DPDK  18.02.2
examples/vm_power_manager/channel_monitor.c
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <signal.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#include <sys/epoll.h>
#include <sys/queue.h>
#include <sys/time.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_malloc.h>
#include <rte_atomic.h>
#include <rte_cycles.h>
#include <rte_ethdev.h>
#include <rte_pmd_i40e.h>
#include <libvirt/libvirt.h>
#include "channel_monitor.h"
#include "channel_commands.h"
#include "channel_manager.h"
#include "power_manager.h"
#define RTE_LOGTYPE_CHANNEL_MONITOR RTE_LOGTYPE_USER1
#define MAX_EVENTS 256
uint64_t vsi_pkt_count_prev[384];
uint64_t rdtsc_prev[384];
double time_period_ms = 1;
static volatile unsigned run_loop = 1;
static int global_event_fd;
static unsigned int policy_is_set;
static struct epoll_event *global_events_list;
static struct policy policies[MAX_VMS];
void channel_monitor_exit(void)
{
run_loop = 0;
rte_free(global_events_list);
}
static void
core_share(int pNo, int z, int x, int t)
{
if (policies[pNo].core_share[z].pcpu == lvm_info[x].pcpus[t]) {
if (strcmp(policies[pNo].pkt.vm_name,
lvm_info[x].vm_name) != 0) {
policies[pNo].core_share[z].status = 1;
power_manager_scale_core_max(
policies[pNo].core_share[z].pcpu);
}
}
}
static void
core_share_status(int pNo)
{
int noVms, noVcpus, z, x, t;
get_all_vm(&noVms, &noVcpus);
/* Reset Core Share Status. */
for (z = 0; z < noVcpus; z++)
policies[pNo].core_share[z].status = 0;
/* Foreach vcpu in a policy. */
for (z = 0; z < policies[pNo].pkt.num_vcpu; z++) {
/* Foreach VM on the platform. */
for (x = 0; x < noVms; x++) {
/* Foreach vcpu of VMs on platform. */
for (t = 0; t < lvm_info[x].num_cpus; t++)
core_share(pNo, z, x, t);
}
}
}
static void
get_pcpu_to_control(struct policy *pol)
{
/* Convert vcpu to pcpu. */
struct vm_info info;
int pcpu, count;
uint64_t mask_u64b;
RTE_LOG(INFO, CHANNEL_MONITOR, "Looking for pcpu for %s\n",
pol->pkt.vm_name);
get_info_vm(pol->pkt.vm_name, &info);
for (count = 0; count < pol->pkt.num_vcpu; count++) {
mask_u64b = info.pcpu_mask[pol->pkt.vcpu_to_control[count]];
for (pcpu = 0; mask_u64b; mask_u64b &= ~(1ULL << pcpu++)) {
if ((mask_u64b >> pcpu) & 1)
pol->core_share[count].pcpu = pcpu;
}
}
}
static int
get_pfid(struct policy *pol)
{
int i, x, ret = 0;
for (i = 0; i < pol->pkt.nb_mac_to_monitor; i++) {
(struct ether_addr *)&(pol->pkt.vfid[i]));
if (ret != -EINVAL) {
pol->port[i] = x;
break;
}
}
if (ret == -EINVAL || ret == -ENOTSUP || ret == ENODEV) {
RTE_LOG(INFO, CHANNEL_MONITOR,
"Error with Policy. MAC not found on "
"attached ports ");
pol->enabled = 0;
return ret;
}
pol->pfid[i] = ret;
}
return 1;
}
static int
update_policy(struct channel_packet *pkt)
{
unsigned int updated = 0;
int i;
for (i = 0; i < MAX_VMS; i++) {
if (strcmp(policies[i].pkt.vm_name, pkt->vm_name) == 0) {
policies[i].pkt = *pkt;
get_pcpu_to_control(&policies[i]);
if (get_pfid(&policies[i]) == -1) {
updated = 1;
break;
}
core_share_status(i);
policies[i].enabled = 1;
updated = 1;
}
}
if (!updated) {
for (i = 0; i < MAX_VMS; i++) {
if (policies[i].enabled == 0) {
policies[i].pkt = *pkt;
get_pcpu_to_control(&policies[i]);
if (get_pfid(&policies[i]) == -1)
break;
core_share_status(i);
policies[i].enabled = 1;
break;
}
}
}
return 0;
}
static uint64_t
get_pkt_diff(struct policy *pol)
{
uint64_t vsi_pkt_count,
vsi_pkt_total = 0,
vsi_pkt_count_prev_total = 0;
double rdtsc_curr, rdtsc_diff, diff;
int x;
struct rte_eth_stats vf_stats;
for (x = 0; x < pol->pkt.nb_mac_to_monitor; x++) {
/*Read vsi stats*/
if (rte_pmd_i40e_get_vf_stats(x, pol->pfid[x], &vf_stats) == 0)
vsi_pkt_count = vf_stats.ipackets;
else
vsi_pkt_count = -1;
vsi_pkt_total += vsi_pkt_count;
vsi_pkt_count_prev_total += vsi_pkt_count_prev[pol->pfid[x]];
vsi_pkt_count_prev[pol->pfid[x]] = vsi_pkt_count;
}
rdtsc_curr = rte_rdtsc_precise();
rdtsc_diff = rdtsc_curr - rdtsc_prev[pol->pfid[x-1]];
rdtsc_prev[pol->pfid[x-1]] = rdtsc_curr;
diff = (vsi_pkt_total - vsi_pkt_count_prev_total) *
((double)rte_get_tsc_hz() / rdtsc_diff);
return diff;
}
static void
apply_traffic_profile(struct policy *pol)
{
int count;
uint64_t diff = 0;
diff = get_pkt_diff(pol);
RTE_LOG(INFO, CHANNEL_MONITOR, "Applying traffic profile\n");
if (diff >= (pol->pkt.traffic_policy.max_max_packet_thresh)) {
for (count = 0; count < pol->pkt.num_vcpu; count++) {
if (pol->core_share[count].status != 1)
power_manager_scale_core_max(
pol->core_share[count].pcpu);
}
} else if (diff >= (pol->pkt.traffic_policy.avg_max_packet_thresh)) {
for (count = 0; count < pol->pkt.num_vcpu; count++) {
if (pol->core_share[count].status != 1)
power_manager_scale_core_med(
pol->core_share[count].pcpu);
}
} else if (diff < (pol->pkt.traffic_policy.avg_max_packet_thresh)) {
for (count = 0; count < pol->pkt.num_vcpu; count++) {
if (pol->core_share[count].status != 1)
power_manager_scale_core_min(
pol->core_share[count].pcpu);
}
}
}
static void
apply_time_profile(struct policy *pol)
{
int count, x;
struct timeval tv;
struct tm *ptm;
char time_string[40];
/* Obtain the time of day, and convert it to a tm struct. */
gettimeofday(&tv, NULL);
ptm = localtime(&tv.tv_sec);
/* Format the date and time, down to a single second. */
strftime(time_string, sizeof(time_string), "%Y-%m-%d %H:%M:%S", ptm);
for (x = 0; x < HOURS; x++) {
if (ptm->tm_hour == pol->pkt.timer_policy.busy_hours[x]) {
for (count = 0; count < pol->pkt.num_vcpu; count++) {
if (pol->core_share[count].status != 1) {
power_manager_scale_core_max(
pol->core_share[count].pcpu);
RTE_LOG(INFO, CHANNEL_MONITOR,
"Scaling up core %d to max\n",
pol->core_share[count].pcpu);
}
}
break;
} else if (ptm->tm_hour ==
pol->pkt.timer_policy.quiet_hours[x]) {
for (count = 0; count < pol->pkt.num_vcpu; count++) {
if (pol->core_share[count].status != 1) {
power_manager_scale_core_min(
pol->core_share[count].pcpu);
RTE_LOG(INFO, CHANNEL_MONITOR,
"Scaling down core %d to min\n",
pol->core_share[count].pcpu);
}
}
break;
} else if (ptm->tm_hour ==
pol->pkt.timer_policy.hours_to_use_traffic_profile[x]) {
apply_traffic_profile(pol);
break;
}
}
}
static void
apply_workload_profile(struct policy *pol)
{
int count;
if (pol->pkt.workload == HIGH) {
for (count = 0; count < pol->pkt.num_vcpu; count++) {
if (pol->core_share[count].status != 1)
power_manager_scale_core_max(
pol->core_share[count].pcpu);
}
} else if (pol->pkt.workload == MEDIUM) {
for (count = 0; count < pol->pkt.num_vcpu; count++) {
if (pol->core_share[count].status != 1)
power_manager_scale_core_med(
pol->core_share[count].pcpu);
}
} else if (pol->pkt.workload == LOW) {
for (count = 0; count < pol->pkt.num_vcpu; count++) {
if (pol->core_share[count].status != 1)
power_manager_scale_core_min(
pol->core_share[count].pcpu);
}
}
}
static void
apply_policy(struct policy *pol)
{
struct channel_packet *pkt = &pol->pkt;
/*Check policy to use*/
if (pkt->policy_to_use == TRAFFIC)
apply_traffic_profile(pol);
else if (pkt->policy_to_use == TIME)
apply_time_profile(pol);
else if (pkt->policy_to_use == WORKLOAD)
apply_workload_profile(pol);
}
static int
process_request(struct channel_packet *pkt, struct channel_info *chan_info)
{
uint64_t core_mask;
if (chan_info == NULL)
return -1;
if (rte_atomic32_cmpset(&(chan_info->status), CHANNEL_MGR_CHANNEL_CONNECTED,
CHANNEL_MGR_CHANNEL_PROCESSING) == 0)
return -1;
if (pkt->command == CPU_POWER) {
core_mask = get_pcpus_mask(chan_info, pkt->resource_id);
if (core_mask == 0) {
RTE_LOG(ERR, CHANNEL_MONITOR, "Error get physical CPU mask for "
"channel '%s' using vCPU(%u)\n", chan_info->channel_path,
(unsigned)pkt->unit);
return -1;
}
if (__builtin_popcountll(core_mask) == 1) {
unsigned core_num = __builtin_ffsll(core_mask) - 1;
switch (pkt->unit) {
case(CPU_POWER_SCALE_MIN):
power_manager_scale_core_min(core_num);
break;
case(CPU_POWER_SCALE_MAX):
power_manager_scale_core_max(core_num);
break;
case(CPU_POWER_SCALE_DOWN):
power_manager_scale_core_down(core_num);
break;
case(CPU_POWER_SCALE_UP):
power_manager_scale_core_up(core_num);
break;
case(CPU_POWER_ENABLE_TURBO):
power_manager_enable_turbo_core(core_num);
break;
case(CPU_POWER_DISABLE_TURBO):
power_manager_disable_turbo_core(core_num);
break;
default:
break;
}
} else {
switch (pkt->unit) {
case(CPU_POWER_SCALE_MIN):
power_manager_scale_mask_min(core_mask);
break;
case(CPU_POWER_SCALE_MAX):
power_manager_scale_mask_max(core_mask);
break;
case(CPU_POWER_SCALE_DOWN):
power_manager_scale_mask_down(core_mask);
break;
case(CPU_POWER_SCALE_UP):
power_manager_scale_mask_up(core_mask);
break;
case(CPU_POWER_ENABLE_TURBO):
power_manager_enable_turbo_mask(core_mask);
break;
case(CPU_POWER_DISABLE_TURBO):
power_manager_disable_turbo_mask(core_mask);
break;
default:
break;
}
}
}
if (pkt->command == PKT_POLICY) {
RTE_LOG(INFO, CHANNEL_MONITOR, "\nProcessing Policy request from Guest\n");
update_policy(pkt);
policy_is_set = 1;
}
/* Return is not checked as channel status may have been set to DISABLED
* from management thread
*/
rte_atomic32_cmpset(&(chan_info->status), CHANNEL_MGR_CHANNEL_PROCESSING,
CHANNEL_MGR_CHANNEL_CONNECTED);
return 0;
}
int
add_channel_to_monitor(struct channel_info **chan_info)
{
struct channel_info *info = *chan_info;
struct epoll_event event;
event.events = EPOLLIN;
event.data.ptr = info;
if (epoll_ctl(global_event_fd, EPOLL_CTL_ADD, info->fd, &event) < 0) {
RTE_LOG(ERR, CHANNEL_MONITOR, "Unable to add channel '%s' "
"to epoll\n", info->channel_path);
return -1;
}
return 0;
}
int
remove_channel_from_monitor(struct channel_info *chan_info)
{
if (epoll_ctl(global_event_fd, EPOLL_CTL_DEL, chan_info->fd, NULL) < 0) {
RTE_LOG(ERR, CHANNEL_MONITOR, "Unable to remove channel '%s' "
"from epoll\n", chan_info->channel_path);
return -1;
}
return 0;
}
int
channel_monitor_init(void)
{
global_event_fd = epoll_create1(0);
if (global_event_fd == 0) {
RTE_LOG(ERR, CHANNEL_MONITOR, "Error creating epoll context with "
"error %s\n", strerror(errno));
return -1;
}
global_events_list = rte_malloc("epoll_events", sizeof(*global_events_list)
* MAX_EVENTS, RTE_CACHE_LINE_SIZE);
if (global_events_list == NULL) {
RTE_LOG(ERR, CHANNEL_MONITOR, "Unable to rte_malloc for "
"epoll events\n");
return -1;
}
return 0;
}
void
run_channel_monitor(void)
{
while (run_loop) {
int n_events, i;
n_events = epoll_wait(global_event_fd, global_events_list,
MAX_EVENTS, 1);
if (!run_loop)
break;
for (i = 0; i < n_events; i++) {
struct channel_info *chan_info = (struct channel_info *)
global_events_list[i].data.ptr;
if ((global_events_list[i].events & EPOLLERR) ||
(global_events_list[i].events & EPOLLHUP)) {
RTE_LOG(DEBUG, CHANNEL_MONITOR, "Remote closed connection for "
"channel '%s'\n",
chan_info->channel_path);
remove_channel(&chan_info);
continue;
}
if (global_events_list[i].events & EPOLLIN) {
int n_bytes, err = 0;
struct channel_packet pkt;
void *buffer = &pkt;
int buffer_len = sizeof(pkt);
while (buffer_len > 0) {
n_bytes = read(chan_info->fd,
buffer, buffer_len);
if (n_bytes == buffer_len)
break;
if (n_bytes == -1) {
err = errno;
RTE_LOG(DEBUG, CHANNEL_MONITOR,
"Received error on "
"channel '%s' read: %s\n",
chan_info->channel_path,
strerror(err));
remove_channel(&chan_info);
break;
}
buffer = (char *)buffer + n_bytes;
buffer_len -= n_bytes;
}
if (!err)
process_request(&pkt, chan_info);
}
}
rte_delay_us(time_period_ms*1000);
if (policy_is_set) {
int j;
for (j = 0; j < MAX_VMS; j++) {
if (policies[j].enabled == 1)
apply_policy(&policies[j]);
}
}
}
}