DPDK  18.02.2
examples/vm_power_manager/power_manager.c
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/un.h>
#include <fcntl.h>
#include <unistd.h>
#include <dirent.h>
#include <errno.h>
#include <sys/types.h>
#include <rte_log.h>
#include <rte_power.h>
#include <rte_spinlock.h>
#include "power_manager.h"
#define RTE_LOGTYPE_POWER_MANAGER RTE_LOGTYPE_USER1
#define POWER_SCALE_CORE(DIRECTION, core_num , ret) do { \
if (core_num >= POWER_MGR_MAX_CPUS) \
return -1; \
if (!(global_enabled_cpus & (1ULL << core_num))) \
return -1; \
rte_spinlock_lock(&global_core_freq_info[core_num].power_sl); \
ret = rte_power_freq_##DIRECTION(core_num); \
rte_spinlock_unlock(&global_core_freq_info[core_num].power_sl); \
} while (0)
#define POWER_SCALE_MASK(DIRECTION, core_mask, ret) do { \
int i; \
for (i = 0; core_mask; core_mask &= ~(1 << i++)) { \
if ((core_mask >> i) & 1) { \
if (!(global_enabled_cpus & (1ULL << i))) \
continue; \
rte_spinlock_lock(&global_core_freq_info[i].power_sl); \
if (rte_power_freq_##DIRECTION(i) != 1) \
ret = -1; \
rte_spinlock_unlock(&global_core_freq_info[i].power_sl); \
} \
} \
} while (0)
struct freq_info {
rte_spinlock_t power_sl;
uint32_t freqs[RTE_MAX_LCORE_FREQS];
unsigned num_freqs;
static struct freq_info global_core_freq_info[POWER_MGR_MAX_CPUS];
static uint64_t global_enabled_cpus;
#define SYSFS_CPU_PATH "/sys/devices/system/cpu/cpu%u/topology/core_id"
static unsigned
set_host_cpus_mask(void)
{
char path[PATH_MAX];
unsigned i;
unsigned num_cpus = 0;
for (i = 0; i < POWER_MGR_MAX_CPUS; i++) {
snprintf(path, sizeof(path), SYSFS_CPU_PATH, i);
if (access(path, F_OK) == 0) {
global_enabled_cpus |= 1ULL << i;
num_cpus++;
} else
return num_cpus;
}
return num_cpus;
}
int
power_manager_init(void)
{
unsigned int i, num_cpus, num_freqs;
uint64_t cpu_mask;
int ret = 0;
num_cpus = set_host_cpus_mask();
if (num_cpus == 0) {
RTE_LOG(ERR, POWER_MANAGER, "Unable to detected host CPUs, please "
"ensure that sufficient privileges exist to inspect sysfs\n");
return -1;
}
rte_power_set_env(PM_ENV_ACPI_CPUFREQ);
cpu_mask = global_enabled_cpus;
for (i = 0; cpu_mask; cpu_mask &= ~(1 << i++)) {
if (rte_power_init(i) < 0)
RTE_LOG(ERR, POWER_MANAGER,
"Unable to initialize power manager "
"for core %u\n", i);
num_freqs = rte_power_freqs(i, global_core_freq_info[i].freqs,
RTE_MAX_LCORE_FREQS);
if (num_freqs == 0) {
RTE_LOG(ERR, POWER_MANAGER,
"Unable to get frequency list for core %u\n",
i);
global_enabled_cpus &= ~(1 << i);
num_cpus--;
ret = -1;
}
global_core_freq_info[i].num_freqs = num_freqs;
rte_spinlock_init(&global_core_freq_info[i].power_sl);
}
RTE_LOG(INFO, POWER_MANAGER, "Detected %u host CPUs , enabled core mask:"
" 0x%"PRIx64"\n", num_cpus, global_enabled_cpus);
return ret;
}
uint32_t
power_manager_get_current_frequency(unsigned core_num)
{
uint32_t freq, index;
if (core_num >= POWER_MGR_MAX_CPUS) {
RTE_LOG(ERR, POWER_MANAGER, "Core(%u) is out of range 0...%d\n",
core_num, POWER_MGR_MAX_CPUS-1);
return -1;
}
if (!(global_enabled_cpus & (1ULL << core_num)))
return 0;
rte_spinlock_lock(&global_core_freq_info[core_num].power_sl);
index = rte_power_get_freq(core_num);
rte_spinlock_unlock(&global_core_freq_info[core_num].power_sl);
if (index >= POWER_MGR_MAX_CPUS)
freq = 0;
else
freq = global_core_freq_info[core_num].freqs[index];
return freq;
}
int
power_manager_exit(void)
{
unsigned int i;
int ret = 0;
for (i = 0; global_enabled_cpus; global_enabled_cpus &= ~(1 << i++)) {
if (rte_power_exit(i) < 0) {
RTE_LOG(ERR, POWER_MANAGER, "Unable to shutdown power manager "
"for core %u\n", i);
ret = -1;
}
}
global_enabled_cpus = 0;
return ret;
}
int
power_manager_scale_mask_up(uint64_t core_mask)
{
int ret = 0;
POWER_SCALE_MASK(up, core_mask, ret);
return ret;
}
int
power_manager_scale_mask_down(uint64_t core_mask)
{
int ret = 0;
POWER_SCALE_MASK(down, core_mask, ret);
return ret;
}
int
power_manager_scale_mask_min(uint64_t core_mask)
{
int ret = 0;
POWER_SCALE_MASK(min, core_mask, ret);
return ret;
}
int
power_manager_scale_mask_max(uint64_t core_mask)
{
int ret = 0;
POWER_SCALE_MASK(max, core_mask, ret);
return ret;
}
int
power_manager_enable_turbo_mask(uint64_t core_mask)
{
int ret = 0;
POWER_SCALE_MASK(enable_turbo, core_mask, ret);
return ret;
}
int
power_manager_disable_turbo_mask(uint64_t core_mask)
{
int ret = 0;
POWER_SCALE_MASK(disable_turbo, core_mask, ret);
return ret;
}
int
power_manager_scale_core_up(unsigned core_num)
{
int ret = 0;
POWER_SCALE_CORE(up, core_num, ret);
return ret;
}
int
power_manager_scale_core_down(unsigned core_num)
{
int ret = 0;
POWER_SCALE_CORE(down, core_num, ret);
return ret;
}
int
power_manager_scale_core_min(unsigned core_num)
{
int ret = 0;
POWER_SCALE_CORE(min, core_num, ret);
return ret;
}
int
power_manager_scale_core_max(unsigned core_num)
{
int ret = 0;
POWER_SCALE_CORE(max, core_num, ret);
return ret;
}
int
power_manager_enable_turbo_core(unsigned int core_num)
{
int ret = 0;
POWER_SCALE_CORE(enable_turbo, core_num, ret);
return ret;
}
int
power_manager_disable_turbo_core(unsigned int core_num)
{
int ret = 0;
POWER_SCALE_CORE(disable_turbo, core_num, ret);
return ret;
}
int
power_manager_scale_core_med(unsigned int core_num)
{
int ret = 0;
if (core_num >= POWER_MGR_MAX_CPUS)
return -1;
if (!(global_enabled_cpus & (1ULL << core_num)))
return -1;
rte_spinlock_lock(&global_core_freq_info[core_num].power_sl);
ret = rte_power_set_freq(core_num,
global_core_freq_info[core_num].num_freqs / 2);
rte_spinlock_unlock(&global_core_freq_info[core_num].power_sl);
return ret;
}