DPDK  19.11.14
All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
examples/multi_process/client_server_mp/mp_server/main.c
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <stdint.h>
#include <stdarg.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <errno.h>
#include <signal.h>
#include <rte_common.h>
#include <rte_memory.h>
#include <rte_eal.h>
#include <rte_launch.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_ring.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_mempool.h>
#include <rte_memcpy.h>
#include <rte_mbuf.h>
#include <rte_ether.h>
#include <rte_interrupts.h>
#include <rte_ethdev.h>
#include <rte_byteorder.h>
#include <rte_malloc.h>
#include <rte_string_fns.h>
#include "common.h"
#include "args.h"
#include "init.h"
/*
* When doing reads from the NIC or the client queues,
* use this batch size
*/
#define PACKET_READ_SIZE 32
/*
* Local buffers to put packets in, used to send packets in bursts to the
* clients
*/
struct client_rx_buf {
struct rte_mbuf *buffer[PACKET_READ_SIZE];
uint16_t count;
};
/* One buffer per client rx queue - dynamically allocate array */
static struct client_rx_buf *cl_rx_buf;
static const char *
get_printable_mac_addr(uint16_t port)
{
static const struct rte_ether_addr null_mac; /* static defaults to 0 */
static char err_address[32];
static char addresses[RTE_MAX_ETHPORTS][32];
int ret;
if (unlikely(port >= RTE_MAX_ETHPORTS)) {
if (err_address[0] == '\0')
rte_ether_format_addr(err_address,
sizeof(err_address), &null_mac);
return err_address;
}
if (unlikely(addresses[port][0]=='\0')){
struct rte_ether_addr mac;
ret = rte_eth_macaddr_get(port, &mac);
if (ret != 0) {
printf("Failed to get MAC address (port %u): %s\n",
port, rte_strerror(-ret));
return err_address;
}
rte_ether_format_addr(addresses[port],
sizeof(addresses[port]), &mac);
}
return addresses[port];
}
/*
* This function displays the recorded statistics for each port
* and for each client. It uses ANSI terminal codes to clear
* screen when called. It is called from a single non-master
* thread in the server process, when the process is run with more
* than one lcore enabled.
*/
static void
do_stats_display(void)
{
unsigned i, j;
const char clr[] = { 27, '[', '2', 'J', '\0' };
const char topLeft[] = { 27, '[', '1', ';', '1', 'H','\0' };
uint64_t port_tx[RTE_MAX_ETHPORTS], port_tx_drop[RTE_MAX_ETHPORTS];
uint64_t client_tx[MAX_CLIENTS], client_tx_drop[MAX_CLIENTS];
/* to get TX stats, we need to do some summing calculations */
memset(port_tx, 0, sizeof(port_tx));
memset(port_tx_drop, 0, sizeof(port_tx_drop));
memset(client_tx, 0, sizeof(client_tx));
memset(client_tx_drop, 0, sizeof(client_tx_drop));
for (i = 0; i < num_clients; i++){
const volatile struct tx_stats *tx = &ports->tx_stats[i];
for (j = 0; j < ports->num_ports; j++){
/* assign to local variables here, save re-reading volatile vars */
const uint64_t tx_val = tx->tx[ports->id[j]];
const uint64_t drop_val = tx->tx_drop[ports->id[j]];
port_tx[j] += tx_val;
port_tx_drop[j] += drop_val;
client_tx[i] += tx_val;
client_tx_drop[i] += drop_val;
}
}
/* Clear screen and move to top left */
printf("%s%s", clr, topLeft);
printf("PORTS\n");
printf("-----\n");
for (i = 0; i < ports->num_ports; i++)
printf("Port %u: '%s'\t", (unsigned)ports->id[i],
get_printable_mac_addr(ports->id[i]));
printf("\n\n");
for (i = 0; i < ports->num_ports; i++){
printf("Port %u - rx: %9"PRIu64"\t"
"tx: %9"PRIu64"\n",
(unsigned)ports->id[i], ports->rx_stats.rx[i],
port_tx[i]);
}
printf("\nCLIENTS\n");
printf("-------\n");
for (i = 0; i < num_clients; i++){
const unsigned long long rx = clients[i].stats.rx;
const unsigned long long rx_drop = clients[i].stats.rx_drop;
printf("Client %2u - rx: %9llu, rx_drop: %9llu\n"
" tx: %9"PRIu64", tx_drop: %9"PRIu64"\n",
i, rx, rx_drop, client_tx[i], client_tx_drop[i]);
}
printf("\n");
}
/*
* The function called from each non-master lcore used by the process.
* The test_and_set function is used to randomly pick a single lcore on which
* the code to display the statistics will run. Otherwise, the code just
* repeatedly sleeps.
*/
static int
sleep_lcore(__attribute__((unused)) void *dummy)
{
/* Used to pick a display thread - static, so zero-initialised */
static rte_atomic32_t display_stats;
/* Only one core should display stats */
if (rte_atomic32_test_and_set(&display_stats)) {
const unsigned sleeptime = 1;
printf("Core %u displaying statistics\n", rte_lcore_id());
/* Longer initial pause so above printf is seen */
sleep(sleeptime * 3);
/* Loop forever: sleep always returns 0 or <= param */
while (sleep(sleeptime) <= sleeptime)
do_stats_display();
}
return 0;
}
/*
* Function to set all the client statistic values to zero.
* Called at program startup.
*/
static void
clear_stats(void)
{
unsigned i;
for (i = 0; i < num_clients; i++)
clients[i].stats.rx = clients[i].stats.rx_drop = 0;
}
/*
* send a burst of traffic to a client, assuming there are packets
* available to be sent to this client
*/
static void
flush_rx_queue(uint16_t client)
{
uint16_t j;
struct client *cl;
if (cl_rx_buf[client].count == 0)
return;
cl = &clients[client];
if (rte_ring_enqueue_bulk(cl->rx_q, (void **)cl_rx_buf[client].buffer,
cl_rx_buf[client].count, NULL) == 0){
for (j = 0; j < cl_rx_buf[client].count; j++)
rte_pktmbuf_free(cl_rx_buf[client].buffer[j]);
cl->stats.rx_drop += cl_rx_buf[client].count;
}
else
cl->stats.rx += cl_rx_buf[client].count;
cl_rx_buf[client].count = 0;
}
/*
* marks a packet down to be sent to a particular client process
*/
static inline void
enqueue_rx_packet(uint8_t client, struct rte_mbuf *buf)
{
cl_rx_buf[client].buffer[cl_rx_buf[client].count++] = buf;
}
/*
* This function takes a group of packets and routes them
* individually to the client process. Very simply round-robins the packets
* without checking any of the packet contents.
*/
static void
process_packets(uint32_t port_num __rte_unused,
struct rte_mbuf *pkts[], uint16_t rx_count)
{
uint16_t i;
static uint8_t client;
for (i = 0; i < rx_count; i++) {
enqueue_rx_packet(client, pkts[i]);
if (++client == num_clients)
client = 0;
}
for (i = 0; i < num_clients; i++)
flush_rx_queue(i);
}
/*
* Function called by the master lcore of the DPDK process.
*/
static void
do_packet_forwarding(void)
{
unsigned port_num = 0; /* indexes the port[] array */
for (;;) {
struct rte_mbuf *buf[PACKET_READ_SIZE];
uint16_t rx_count;
/* read a port */
rx_count = rte_eth_rx_burst(ports->id[port_num], 0, \
buf, PACKET_READ_SIZE);
ports->rx_stats.rx[port_num] += rx_count;
/* Now process the NIC packets read */
if (likely(rx_count > 0))
process_packets(port_num, buf, rx_count);
/* move to next port */
if (++port_num == ports->num_ports)
port_num = 0;
}
}
static void
signal_handler(int signal)
{
uint16_t port_id;
if (signal == SIGINT)
rte_eth_dev_stop(port_id);
}
exit(0);
}
int
main(int argc, char *argv[])
{
signal(SIGINT, signal_handler);
/* initialise the system */
if (init(argc, argv) < 0 )
return -1;
RTE_LOG(INFO, APP, "Finished Process Init.\n");
cl_rx_buf = calloc(num_clients, sizeof(cl_rx_buf[0]));
/* clear statistics */
clear_stats();
/* put all other cores to sleep bar master */
do_packet_forwarding();
/* clean up the EAL */
return 0;
}