; portid < nb_ports; portid++) {
if ((enabled_port_mask & (1 << portid)) == 0)
continue;
port_init(portid);
}
cryptodevs_init();
for (portid = 0; portid < nb_ports; portid++) {
if ((enabled_port_mask & (1 << portid)) == 0)
continue;
if (ret < 0)
rte_exit(EXIT_FAILURE,
"rte_eth_dev_start: "
"err=%d, port=%d\n", ret, portid);
if (promiscuous_on)
}
check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask);
return -1;
}
return 0;
}