DPDK  16.11.11
load_balancer/runtime.c
/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <string.h>
#include <sys/queue.h>
#include <stdarg.h>
#include <errno.h>
#include <getopt.h>
#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_memzone.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_launch.h>
#include <rte_atomic.h>
#include <rte_cycles.h>
#include <rte_prefetch.h>
#include <rte_lcore.h>
#include <rte_per_lcore.h>
#include <rte_interrupts.h>
#include <rte_pci.h>
#include <rte_random.h>
#include <rte_debug.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_ring.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#include <rte_lpm.h>
#include "main.h"
#ifndef APP_LCORE_IO_FLUSH
#define APP_LCORE_IO_FLUSH 1000000
#endif
#ifndef APP_LCORE_WORKER_FLUSH
#define APP_LCORE_WORKER_FLUSH 1000000
#endif
#ifndef APP_STATS
#define APP_STATS 1000000
#endif
#define APP_IO_RX_DROP_ALL_PACKETS 0
#define APP_WORKER_DROP_ALL_PACKETS 0
#define APP_IO_TX_DROP_ALL_PACKETS 0
#ifndef APP_IO_RX_PREFETCH_ENABLE
#define APP_IO_RX_PREFETCH_ENABLE 1
#endif
#ifndef APP_WORKER_PREFETCH_ENABLE
#define APP_WORKER_PREFETCH_ENABLE 1
#endif
#ifndef APP_IO_TX_PREFETCH_ENABLE
#define APP_IO_TX_PREFETCH_ENABLE 1
#endif
#if APP_IO_RX_PREFETCH_ENABLE
#define APP_IO_RX_PREFETCH0(p) rte_prefetch0(p)
#define APP_IO_RX_PREFETCH1(p) rte_prefetch1(p)
#else
#define APP_IO_RX_PREFETCH0(p)
#define APP_IO_RX_PREFETCH1(p)
#endif
#if APP_WORKER_PREFETCH_ENABLE
#define APP_WORKER_PREFETCH0(p) rte_prefetch0(p)
#define APP_WORKER_PREFETCH1(p) rte_prefetch1(p)
#else
#define APP_WORKER_PREFETCH0(p)
#define APP_WORKER_PREFETCH1(p)
#endif
#if APP_IO_TX_PREFETCH_ENABLE
#define APP_IO_TX_PREFETCH0(p) rte_prefetch0(p)
#define APP_IO_TX_PREFETCH1(p) rte_prefetch1(p)
#else
#define APP_IO_TX_PREFETCH0(p)
#define APP_IO_TX_PREFETCH1(p)
#endif
static inline void
app_lcore_io_rx_buffer_to_send (
struct app_lcore_params_io *lp,
uint32_t worker,
struct rte_mbuf *mbuf,
uint32_t bsz)
{
uint32_t pos;
int ret;
pos = lp->rx.mbuf_out[worker].n_mbufs;
lp->rx.mbuf_out[worker].array[pos ++] = mbuf;
if (likely(pos < bsz)) {
lp->rx.mbuf_out[worker].n_mbufs = pos;
return;
}
lp->rx.rings[worker],
(void **) lp->rx.mbuf_out[worker].array,
bsz);
if (unlikely(ret == -ENOBUFS)) {
uint32_t k;
for (k = 0; k < bsz; k ++) {
struct rte_mbuf *m = lp->rx.mbuf_out[worker].array[k];
}
}
lp->rx.mbuf_out[worker].n_mbufs = 0;
lp->rx.mbuf_out_flush[worker] = 0;
#if APP_STATS
lp->rx.rings_iters[worker] ++;
if (likely(ret == 0)) {
lp->rx.rings_count[worker] ++;
}
if (unlikely(lp->rx.rings_iters[worker] == APP_STATS)) {
unsigned lcore = rte_lcore_id();
printf("\tI/O RX %u out (worker %u): enq success rate = %.2f\n",
lcore,
(unsigned)worker,
((double) lp->rx.rings_count[worker]) / ((double) lp->rx.rings_iters[worker]));
lp->rx.rings_iters[worker] = 0;
lp->rx.rings_count[worker] = 0;
}
#endif
}
static inline void
app_lcore_io_rx(
struct app_lcore_params_io *lp,
uint32_t n_workers,
uint32_t bsz_rd,
uint32_t bsz_wr,
uint8_t pos_lb)
{
struct rte_mbuf *mbuf_1_0, *mbuf_1_1, *mbuf_2_0, *mbuf_2_1;
uint8_t *data_1_0, *data_1_1 = NULL;
uint32_t i;
for (i = 0; i < lp->rx.n_nic_queues; i ++) {
uint8_t port = lp->rx.nic_queues[i].port;
uint8_t queue = lp->rx.nic_queues[i].queue;
uint32_t n_mbufs, j;
n_mbufs = rte_eth_rx_burst(
port,
queue,
lp->rx.mbuf_in.array,
(uint16_t) bsz_rd);
if (unlikely(n_mbufs == 0)) {
continue;
}
#if APP_STATS
lp->rx.nic_queues_iters[i] ++;
lp->rx.nic_queues_count[i] += n_mbufs;
if (unlikely(lp->rx.nic_queues_iters[i] == APP_STATS)) {
struct rte_eth_stats stats;
unsigned lcore = rte_lcore_id();
rte_eth_stats_get(port, &stats);
printf("I/O RX %u in (NIC port %u): NIC drop ratio = %.2f avg burst size = %.2f\n",
lcore,
(unsigned) port,
(double) stats.imissed / (double) (stats.imissed + stats.ipackets),
((double) lp->rx.nic_queues_count[i]) / ((double) lp->rx.nic_queues_iters[i]));
lp->rx.nic_queues_iters[i] = 0;
lp->rx.nic_queues_count[i] = 0;
}
#endif
#if APP_IO_RX_DROP_ALL_PACKETS
for (j = 0; j < n_mbufs; j ++) {
struct rte_mbuf *pkt = lp->rx.mbuf_in.array[j];
}
continue;
#endif
mbuf_1_0 = lp->rx.mbuf_in.array[0];
mbuf_1_1 = lp->rx.mbuf_in.array[1];
data_1_0 = rte_pktmbuf_mtod(mbuf_1_0, uint8_t *);
if (likely(n_mbufs > 1)) {
data_1_1 = rte_pktmbuf_mtod(mbuf_1_1, uint8_t *);
}
mbuf_2_0 = lp->rx.mbuf_in.array[2];
mbuf_2_1 = lp->rx.mbuf_in.array[3];
APP_IO_RX_PREFETCH0(mbuf_2_0);
APP_IO_RX_PREFETCH0(mbuf_2_1);
for (j = 0; j + 3 < n_mbufs; j += 2) {
struct rte_mbuf *mbuf_0_0, *mbuf_0_1;
uint8_t *data_0_0, *data_0_1;
uint32_t worker_0, worker_1;
mbuf_0_0 = mbuf_1_0;
mbuf_0_1 = mbuf_1_1;
data_0_0 = data_1_0;
data_0_1 = data_1_1;
mbuf_1_0 = mbuf_2_0;
mbuf_1_1 = mbuf_2_1;
data_1_0 = rte_pktmbuf_mtod(mbuf_2_0, uint8_t *);
data_1_1 = rte_pktmbuf_mtod(mbuf_2_1, uint8_t *);
APP_IO_RX_PREFETCH0(data_1_0);
APP_IO_RX_PREFETCH0(data_1_1);
mbuf_2_0 = lp->rx.mbuf_in.array[j+4];
mbuf_2_1 = lp->rx.mbuf_in.array[j+5];
APP_IO_RX_PREFETCH0(mbuf_2_0);
APP_IO_RX_PREFETCH0(mbuf_2_1);
worker_0 = data_0_0[pos_lb] & (n_workers - 1);
worker_1 = data_0_1[pos_lb] & (n_workers - 1);
app_lcore_io_rx_buffer_to_send(lp, worker_0, mbuf_0_0, bsz_wr);
app_lcore_io_rx_buffer_to_send(lp, worker_1, mbuf_0_1, bsz_wr);
}
/* Handle the last 1, 2 (when n_mbufs is even) or 3 (when n_mbufs is odd) packets */
for ( ; j < n_mbufs; j += 1) {
struct rte_mbuf *mbuf;
uint8_t *data;
uint32_t worker;
mbuf = mbuf_1_0;
mbuf_1_0 = mbuf_1_1;
mbuf_1_1 = mbuf_2_0;
mbuf_2_0 = mbuf_2_1;
data = rte_pktmbuf_mtod(mbuf, uint8_t *);
APP_IO_RX_PREFETCH0(mbuf_1_0);
worker = data[pos_lb] & (n_workers - 1);
app_lcore_io_rx_buffer_to_send(lp, worker, mbuf, bsz_wr);
}
}
}
static inline void
app_lcore_io_rx_flush(struct app_lcore_params_io *lp, uint32_t n_workers)
{
uint32_t worker;
for (worker = 0; worker < n_workers; worker ++) {
int ret;
if (likely((lp->rx.mbuf_out_flush[worker] == 0) ||
(lp->rx.mbuf_out[worker].n_mbufs == 0))) {
lp->rx.mbuf_out_flush[worker] = 1;
continue;
}
lp->rx.rings[worker],
(void **) lp->rx.mbuf_out[worker].array,
lp->rx.mbuf_out[worker].n_mbufs);
if (unlikely(ret < 0)) {
uint32_t k;
for (k = 0; k < lp->rx.mbuf_out[worker].n_mbufs; k ++) {
struct rte_mbuf *pkt_to_free = lp->rx.mbuf_out[worker].array[k];
rte_pktmbuf_free(pkt_to_free);
}
}
lp->rx.mbuf_out[worker].n_mbufs = 0;
lp->rx.mbuf_out_flush[worker] = 1;
}
}
static inline void
app_lcore_io_tx(
struct app_lcore_params_io *lp,
uint32_t n_workers,
uint32_t bsz_rd,
uint32_t bsz_wr)
{
uint32_t worker;
for (worker = 0; worker < n_workers; worker ++) {
uint32_t i;
for (i = 0; i < lp->tx.n_nic_ports; i ++) {
uint8_t port = lp->tx.nic_ports[i];
struct rte_ring *ring = lp->tx.rings[port][worker];
uint32_t n_mbufs, n_pkts;
int ret;
n_mbufs = lp->tx.mbuf_out[port].n_mbufs;
ring,
(void **) &lp->tx.mbuf_out[port].array[n_mbufs],
bsz_rd);
if (unlikely(ret == -ENOENT)) {
continue;
}
n_mbufs += bsz_rd;
#if APP_IO_TX_DROP_ALL_PACKETS
{
uint32_t j;
APP_IO_TX_PREFETCH0(lp->tx.mbuf_out[port].array[0]);
APP_IO_TX_PREFETCH0(lp->tx.mbuf_out[port].array[1]);
for (j = 0; j < n_mbufs; j ++) {
if (likely(j < n_mbufs - 2)) {
APP_IO_TX_PREFETCH0(lp->tx.mbuf_out[port].array[j + 2]);
}
rte_pktmbuf_free(lp->tx.mbuf_out[port].array[j]);
}
lp->tx.mbuf_out[port].n_mbufs = 0;
continue;
}
#endif
if (unlikely(n_mbufs < bsz_wr)) {
lp->tx.mbuf_out[port].n_mbufs = n_mbufs;
continue;
}
n_pkts = rte_eth_tx_burst(
port,
0,
lp->tx.mbuf_out[port].array,
(uint16_t) n_mbufs);
#if APP_STATS
lp->tx.nic_ports_iters[port] ++;
lp->tx.nic_ports_count[port] += n_pkts;
if (unlikely(lp->tx.nic_ports_iters[port] == APP_STATS)) {
unsigned lcore = rte_lcore_id();
printf("\t\t\tI/O TX %u out (port %u): avg burst size = %.2f\n",
lcore,
(unsigned) port,
((double) lp->tx.nic_ports_count[port]) / ((double) lp->tx.nic_ports_iters[port]));
lp->tx.nic_ports_iters[port] = 0;
lp->tx.nic_ports_count[port] = 0;
}
#endif
if (unlikely(n_pkts < n_mbufs)) {
uint32_t k;
for (k = n_pkts; k < n_mbufs; k ++) {
struct rte_mbuf *pkt_to_free = lp->tx.mbuf_out[port].array[k];
rte_pktmbuf_free(pkt_to_free);
}
}
lp->tx.mbuf_out[port].n_mbufs = 0;
lp->tx.mbuf_out_flush[port] = 0;
}
}
}
static inline void
app_lcore_io_tx_flush(struct app_lcore_params_io *lp)
{
uint8_t port;
uint32_t i;
for (i = 0; i < lp->tx.n_nic_ports; i++) {
uint32_t n_pkts;
port = lp->tx.nic_ports[i];
if (likely((lp->tx.mbuf_out_flush[port] == 0) ||
(lp->tx.mbuf_out[port].n_mbufs == 0))) {
lp->tx.mbuf_out_flush[port] = 1;
continue;
}
n_pkts = rte_eth_tx_burst(
port,
0,
lp->tx.mbuf_out[port].array,
(uint16_t) lp->tx.mbuf_out[port].n_mbufs);
if (unlikely(n_pkts < lp->tx.mbuf_out[port].n_mbufs)) {
uint32_t k;
for (k = n_pkts; k < lp->tx.mbuf_out[port].n_mbufs; k ++) {
struct rte_mbuf *pkt_to_free = lp->tx.mbuf_out[port].array[k];
rte_pktmbuf_free(pkt_to_free);
}
}
lp->tx.mbuf_out[port].n_mbufs = 0;
lp->tx.mbuf_out_flush[port] = 1;
}
}
static void
app_lcore_main_loop_io(void)
{
uint32_t lcore = rte_lcore_id();
struct app_lcore_params_io *lp = &app.lcore_params[lcore].io;
uint32_t n_workers = app_get_lcores_worker();
uint64_t i = 0;
uint32_t bsz_rx_rd = app.burst_size_io_rx_read;
uint32_t bsz_rx_wr = app.burst_size_io_rx_write;
uint32_t bsz_tx_rd = app.burst_size_io_tx_read;
uint32_t bsz_tx_wr = app.burst_size_io_tx_write;
uint8_t pos_lb = app.pos_lb;
for ( ; ; ) {
if (APP_LCORE_IO_FLUSH && (unlikely(i == APP_LCORE_IO_FLUSH))) {
if (likely(lp->rx.n_nic_queues > 0)) {
app_lcore_io_rx_flush(lp, n_workers);
}
if (likely(lp->tx.n_nic_ports > 0)) {
app_lcore_io_tx_flush(lp);
}
i = 0;
}
if (likely(lp->rx.n_nic_queues > 0)) {
app_lcore_io_rx(lp, n_workers, bsz_rx_rd, bsz_rx_wr, pos_lb);
}
if (likely(lp->tx.n_nic_ports > 0)) {
app_lcore_io_tx(lp, n_workers, bsz_tx_rd, bsz_tx_wr);
}
i ++;
}
}
static inline void
app_lcore_worker(
struct app_lcore_params_worker *lp,
uint32_t bsz_rd,
uint32_t bsz_wr)
{
uint32_t i;
for (i = 0; i < lp->n_rings_in; i ++) {
struct rte_ring *ring_in = lp->rings_in[i];
uint32_t j;
int ret;
ring_in,
(void **) lp->mbuf_in.array,
bsz_rd);
if (unlikely(ret == -ENOENT)) {
continue;
}
#if APP_WORKER_DROP_ALL_PACKETS
for (j = 0; j < bsz_rd; j ++) {
struct rte_mbuf *pkt = lp->mbuf_in.array[j];
}
continue;
#endif
APP_WORKER_PREFETCH1(rte_pktmbuf_mtod(lp->mbuf_in.array[0], unsigned char *));
APP_WORKER_PREFETCH0(lp->mbuf_in.array[1]);
for (j = 0; j < bsz_rd; j ++) {
struct rte_mbuf *pkt;
struct ipv4_hdr *ipv4_hdr;
uint32_t ipv4_dst, pos;
uint32_t port;
if (likely(j < bsz_rd - 1)) {
APP_WORKER_PREFETCH1(rte_pktmbuf_mtod(lp->mbuf_in.array[j+1], unsigned char *));
}
if (likely(j < bsz_rd - 2)) {
APP_WORKER_PREFETCH0(lp->mbuf_in.array[j+2]);
}
pkt = lp->mbuf_in.array[j];
ipv4_hdr = rte_pktmbuf_mtod_offset(pkt,
struct ipv4_hdr *,
sizeof(struct ether_hdr));
ipv4_dst = rte_be_to_cpu_32(ipv4_hdr->dst_addr);
if (unlikely(rte_lpm_lookup(lp->lpm_table, ipv4_dst, &port) != 0)) {
port = pkt->port;
}
pos = lp->mbuf_out[port].n_mbufs;
lp->mbuf_out[port].array[pos ++] = pkt;
if (likely(pos < bsz_wr)) {
lp->mbuf_out[port].n_mbufs = pos;
continue;
}
lp->rings_out[port],
(void **) lp->mbuf_out[port].array,
bsz_wr);
#if APP_STATS
lp->rings_out_iters[port] ++;
if (ret == 0) {
lp->rings_out_count[port] += 1;
}
if (lp->rings_out_iters[port] == APP_STATS){
printf("\t\tWorker %u out (NIC port %u): enq success rate = %.2f\n",
(unsigned) lp->worker_id,
(unsigned) port,
((double) lp->rings_out_count[port]) / ((double) lp->rings_out_iters[port]));
lp->rings_out_iters[port] = 0;
lp->rings_out_count[port] = 0;
}
#endif
if (unlikely(ret == -ENOBUFS)) {
uint32_t k;
for (k = 0; k < bsz_wr; k ++) {
struct rte_mbuf *pkt_to_free = lp->mbuf_out[port].array[k];
rte_pktmbuf_free(pkt_to_free);
}
}
lp->mbuf_out[port].n_mbufs = 0;
lp->mbuf_out_flush[port] = 0;
}
}
}
static inline void
app_lcore_worker_flush(struct app_lcore_params_worker *lp)
{
uint32_t port;
for (port = 0; port < APP_MAX_NIC_PORTS; port ++) {
int ret;
if (unlikely(lp->rings_out[port] == NULL)) {
continue;
}
if (likely((lp->mbuf_out_flush[port] == 0) ||
(lp->mbuf_out[port].n_mbufs == 0))) {
lp->mbuf_out_flush[port] = 1;
continue;
}
lp->rings_out[port],
(void **) lp->mbuf_out[port].array,
lp->mbuf_out[port].n_mbufs);
if (unlikely(ret < 0)) {
uint32_t k;
for (k = 0; k < lp->mbuf_out[port].n_mbufs; k ++) {
struct rte_mbuf *pkt_to_free = lp->mbuf_out[port].array[k];
rte_pktmbuf_free(pkt_to_free);
}
}
lp->mbuf_out[port].n_mbufs = 0;
lp->mbuf_out_flush[port] = 1;
}
}
static void
app_lcore_main_loop_worker(void) {
uint32_t lcore = rte_lcore_id();
struct app_lcore_params_worker *lp = &app.lcore_params[lcore].worker;
uint64_t i = 0;
uint32_t bsz_rd = app.burst_size_worker_read;
uint32_t bsz_wr = app.burst_size_worker_write;
for ( ; ; ) {
if (APP_LCORE_WORKER_FLUSH && (unlikely(i == APP_LCORE_WORKER_FLUSH))) {
app_lcore_worker_flush(lp);
i = 0;
}
app_lcore_worker(lp, bsz_rd, bsz_wr);
i ++;
}
}
int
app_lcore_main_loop(__attribute__((unused)) void *arg)
{
struct app_lcore_params *lp;
unsigned lcore;
lcore = rte_lcore_id();
lp = &app.lcore_params[lcore];
if (lp->type == e_APP_LCORE_IO) {
printf("Logical core %u (I/O) main loop.\n", lcore);
app_lcore_main_loop_io();
}
if (lp->type == e_APP_LCORE_WORKER) {
printf("Logical core %u (worker %u) main loop.\n",
lcore,
(unsigned) lp->worker.worker_id);
app_lcore_main_loop_worker();
}
return 0;
}