#include <arpa/inet.h>
#include <getopt.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/virtio_net.h>
#include <linux/virtio_ring.h>
#include <signal.h>
#include <stdint.h>
#include <sys/eventfd.h>
#include <sys/param.h>
#include <unistd.h>
#include "main.h"
#include "vxlan.h"
#include "vxlan_setup.h"
#define MAX_SUP_PORTS 1
#define NUM_MBUFS_PER_PORT ((MAX_QUEUES * RTE_TEST_RX_DESC_DEFAULT) +\
(nb_switching_cores * MAX_PKT_BURST) +\
(nb_switching_cores * \
RTE_TEST_TX_DESC_DEFAULT) +\
(nb_switching_cores * MBUF_CACHE_SIZE))
#define MBUF_CACHE_SIZE 128
#define MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE
#define MAX_PKT_BURST 32
#define BURST_TX_DRAIN_US 100
#define BURST_RX_WAIT_US 15
#define BURST_RX_RETRIES 4
#define JUMBO_FRAME_MAX_SIZE 0x2600
#define DEVICE_MAC_LEARNING 0
#define DEVICE_RX 1
#define DEVICE_SAFE_REMOVE 2
#define REQUEST_DEV_REMOVAL 1
#define ACK_DEV_REMOVAL 0
#define RTE_TEST_RX_DESC_DEFAULT 1024
#define RTE_TEST_TX_DESC_DEFAULT 512
#define MBUF_HEADROOM_UINT32(mbuf) (*(uint32_t *)((uint8_t *)(mbuf) \
+ sizeof(struct rte_mbuf)))
#define INVALID_PORT_ID 0xFFFF
#define MAX_BASENAME_SZ 20
#define MAX_LONG_OPT_SZ 64
#define MAC_ADDR_CMP 0xFFFFFFFFFFFFULL
#define CMD_LINE_OPT_NB_DEVICES "nb-devices"
#define CMD_LINE_OPT_UDP_PORT "udp-port"
#define CMD_LINE_OPT_TX_CHECKSUM "tx-checksum"
#define CMD_LINE_OPT_TSO_SEGSZ "tso-segsz"
#define CMD_LINE_OPT_FILTER_TYPE "filter-type"
#define CMD_LINE_OPT_ENCAP "encap"
#define CMD_LINE_OPT_DECAP "decap"
#define CMD_LINE_OPT_RX_RETRY "rx-retry"
#define CMD_LINE_OPT_RX_RETRY_DELAY "rx-retry-delay"
#define CMD_LINE_OPT_RX_RETRY_NUM "rx-retry-num"
#define CMD_LINE_OPT_STATS "stats"
#define CMD_LINE_OPT_DEV_BASENAME "dev-basename"
static uint32_t enabled_port_mask;
static uint32_t nb_switching_cores;
uint16_t nb_devices = 2;
#define MAX_RING_DESC 4096
struct vpool {
uint32_t buf_size;
} vpool_array[MAX_QUEUES+MAX_QUEUES];
uint16_t udp_port = 4789;
uint8_t tx_checksum = 0;
uint16_t tso_segsz = 0;
uint8_t rx_decap = 1;
uint8_t tx_encap = 1;
uint8_t filter_idx = 1;
struct ol_switch_ops overlay_options = {
.port_configure = vxlan_port_init,
.tunnel_setup = vxlan_link,
.tunnel_destroy = vxlan_unlink,
.tx_handle = vxlan_tx_pkts,
.rx_handle = vxlan_rx_pkts,
.param_handle = NULL,
};
uint32_t enable_stats = 0;
static uint32_t enable_retry = 1;
static uint32_t burst_rx_delay_time = BURST_RX_WAIT_US;
static uint32_t burst_rx_retry_num = BURST_RX_RETRIES;
static char dev_basename[MAX_BASENAME_SZ] = "vhost-net";
static unsigned lcore_ids[RTE_MAX_LCORE];
uint16_t ports[RTE_MAX_ETHPORTS];
static unsigned nb_ports;
struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
static struct virtio_net_data_ll *ll_root_used;
static struct virtio_net_data_ll *ll_root_free;
static struct lcore_info lcore_info[RTE_MAX_LCORE];
struct mbuf_table {
unsigned len;
unsigned txq_id;
struct rte_mbuf *m_table[MAX_PKT_BURST];
};
struct mbuf_table lcore_tx_queue[RTE_MAX_LCORE];
struct device_statistics dev_statistics[MAX_DEVICES];
static int
us_vhost_parse_basename(const char *q_arg)
{
if (strlen(q_arg) >= MAX_BASENAME_SZ)
return -1;
else
snprintf((char *)&dev_basename, MAX_BASENAME_SZ, "%s", q_arg);
return 0;
}
static int
parse_portmask(const char *portmask)
{
char *end = NULL;
unsigned long pm;
pm = strtoul(portmask, &end, 16);
if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
return -1;
if (pm == 0)
return -1;
return pm;
}
static int
parse_num_opt(const char *q_arg, uint32_t max_valid_value)
{
char *end = NULL;
unsigned long num;
num = strtoul(q_arg, &end, 10);
if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
return -1;
if (num > max_valid_value)
return -1;
return num;
}
static void
tep_termination_usage(const char *prgname)
{
RTE_LOG(INFO, VHOST_CONFIG,
"%s [EAL options] -- -p PORTMASK\n"
" --udp-port: UDP destination port for VXLAN packet\n"
" --nb-devices[1-64]: The number of virtIO device\n"
" --tx-checksum [0|1]: inner Tx checksum offload\n"
" --tso-segsz [0-N]: TCP segment size\n"
" --decap [0|1]: tunneling packet decapsulation\n"
" --encap [0|1]: tunneling packet encapsulation\n"
" --filter-type[1-3]: filter type for tunneling packet\n"
" 1: Inner MAC and tenent ID\n"
" 2: Inner MAC and VLAN, and tenent ID\n"
" 3: Outer MAC, Inner MAC and tenent ID\n"
" -p PORTMASK: Set mask for ports to be used by application\n"
" --rx-retry [0|1]: disable/enable(default) retries on rx."
" Enable retry if destintation queue is full\n"
" --rx-retry-delay [0-N]: timeout(in usecond) between retries on RX."
" This makes effect only if retries on rx enabled\n"
" --rx-retry-num [0-N]: the number of retries on rx."
" This makes effect only if retries on rx enabled\n"
" --stats [0-N]: 0: Disable stats, N: Time in seconds to print stats\n"
" --dev-basename: The basename to be used for the character device.\n",
prgname);
}
static int
tep_termination_parse_args(int argc, char **argv)
{
int opt, ret;
int option_index;
unsigned i;
const char *prgname = argv[0];
static struct option long_option[] = {
{CMD_LINE_OPT_NB_DEVICES, required_argument, NULL, 0},
{CMD_LINE_OPT_UDP_PORT, required_argument, NULL, 0},
{CMD_LINE_OPT_TX_CHECKSUM, required_argument, NULL, 0},
{CMD_LINE_OPT_TSO_SEGSZ, required_argument, NULL, 0},
{CMD_LINE_OPT_DECAP, required_argument, NULL, 0},
{CMD_LINE_OPT_ENCAP, required_argument, NULL, 0},
{CMD_LINE_OPT_FILTER_TYPE, required_argument, NULL, 0},
{CMD_LINE_OPT_RX_RETRY, required_argument, NULL, 0},
{CMD_LINE_OPT_RX_RETRY_DELAY, required_argument, NULL, 0},
{CMD_LINE_OPT_RX_RETRY_NUM, required_argument, NULL, 0},
{CMD_LINE_OPT_STATS, required_argument, NULL, 0},
{CMD_LINE_OPT_DEV_BASENAME, required_argument, NULL, 0},
{NULL, 0, 0, 0},
};
while ((opt = getopt_long(argc, argv, "p:",
long_option, &option_index)) != EOF) {
switch (opt) {
case 'p':
enabled_port_mask = parse_portmask(optarg);
if (enabled_port_mask == 0) {
"Invalid portmask\n");
tep_termination_usage(prgname);
return -1;
}
break;
case 0:
if (!strncmp(long_option[option_index].name,
CMD_LINE_OPT_NB_DEVICES,
sizeof(CMD_LINE_OPT_NB_DEVICES))) {
ret = parse_num_opt(optarg, MAX_DEVICES);
if (ret == -1) {
"Invalid argument for nb-devices [0-%d]\n",
MAX_DEVICES);
tep_termination_usage(prgname);
return -1;
} else
nb_devices = ret;
}
if (!strncmp(long_option[option_index].name,
CMD_LINE_OPT_RX_RETRY,
sizeof(CMD_LINE_OPT_RX_RETRY))) {
ret = parse_num_opt(optarg, 1);
if (ret == -1) {
"Invalid argument for rx-retry [0|1]\n");
tep_termination_usage(prgname);
return -1;
} else
enable_retry = ret;
}
if (!strncmp(long_option[option_index].name,
CMD_LINE_OPT_TSO_SEGSZ,
sizeof(CMD_LINE_OPT_TSO_SEGSZ))) {
ret = parse_num_opt(optarg, INT16_MAX);
if (ret == -1) {
"Invalid argument for TCP segment size [0-N]\n");
tep_termination_usage(prgname);
return -1;
} else
tso_segsz = ret;
}
if (!strncmp(long_option[option_index].name,
CMD_LINE_OPT_UDP_PORT,
sizeof(CMD_LINE_OPT_UDP_PORT))) {
ret = parse_num_opt(optarg, INT16_MAX);
if (ret == -1) {
"Invalid argument for UDP port [0-N]\n");
tep_termination_usage(prgname);
return -1;
} else
udp_port = ret;
}
if (!strncmp(long_option[option_index].name,
CMD_LINE_OPT_RX_RETRY_DELAY,
sizeof(CMD_LINE_OPT_RX_RETRY_DELAY))) {
ret = parse_num_opt(optarg, INT32_MAX);
if (ret == -1) {
"Invalid argument for rx-retry-delay [0-N]\n");
tep_termination_usage(prgname);
return -1;
} else
burst_rx_delay_time = ret;
}
if (!strncmp(long_option[option_index].name,
CMD_LINE_OPT_RX_RETRY_NUM,
sizeof(CMD_LINE_OPT_RX_RETRY_NUM))) {
ret = parse_num_opt(optarg, INT32_MAX);
if (ret == -1) {
"Invalid argument for rx-retry-num [0-N]\n");
tep_termination_usage(prgname);
return -1;
} else
burst_rx_retry_num = ret;
}
if (!strncmp(long_option[option_index].name,
CMD_LINE_OPT_TX_CHECKSUM,
sizeof(CMD_LINE_OPT_TX_CHECKSUM))) {
ret = parse_num_opt(optarg, 1);
if (ret == -1) {
"Invalid argument for tx-checksum [0|1]\n");
tep_termination_usage(prgname);
return -1;
} else
tx_checksum = ret;
}
if (!strncmp(long_option[option_index].name,
CMD_LINE_OPT_FILTER_TYPE,
sizeof(CMD_LINE_OPT_FILTER_TYPE))) {
ret = parse_num_opt(optarg, 3);
if ((ret == -1) || (ret == 0)) {
"Invalid argument for filter type [1-3]\n");
tep_termination_usage(prgname);
return -1;
} else
filter_idx = ret - 1;
}
if (!strncmp(long_option[option_index].name,
CMD_LINE_OPT_DECAP,
sizeof(CMD_LINE_OPT_DECAP))) {
ret = parse_num_opt(optarg, 1);
if (ret == -1) {
"Invalid argument for decap [0|1]\n");
tep_termination_usage(prgname);
return -1;
} else
rx_decap = ret;
}
if (!strncmp(long_option[option_index].name,
CMD_LINE_OPT_ENCAP,
sizeof(CMD_LINE_OPT_ENCAP))) {
ret = parse_num_opt(optarg, 1);
if (ret == -1) {
"Invalid argument for encap [0|1]\n");
tep_termination_usage(prgname);
return -1;
} else
tx_encap = ret;
}
if (!strncmp(long_option[option_index].name,
CMD_LINE_OPT_STATS,
sizeof(CMD_LINE_OPT_STATS))) {
ret = parse_num_opt(optarg, INT32_MAX);
if (ret == -1) {
"Invalid argument for stats [0..N]\n");
tep_termination_usage(prgname);
return -1;
} else
enable_stats = ret;
}
if (!strncmp(long_option[option_index].name,
CMD_LINE_OPT_DEV_BASENAME,
sizeof(CMD_LINE_OPT_DEV_BASENAME))) {
if (us_vhost_parse_basename(optarg) == -1) {
"Invalid argument for character "
"device basename (Max %d characters)\n",
MAX_BASENAME_SZ);
tep_termination_usage(prgname);
return -1;
}
}
break;
default:
tep_termination_usage(prgname);
return -1;
}
}
for (i = 0; i < RTE_MAX_ETHPORTS; i++) {
if (enabled_port_mask & (1 << i))
ports[nb_ports++] = (uint8_t)i;
}
if ((nb_ports == 0) || (nb_ports > MAX_SUP_PORTS)) {
RTE_LOG(INFO, VHOST_PORT,
"Current enabled port number is %u,"
"but only %u port can be enabled\n", nb_ports,
MAX_SUP_PORTS);
return -1;
}
return 0;
}
static unsigned
check_ports_num(unsigned max_nb_ports)
{
unsigned valid_nb_ports = nb_ports;
unsigned portid;
if (nb_ports > max_nb_ports) {
RTE_LOG(INFO, VHOST_PORT,
"\nSpecified port number(%u) "
" exceeds total system port number(%u)\n",
nb_ports, max_nb_ports);
nb_ports = max_nb_ports;
}
for (portid = 0; portid < nb_ports; portid++) {
"\nSpecified port ID(%u) is not valid\n",
ports[portid]);
ports[portid] = INVALID_PORT_ID;
valid_nb_ports--;
}
}
return valid_nb_ports;
}
virtio_tx_route(
struct vhost_dev *vdev,
struct rte_mbuf *m)
{
struct mbuf_table *tx_q;
unsigned len, ret = 0;
RTE_LOG_DP(DEBUG, VHOST_DATA,
"(%d) TX: MAC address is external\n",
vdev->vid);
tx_q = &lcore_tx_queue[lcore_id];
len = tx_q->len;
tx_q->m_table[len] = m;
len++;
if (enable_stats) {
dev_statistics[vdev->vid].tx_total++;
dev_statistics[vdev->vid].tx++;
}
m_table = (
struct rte_mbuf **)tx_q->m_table;
ret = overlay_options.tx_handle(ports[0],
(uint16_t)tx_q->txq_id, m_table,
(uint16_t)tx_q->len);
do {
} while (++ret < len);
}
len = 0;
}
tx_q->len = len;
return;
}
static int
{
struct vhost_dev *vdev = NULL;
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
struct virtio_net_data_ll *dev_ll;
struct mbuf_table *tx_q;
volatile struct lcore_ll_info *lcore_ll;
/ US_PER_S * BURST_TX_DRAIN_US;
uint64_t prev_tsc, diff_tsc, cur_tsc, ret_count = 0;
unsigned i, ret = 0;
uint16_t rx_count = 0;
uint16_t tx_count;
uint32_t retry = 0;
RTE_LOG(INFO, VHOST_DATA,
"Procesing on Core %u started\n", lcore_id);
lcore_ll = lcore_info[lcore_id].lcore_ll;
prev_tsc = 0;
tx_q = &lcore_tx_queue[lcore_id];
for (i = 0; i < num_cores; i++) {
if (lcore_ids[i] == lcore_id) {
tx_q->txq_id = i;
break;
}
}
while (1) {
cur_tsc = rte_rdtsc();
diff_tsc = cur_tsc - prev_tsc;
if (tx_q->len) {
RTE_LOG_DP(DEBUG, VHOST_DATA,
"TX queue drained after "
"timeout with burst size %u\n",
tx_q->len);
ret = overlay_options.tx_handle(ports[0],
(uint16_t)tx_q->txq_id,
(uint16_t)tx_q->len);
do {
} while (++ret < tx_q->len);
}
tx_q->len = 0;
}
prev_tsc = cur_tsc;
}
if (lcore_ll->dev_removal_flag == REQUEST_DEV_REMOVAL)
lcore_ll->dev_removal_flag = ACK_DEV_REMOVAL;
dev_ll = lcore_ll->ll_root_used;
while (dev_ll != NULL) {
vdev = dev_ll->vdev;
dev_ll = dev_ll->next;
overlay_options.tunnel_destroy(vdev);
vdev->ready = DEVICE_SAFE_REMOVE;
continue;
}
if (
likely(vdev->ready == DEVICE_RX)) {
vdev->rx_q, pkts_burst, MAX_PKT_BURST);
if (rx_count) {
for (retry = 0; retry < burst_rx_retry_num;
retry++) {
break;
}
}
ret_count = overlay_options.rx_handle(vdev->vid, pkts_burst, rx_count);
if (enable_stats) {
&dev_statistics[vdev->vid].rx_total_atomic,
rx_count);
&dev_statistics[vdev->vid].rx_atomic, ret_count);
}
rx_count--;
}
}
}
VIRTIO_TXQ, mbuf_pool,
pkts_burst, MAX_PKT_BURST);
if (
unlikely(vdev->ready == DEVICE_MAC_LEARNING) && tx_count) {
if (vdev->remove ||
(overlay_options.tunnel_setup(vdev, pkts_burst[0]) == -1)) {
while (tx_count)
}
}
while (tx_count)
virtio_tx_route(vdev, pkts_burst[--tx_count]);
}
dev_ll = dev_ll->next;
}
}
return 0;
}
static void
add_data_ll_entry(struct virtio_net_data_ll **ll_root_addr,
struct virtio_net_data_ll *ll_dev)
{
struct virtio_net_data_ll *ll = *ll_root_addr;
ll_dev->next = NULL;
if (ll) {
while (ll->next != NULL)
ll = ll->next;
ll->next = ll_dev;
} else {
*ll_root_addr = ll_dev;
}
}
static void
rm_data_ll_entry(struct virtio_net_data_ll **ll_root_addr,
struct virtio_net_data_ll *ll_dev,
struct virtio_net_data_ll *ll_dev_last)
{
struct virtio_net_data_ll *ll = *ll_root_addr;
if (
unlikely((ll == NULL) || (ll_dev == NULL)))
return;
if (ll_dev == ll)
*ll_root_addr = ll_dev->next;
else
if (
likely(ll_dev_last != NULL))
ll_dev_last->next = ll_dev->next;
else
"Remove entry form ll failed.\n");
}
static struct virtio_net_data_ll *
get_data_ll_free_entry(struct virtio_net_data_ll **ll_root_addr)
{
struct virtio_net_data_ll *ll_free = *ll_root_addr;
struct virtio_net_data_ll *ll_dev;
if (ll_free == NULL)
return NULL;
ll_dev = ll_free;
*ll_root_addr = ll_free->next;
return ll_dev;
}
static void
put_data_ll_free_entry(struct virtio_net_data_ll **ll_root_addr,
struct virtio_net_data_ll *ll_dev)
{
struct virtio_net_data_ll *ll_free = *ll_root_addr;
if (ll_dev == NULL)
return;
ll_dev->next = ll_free;
*ll_root_addr = ll_dev;
}
static struct virtio_net_data_ll *
alloc_data_ll(uint32_t size)
{
struct virtio_net_data_ll *ll_new;
uint32_t i;
ll_new = malloc(size * sizeof(struct virtio_net_data_ll));
if (ll_new == NULL) {
"Failed to allocate memory for ll_new.\n");
return NULL;
}
for (i = 0; i < size - 1; i++) {
ll_new[i].vdev = NULL;
ll_new[i].next = &ll_new[i+1];
}
ll_new[i].next = NULL;
return ll_new;
}
static int
init_data_ll(void)
{
int lcore;
lcore_info[lcore].lcore_ll =
malloc(sizeof(struct lcore_ll_info));
if (lcore_info[lcore].lcore_ll == NULL) {
"Failed to allocate memory for lcore_ll.\n");
return -1;
}
lcore_info[lcore].lcore_ll->device_num = 0;
lcore_info[lcore].lcore_ll->dev_removal_flag = ACK_DEV_REMOVAL;
lcore_info[lcore].lcore_ll->ll_root_used = NULL;
if (nb_devices % nb_switching_cores)
lcore_info[lcore].lcore_ll->ll_root_free =
alloc_data_ll((nb_devices / nb_switching_cores)
+ 1);
else
lcore_info[lcore].lcore_ll->ll_root_free =
alloc_data_ll(nb_devices / nb_switching_cores);
}
ll_root_free = alloc_data_ll(MIN((nb_devices), MAX_DEVICES));
return 0;
}
static void
destroy_device(int vid)
{
struct virtio_net_data_ll *ll_lcore_dev_cur;
struct virtio_net_data_ll *ll_main_dev_cur;
struct virtio_net_data_ll *ll_lcore_dev_last = NULL;
struct virtio_net_data_ll *ll_main_dev_last = NULL;
struct vhost_dev *vdev = NULL;
int lcore;
ll_main_dev_cur = ll_root_used;
while (ll_main_dev_cur != NULL) {
if (ll_main_dev_cur->vdev->vid == vid) {
vdev = ll_main_dev_cur->vdev;
break;
}
}
if (!vdev)
return;
vdev->remove = 1;
while (vdev->ready != DEVICE_SAFE_REMOVE)
ll_lcore_dev_cur = lcore_info[vdev->coreid].lcore_ll->ll_root_used;
while (ll_lcore_dev_cur != NULL) {
if (ll_lcore_dev_cur->vdev == vdev) {
break;
} else {
ll_lcore_dev_last = ll_lcore_dev_cur;
ll_lcore_dev_cur = ll_lcore_dev_cur->next;
}
}
if (ll_lcore_dev_cur == NULL) {
"(%d) Failed to find the dev to be destroy.\n", vid);
return;
}
ll_main_dev_cur = ll_root_used;
ll_main_dev_last = NULL;
while (ll_main_dev_cur != NULL) {
if (ll_main_dev_cur->vdev == vdev) {
break;
} else {
ll_main_dev_last = ll_main_dev_cur;
ll_main_dev_cur = ll_main_dev_cur->next;
}
}
rm_data_ll_entry(&lcore_info[vdev->coreid].lcore_ll->ll_root_used,
ll_lcore_dev_cur, ll_lcore_dev_last);
rm_data_ll_entry(&ll_root_used, ll_main_dev_cur, ll_main_dev_last);
lcore_info[lcore].lcore_ll->dev_removal_flag =
REQUEST_DEV_REMOVAL;
}
while (lcore_info[lcore].lcore_ll->dev_removal_flag
!= ACK_DEV_REMOVAL)
}
put_data_ll_free_entry(&lcore_info[vdev->coreid].lcore_ll->ll_root_free,
ll_lcore_dev_cur);
put_data_ll_free_entry(&ll_root_free, ll_main_dev_cur);
lcore_info[vdev->coreid].lcore_ll->device_num--;
RTE_LOG(INFO, VHOST_DATA,
"(%d) Device has been removed "
"from data core\n", vid);
}
static int
new_device(int vid)
{
struct virtio_net_data_ll *ll_dev;
int lcore, core_add = 0;
uint32_t device_num_min = nb_devices;
struct vhost_dev *vdev;
vdev =
rte_zmalloc(
"vhost device",
sizeof(*vdev), RTE_CACHE_LINE_SIZE);
if (vdev == NULL) {
"(%d) Couldn't allocate memory for vhost dev\n", vid);
return -1;
}
vdev->vid = vid;
ll_dev = get_data_ll_free_entry(&ll_root_free);
if (ll_dev == NULL) {
RTE_LOG(INFO, VHOST_DATA,
"(%d) No free entry found in"
" linked list Device limit of %d devices per core"
" has been reached\n", vid, nb_devices);
if (vdev->regions_hpa)
return -1;
}
ll_dev->vdev = vdev;
add_data_ll_entry(&ll_root_used, ll_dev);
vdev->rx_q = vid;
vdev->ready = DEVICE_MAC_LEARNING;
vdev->remove = 0;
if (lcore_info[lcore].lcore_ll->device_num < device_num_min) {
device_num_min = lcore_info[lcore].lcore_ll->device_num;
core_add = lcore;
}
}
ll_dev = get_data_ll_free_entry(&lcore_info[core_add].lcore_ll->ll_root_free);
if (ll_dev == NULL) {
"(%d) Failed to add device to data core\n",
vid);
vdev->ready = DEVICE_SAFE_REMOVE;
destroy_device(vid);
return -1;
}
ll_dev->vdev = vdev;
vdev->coreid = core_add;
add_data_ll_entry(&lcore_info[vdev->coreid].lcore_ll->ll_root_used,
ll_dev);
memset(&dev_statistics[vid], 0,
sizeof(struct device_statistics));
rte_vhost_enable_guest_notification(vid, VIRTIO_RXQ, 0);
rte_vhost_enable_guest_notification(vid, VIRTIO_TXQ, 0);
lcore_info[vdev->coreid].lcore_ll->device_num++;
RTE_LOG(INFO, VHOST_DATA,
"(%d) Device has been added to data core %d\n",
vid, vdev->coreid);
return 0;
}
};
static void *
{
struct virtio_net_data_ll *dev_ll;
uint64_t tx_dropped, rx_dropped;
uint64_t tx, tx_total, rx, rx_total, rx_ip_csum, rx_l4_csum;
int vid;
const char clr[] = { 27, '[', '2', 'J', '\0' };
const char top_left[] = { 27, '[', '1', ';', '1', 'H', '\0' };
while (1) {
sleep(enable_stats);
printf("%s%s", clr, top_left);
printf("\nDevice statistics ================================");
dev_ll = ll_root_used;
while (dev_ll != NULL) {
vid = dev_ll->vdev->vid;
tx_total = dev_statistics[vid].tx_total;
tx = dev_statistics[vid].tx;
tx_dropped = tx_total - tx;
&dev_statistics[vid].rx_total_atomic);
&dev_statistics[vid].rx_atomic);
rx_dropped = rx_total - rx;
&dev_statistics[vid].rx_bad_ip_csum);
&dev_statistics[vid].rx_bad_l4_csum);
printf("\nStatistics for device %d ----------"
"\nTX total: %"PRIu64""
"\nTX dropped: %"PRIu64""
"\nTX successful: %"PRIu64""
"\nRX total: %"PRIu64""
"\nRX bad IP csum: %"PRIu64""
"\nRX bad L4 csum: %"PRIu64""
"\nRX dropped: %"PRIu64""
"\nRX successful: %"PRIu64"",
vid,
tx_total,
tx_dropped,
tx,
rx_total,
rx_ip_csum,
rx_l4_csum,
rx_dropped,
rx);
dev_ll = dev_ll->next;
}
printf("\n================================================\n");
}
return NULL;
}
int
main(int argc, char *argv[])
{
unsigned lcore_id, core_id = 0;
unsigned nb_ports, valid_nb_ports;
int ret;
uint16_t portid;
uint16_t queue_id;
static pthread_t tid;
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Error with EAL initialization\n");
argc -= ret;
argv += ret;
ret = tep_termination_parse_args(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Invalid argument\n");
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
lcore_ids[core_id++] = lcore_id;
valid_nb_ports = check_ports_num(nb_ports);
if ((valid_nb_ports == 0) || (valid_nb_ports > MAX_SUP_PORTS)) {
rte_exit(EXIT_FAILURE,
"Current enabled port number is %u,"
"but only %u port can be enabled\n", nb_ports,
MAX_SUP_PORTS);
}
"MBUF_POOL",
NUM_MBUFS_PER_PORT * valid_nb_ports,
MBUF_CACHE_SIZE,
0,
MBUF_DATA_SIZE,
if (mbuf_pool == NULL)
rte_exit(EXIT_FAILURE,
"Cannot create mbuf pool\n");
for (queue_id = 0; queue_id < MAX_QUEUES + 1; queue_id++)
vpool_array[queue_id].pool = mbuf_pool;
if ((enabled_port_mask & (1 << portid)) == 0) {
"Skipping disabled port %d\n", portid);
continue;
}
if (overlay_options.port_configure(portid, mbuf_pool) != 0)
"Cannot initialize network ports\n");
}
if (init_data_ll() == -1)
rte_exit(EXIT_FAILURE,
"Failed to initialize linked list\n");
memset(&dev_statistics, 0, sizeof(dev_statistics));
if (enable_stats) {
print_stats, NULL);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Cannot create print-stats thread\n");
}
mbuf_pool, lcore_id);
}
if (ret != 0)
rte_exit(EXIT_FAILURE,
"failed to register vhost driver.\n");
1ULL << VIRTIO_NET_F_MRG_RXBUF);
ret = rte_vhost_driver_callback_register(dev_basename,
&virtio_net_device_ops);
if (ret != 0) {
"failed to register vhost driver callbacks.\n");
}
"failed to start vhost driver.\n");
}
return 0;
}