DPDK  18.02.2
examples/load_balancer/init.c
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <string.h>
#include <sys/queue.h>
#include <stdarg.h>
#include <errno.h>
#include <getopt.h>
#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_eal.h>
#include <rte_launch.h>
#include <rte_atomic.h>
#include <rte_cycles.h>
#include <rte_prefetch.h>
#include <rte_lcore.h>
#include <rte_per_lcore.h>
#include <rte_interrupts.h>
#include <rte_random.h>
#include <rte_debug.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_ring.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_string_fns.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#include <rte_lpm.h>
#include "main.h"
static struct rte_eth_conf port_conf = {
.rxmode = {
.split_hdr_size = 0,
.ignore_offload_bitfield = 1,
.offloads = (DEV_RX_OFFLOAD_CHECKSUM |
DEV_RX_OFFLOAD_CRC_STRIP),
},
.rss_conf = {
.rss_key = NULL,
.rss_hf = ETH_RSS_IP,
},
},
.txmode = {
.mq_mode = ETH_MQ_TX_NONE,
},
};
static void
app_assign_worker_ids(void)
{
uint32_t lcore, worker_id;
/* Assign ID for each worker */
worker_id = 0;
for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) {
struct app_lcore_params_worker *lp_worker = &app.lcore_params[lcore].worker;
if (app.lcore_params[lcore].type != e_APP_LCORE_WORKER) {
continue;
}
lp_worker->worker_id = worker_id;
worker_id ++;
}
}
static void
app_init_mbuf_pools(void)
{
unsigned socket, lcore;
/* Init the buffer pools */
for (socket = 0; socket < APP_MAX_SOCKETS; socket ++) {
char name[32];
if (app_is_socket_used(socket) == 0) {
continue;
}
snprintf(name, sizeof(name), "mbuf_pool_%u", socket);
printf("Creating the mbuf pool for socket %u ...\n", socket);
app.pools[socket] = rte_pktmbuf_pool_create(
name, APP_DEFAULT_MEMPOOL_BUFFERS,
APP_DEFAULT_MEMPOOL_CACHE_SIZE,
0, APP_DEFAULT_MBUF_DATA_SIZE, socket);
if (app.pools[socket] == NULL) {
rte_panic("Cannot create mbuf pool on socket %u\n", socket);
}
}
for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) {
if (app.lcore_params[lcore].type == e_APP_LCORE_DISABLED) {
continue;
}
socket = rte_lcore_to_socket_id(lcore);
app.lcore_params[lcore].pool = app.pools[socket];
}
}
static void
app_init_lpm_tables(void)
{
unsigned socket, lcore;
/* Init the LPM tables */
for (socket = 0; socket < APP_MAX_SOCKETS; socket ++) {
char name[32];
uint32_t rule;
if (app_is_socket_used(socket) == 0) {
continue;
}
struct rte_lpm_config lpm_config;
lpm_config.max_rules = APP_MAX_LPM_RULES;
lpm_config.number_tbl8s = 256;
lpm_config.flags = 0;
snprintf(name, sizeof(name), "lpm_table_%u", socket);
printf("Creating the LPM table for socket %u ...\n", socket);
app.lpm_tables[socket] = rte_lpm_create(
name,
socket,
&lpm_config);
if (app.lpm_tables[socket] == NULL) {
rte_panic("Unable to create LPM table on socket %u\n", socket);
}
for (rule = 0; rule < app.n_lpm_rules; rule ++) {
int ret;
ret = rte_lpm_add(app.lpm_tables[socket],
app.lpm_rules[rule].ip,
app.lpm_rules[rule].depth,
app.lpm_rules[rule].if_out);
if (ret < 0) {
rte_panic("Unable to add entry %u (%x/%u => %u) to the LPM table on socket %u (%d)\n",
(unsigned) rule,
(unsigned) app.lpm_rules[rule].ip,
(unsigned) app.lpm_rules[rule].depth,
(unsigned) app.lpm_rules[rule].if_out,
socket,
ret);
}
}
}
for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) {
if (app.lcore_params[lcore].type != e_APP_LCORE_WORKER) {
continue;
}
socket = rte_lcore_to_socket_id(lcore);
app.lcore_params[lcore].worker.lpm_table = app.lpm_tables[socket];
}
}
static void
app_init_rings_rx(void)
{
unsigned lcore;
/* Initialize the rings for the RX side */
for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) {
struct app_lcore_params_io *lp_io = &app.lcore_params[lcore].io;
unsigned socket_io, lcore_worker;
if ((app.lcore_params[lcore].type != e_APP_LCORE_IO) ||
(lp_io->rx.n_nic_queues == 0)) {
continue;
}
socket_io = rte_lcore_to_socket_id(lcore);
for (lcore_worker = 0; lcore_worker < APP_MAX_LCORES; lcore_worker ++) {
char name[32];
struct app_lcore_params_worker *lp_worker = &app.lcore_params[lcore_worker].worker;
struct rte_ring *ring = NULL;
if (app.lcore_params[lcore_worker].type != e_APP_LCORE_WORKER) {
continue;
}
printf("Creating ring to connect I/O lcore %u (socket %u) with worker lcore %u ...\n",
lcore,
socket_io,
lcore_worker);
snprintf(name, sizeof(name), "app_ring_rx_s%u_io%u_w%u",
socket_io,
lcore,
lcore_worker);
name,
app.ring_rx_size,
socket_io,
if (ring == NULL) {
rte_panic("Cannot create ring to connect I/O core %u with worker core %u\n",
lcore,
lcore_worker);
}
lp_io->rx.rings[lp_io->rx.n_rings] = ring;
lp_io->rx.n_rings ++;
lp_worker->rings_in[lp_worker->n_rings_in] = ring;
lp_worker->n_rings_in ++;
}
}
for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) {
struct app_lcore_params_io *lp_io = &app.lcore_params[lcore].io;
if ((app.lcore_params[lcore].type != e_APP_LCORE_IO) ||
(lp_io->rx.n_nic_queues == 0)) {
continue;
}
if (lp_io->rx.n_rings != app_get_lcores_worker()) {
rte_panic("Algorithmic error (I/O RX rings)\n");
}
}
for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) {
struct app_lcore_params_worker *lp_worker = &app.lcore_params[lcore].worker;
if (app.lcore_params[lcore].type != e_APP_LCORE_WORKER) {
continue;
}
if (lp_worker->n_rings_in != app_get_lcores_io_rx()) {
rte_panic("Algorithmic error (worker input rings)\n");
}
}
}
static void
app_init_rings_tx(void)
{
unsigned lcore;
/* Initialize the rings for the TX side */
for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) {
struct app_lcore_params_worker *lp_worker = &app.lcore_params[lcore].worker;
unsigned port;
if (app.lcore_params[lcore].type != e_APP_LCORE_WORKER) {
continue;
}
for (port = 0; port < APP_MAX_NIC_PORTS; port ++) {
char name[32];
struct app_lcore_params_io *lp_io = NULL;
struct rte_ring *ring;
uint32_t socket_io, lcore_io;
if (app.nic_tx_port_mask[port] == 0) {
continue;
}
if (app_get_lcore_for_nic_tx(port, &lcore_io) < 0) {
rte_panic("Algorithmic error (no I/O core to handle TX of port %u)\n",
port);
}
lp_io = &app.lcore_params[lcore_io].io;
socket_io = rte_lcore_to_socket_id(lcore_io);
printf("Creating ring to connect worker lcore %u with TX port %u (through I/O lcore %u) (socket %u) ...\n",
lcore, port, (unsigned)lcore_io, (unsigned)socket_io);
snprintf(name, sizeof(name), "app_ring_tx_s%u_w%u_p%u", socket_io, lcore, port);
name,
app.ring_tx_size,
socket_io,
if (ring == NULL) {
rte_panic("Cannot create ring to connect worker core %u with TX port %u\n",
lcore,
port);
}
lp_worker->rings_out[port] = ring;
lp_io->tx.rings[port][lp_worker->worker_id] = ring;
}
}
for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) {
struct app_lcore_params_io *lp_io = &app.lcore_params[lcore].io;
unsigned i;
if ((app.lcore_params[lcore].type != e_APP_LCORE_IO) ||
(lp_io->tx.n_nic_ports == 0)) {
continue;
}
for (i = 0; i < lp_io->tx.n_nic_ports; i ++){
unsigned port, j;
port = lp_io->tx.nic_ports[i];
for (j = 0; j < app_get_lcores_worker(); j ++) {
if (lp_io->tx.rings[port][j] == NULL) {
rte_panic("Algorithmic error (I/O TX rings)\n");
}
}
}
}
}
/* Check the link status of all ports in up to 9s, and print them finally */
static void
check_all_ports_link_status(uint16_t port_num, uint32_t port_mask)
{
#define CHECK_INTERVAL 100 /* 100ms */
#define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
uint16_t portid;
uint8_t count, all_ports_up, print_flag = 0;
struct rte_eth_link link;
uint32_t n_rx_queues, n_tx_queues;
printf("\nChecking link status");
fflush(stdout);
for (count = 0; count <= MAX_CHECK_TIME; count++) {
all_ports_up = 1;
for (portid = 0; portid < port_num; portid++) {
if ((port_mask & (1 << portid)) == 0)
continue;
n_rx_queues = app_get_nic_rx_queues_per_port(portid);
n_tx_queues = app.nic_tx_port_mask[portid];
if ((n_rx_queues == 0) && (n_tx_queues == 0))
continue;
memset(&link, 0, sizeof(link));
rte_eth_link_get_nowait(portid, &link);
/* print link status if flag set */
if (print_flag == 1) {
if (link.link_status)
printf(
"Port%d Link Up - speed %uMbps - %s\n",
portid, link.link_speed,
("full-duplex") : ("half-duplex\n"));
else
printf("Port %d Link Down\n", portid);
continue;
}
/* clear all_ports_up flag if any link down */
if (link.link_status == ETH_LINK_DOWN) {
all_ports_up = 0;
break;
}
}
/* after finally printing all link status, get out */
if (print_flag == 1)
break;
if (all_ports_up == 0) {
printf(".");
fflush(stdout);
rte_delay_ms(CHECK_INTERVAL);
}
/* set the print_flag if all ports up or timeout */
if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
print_flag = 1;
printf("done\n");
}
}
}
static void
app_init_nics(void)
{
unsigned socket;
uint32_t lcore;
uint16_t port;
uint8_t queue;
int ret;
uint32_t n_rx_queues, n_tx_queues;
/* Init NIC ports and queues, then start the ports */
for (port = 0; port < APP_MAX_NIC_PORTS; port ++) {
struct rte_mempool *pool;
uint16_t nic_rx_ring_size;
uint16_t nic_tx_ring_size;
struct rte_eth_rxconf rxq_conf;
struct rte_eth_txconf txq_conf;
struct rte_eth_dev_info dev_info;
struct rte_eth_conf local_port_conf = port_conf;
n_rx_queues = app_get_nic_rx_queues_per_port(port);
n_tx_queues = app.nic_tx_port_mask[port];
if ((n_rx_queues == 0) && (n_tx_queues == 0)) {
continue;
}
/* Init port */
printf("Initializing NIC port %u ...\n", port);
rte_eth_dev_info_get(port, &dev_info);
local_port_conf.txmode.offloads |=
port,
(uint8_t) n_rx_queues,
(uint8_t) n_tx_queues,
&local_port_conf);
if (ret < 0) {
rte_panic("Cannot init NIC port %u (%d)\n", port, ret);
}
nic_rx_ring_size = app.nic_rx_ring_size;
nic_tx_ring_size = app.nic_tx_ring_size;
port, &nic_rx_ring_size, &nic_tx_ring_size);
if (ret < 0) {
rte_panic("Cannot adjust number of descriptors for port %u (%d)\n",
port, ret);
}
app.nic_rx_ring_size = nic_rx_ring_size;
app.nic_tx_ring_size = nic_tx_ring_size;
rxq_conf = dev_info.default_rxconf;
rxq_conf.offloads = local_port_conf.rxmode.offloads;
/* Init RX queues */
for (queue = 0; queue < APP_MAX_RX_QUEUES_PER_NIC_PORT; queue ++) {
if (app.nic_rx_queue_mask[port][queue] == 0) {
continue;
}
app_get_lcore_for_nic_rx(port, queue, &lcore);
socket = rte_lcore_to_socket_id(lcore);
pool = app.lcore_params[lcore].pool;
printf("Initializing NIC port %u RX queue %u ...\n",
port, queue);
port,
queue,
(uint16_t) app.nic_rx_ring_size,
socket,
&rxq_conf,
pool);
if (ret < 0) {
rte_panic("Cannot init RX queue %u for port %u (%d)\n",
queue, port, ret);
}
}
txq_conf = dev_info.default_txconf;
txq_conf.offloads = local_port_conf.txmode.offloads;
/* Init TX queues */
if (app.nic_tx_port_mask[port] == 1) {
app_get_lcore_for_nic_tx(port, &lcore);
socket = rte_lcore_to_socket_id(lcore);
printf("Initializing NIC port %u TX queue 0 ...\n",
port);
port,
0,
(uint16_t) app.nic_tx_ring_size,
socket,
&txq_conf);
if (ret < 0) {
rte_panic("Cannot init TX queue 0 for port %d (%d)\n",
port,
ret);
}
}
/* Start port */
ret = rte_eth_dev_start(port);
if (ret < 0) {
rte_panic("Cannot start port %d (%d)\n", port, ret);
}
}
check_all_ports_link_status(APP_MAX_NIC_PORTS, (~0x0));
}
void
app_init(void)
{
app_assign_worker_ids();
app_init_mbuf_pools();
app_init_lpm_tables();
app_init_rings_rx();
app_init_rings_tx();
app_init_nics();
printf("Initialization completed.\n");
}