DPDK  18.02.2
examples/ipsec-secgw/ipsec.c
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2016-2017 Intel Corporation
*/
#include <sys/types.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <rte_log.h>
#include <rte_crypto.h>
#include <rte_security.h>
#include <rte_cryptodev.h>
#include <rte_ethdev.h>
#include <rte_mbuf.h>
#include <rte_hash.h>
#include "ipsec.h"
#include "esp.h"
static inline void
set_ipsec_conf(struct ipsec_sa *sa, struct rte_security_ipsec_xform *ipsec)
{
&ipsec->tunnel;
if (sa->flags == IP4_TUNNEL) {
tunnel->type =
tunnel->ipv4.ttl = IPDEFTTL;
memcpy((uint8_t *)&tunnel->ipv4.src_ip,
(uint8_t *)&sa->src.ip.ip4, 4);
memcpy((uint8_t *)&tunnel->ipv4.dst_ip,
(uint8_t *)&sa->dst.ip.ip4, 4);
}
/* TODO support for Transport and IPV6 tunnel */
}
}
static inline int
create_session(struct ipsec_ctx *ipsec_ctx, struct ipsec_sa *sa)
{
struct rte_cryptodev_info cdev_info;
unsigned long cdev_id_qp = 0;
int32_t ret = 0;
struct cdev_key key = { 0 };
key.lcore_id = (uint8_t)rte_lcore_id();
key.cipher_algo = (uint8_t)sa->cipher_algo;
key.auth_algo = (uint8_t)sa->auth_algo;
key.aead_algo = (uint8_t)sa->aead_algo;
if (sa->type == RTE_SECURITY_ACTION_TYPE_NONE) {
ret = rte_hash_lookup_data(ipsec_ctx->cdev_map, &key,
(void **)&cdev_id_qp);
if (ret < 0) {
RTE_LOG(ERR, IPSEC,
"No cryptodev: core %u, cipher_algo %u, "
"auth_algo %u, aead_algo %u\n",
key.lcore_id,
key.cipher_algo,
key.auth_algo,
key.aead_algo);
return -1;
}
}
RTE_LOG_DP(DEBUG, IPSEC, "Create session for SA spi %u on cryptodev "
"%u qp %u\n", sa->spi,
ipsec_ctx->tbl[cdev_id_qp].id,
ipsec_ctx->tbl[cdev_id_qp].qp);
if (sa->type != RTE_SECURITY_ACTION_TYPE_NONE) {
struct rte_security_session_conf sess_conf = {
.action_type = sa->type,
{.ipsec = {
.spi = sa->spi,
.salt = sa->salt,
.options = { 0 },
.direction = sa->direction,
.mode = (sa->flags == IP4_TUNNEL ||
sa->flags == IP6_TUNNEL) ?
} },
.crypto_xform = sa->xforms,
.userdata = NULL,
};
struct rte_security_ctx *ctx = (struct rte_security_ctx *)
rte_cryptodev_get_sec_ctx(
ipsec_ctx->tbl[cdev_id_qp].id);
/* Set IPsec parameters in conf */
set_ipsec_conf(sa, &(sess_conf.ipsec));
sa->sec_session = rte_security_session_create(ctx,
&sess_conf, ipsec_ctx->session_pool);
if (sa->sec_session == NULL) {
RTE_LOG(ERR, IPSEC,
"SEC Session init failed: err: %d\n", ret);
return -1;
}
} else if (sa->type == RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO) {
struct rte_flow_error err;
struct rte_security_ctx *ctx = (struct rte_security_ctx *)
sa->portid);
const struct rte_security_capability *sec_cap;
int ret = 0;
sa->sec_session = rte_security_session_create(ctx,
&sess_conf, ipsec_ctx->session_pool);
if (sa->sec_session == NULL) {
RTE_LOG(ERR, IPSEC,
"SEC Session init failed: err: %d\n", ret);
return -1;
}
/* iterate until ESP tunnel*/
while (sec_cap->action !=
if (sec_cap->action == sa->type &&
sec_cap->protocol ==
sec_cap->ipsec.mode ==
sec_cap->ipsec.direction == sa->direction)
break;
sec_cap++;
}
RTE_LOG(ERR, IPSEC,
"No suitable security capability found\n");
return -1;
}
sa->ol_flags = sec_cap->ol_flags;
sa->security_ctx = ctx;
sa->pattern[0].type = RTE_FLOW_ITEM_TYPE_ETH;
sa->pattern[1].type = RTE_FLOW_ITEM_TYPE_IPV4;
sa->pattern[1].mask = &rte_flow_item_ipv4_mask;
if (sa->flags & IP6_TUNNEL) {
sa->pattern[1].spec = &sa->ipv6_spec;
memcpy(sa->ipv6_spec.hdr.dst_addr,
sa->dst.ip.ip6.ip6_b, 16);
memcpy(sa->ipv6_spec.hdr.src_addr,
sa->src.ip.ip6.ip6_b, 16);
} else {
sa->pattern[1].spec = &sa->ipv4_spec;
sa->ipv4_spec.hdr.dst_addr = sa->dst.ip.ip4;
sa->ipv4_spec.hdr.src_addr = sa->src.ip.ip4;
}
sa->pattern[2].type = RTE_FLOW_ITEM_TYPE_ESP;
sa->pattern[2].spec = &sa->esp_spec;
sa->pattern[2].mask = &rte_flow_item_esp_mask;
sa->esp_spec.hdr.spi = rte_cpu_to_be_32(sa->spi);
sa->pattern[3].type = RTE_FLOW_ITEM_TYPE_END;
sa->action[0].type = RTE_FLOW_ACTION_TYPE_SECURITY;
sa->action[0].conf = sa->sec_session;
sa->action[1].type = RTE_FLOW_ACTION_TYPE_END;
sa->attr.egress = (sa->direction ==
sa->attr.ingress = (sa->direction ==
if (sa->attr.ingress) {
uint8_t rss_key[40];
struct rte_eth_rss_conf rss_conf = {
.rss_key_len = 40,
};
struct rte_eth_dev *eth_dev;
union {
struct rte_flow_action_rss rss;
struct {
const struct rte_eth_rss_conf *rss_conf;
uint16_t num;
uint16_t queue[RTE_MAX_QUEUES_PER_PORT];
} local;
} action_rss;
unsigned int i;
unsigned int j;
sa->action[2].type = RTE_FLOW_ACTION_TYPE_END;
/* Try RSS. */
sa->action[1].type = RTE_FLOW_ACTION_TYPE_RSS;
sa->action[1].conf = &action_rss;
eth_dev = ctx->device;
&rss_conf);
for (i = 0, j = 0;
i < eth_dev->data->nb_rx_queues; ++i)
if (eth_dev->data->rx_queues[i])
action_rss.local.queue[j++] = i;
action_rss.local.num = j;
action_rss.local.rss_conf = &rss_conf;
ret = rte_flow_validate(sa->portid, &sa->attr,
sa->pattern, sa->action,
&err);
if (!ret)
goto flow_create;
/* Try Queue. */
sa->action[1].type = RTE_FLOW_ACTION_TYPE_QUEUE;
sa->action[1].conf =
.index = 0,
};
ret = rte_flow_validate(sa->portid, &sa->attr,
sa->pattern, sa->action,
&err);
/* Try End. */
sa->action[1].type = RTE_FLOW_ACTION_TYPE_END;
sa->action[1].conf = NULL;
ret = rte_flow_validate(sa->portid, &sa->attr,
sa->pattern, sa->action,
&err);
if (ret)
goto flow_create_failure;
} else if (sa->attr.egress &&
(sa->ol_flags &
sa->action[1].type =
sa->action[2].type =
}
flow_create:
sa->flow = rte_flow_create(sa->portid,
&sa->attr, sa->pattern, sa->action, &err);
if (sa->flow == NULL) {
flow_create_failure:
RTE_LOG(ERR, IPSEC,
"Failed to create ipsec flow msg: %s\n",
err.message);
return -1;
}
} else if (sa->type ==
struct rte_security_ctx *ctx =
(struct rte_security_ctx *)
const struct rte_security_capability *sec_cap;
if (ctx == NULL) {
RTE_LOG(ERR, IPSEC,
"Ethernet device doesn't have security features registered\n");
return -1;
}
/* Set IPsec parameters in conf */
set_ipsec_conf(sa, &(sess_conf.ipsec));
/* Save SA as userdata for the security session. When
* the packet is received, this userdata will be
* retrieved using the metadata from the packet.
*
* This is required only for inbound SAs.
*/
if (sa->direction == RTE_SECURITY_IPSEC_SA_DIR_INGRESS)
sess_conf.userdata = (void *) sa;
sa->sec_session = rte_security_session_create(ctx,
&sess_conf, ipsec_ctx->session_pool);
if (sa->sec_session == NULL) {
RTE_LOG(ERR, IPSEC,
"SEC Session init failed: err: %d\n", ret);
return -1;
}
if (sec_cap == NULL) {
RTE_LOG(ERR, IPSEC,
"No capabilities registered\n");
return -1;
}
/* iterate until ESP tunnel*/
while (sec_cap->action !=
if (sec_cap->action == sa->type &&
sec_cap->protocol ==
sec_cap->ipsec.mode ==
sec_cap->ipsec.direction == sa->direction)
break;
sec_cap++;
}
RTE_LOG(ERR, IPSEC,
"No suitable security capability found\n");
return -1;
}
sa->ol_flags = sec_cap->ol_flags;
sa->security_ctx = ctx;
}
} else {
sa->crypto_session = rte_cryptodev_sym_session_create(
ipsec_ctx->session_pool);
rte_cryptodev_sym_session_init(ipsec_ctx->tbl[cdev_id_qp].id,
sa->crypto_session, sa->xforms,
ipsec_ctx->session_pool);
rte_cryptodev_info_get(ipsec_ctx->tbl[cdev_id_qp].id,
&cdev_info);
if (cdev_info.sym.max_nb_sessions_per_qp > 0) {
ipsec_ctx->tbl[cdev_id_qp].id,
ipsec_ctx->tbl[cdev_id_qp].qp,
sa->crypto_session);
if (ret < 0) {
RTE_LOG(ERR, IPSEC,
"Session cannot be attached to qp %u\n",
ipsec_ctx->tbl[cdev_id_qp].qp);
return -1;
}
}
}
sa->cdev_id_qp = cdev_id_qp;
return 0;
}
static inline void
enqueue_cop(struct cdev_qp *cqp, struct rte_crypto_op *cop)
{
int32_t ret, i;
cqp->buf[cqp->len++] = cop;
if (cqp->len == MAX_PKT_BURST) {
ret = rte_cryptodev_enqueue_burst(cqp->id, cqp->qp,
cqp->buf, cqp->len);
if (ret < cqp->len) {
RTE_LOG_DP(DEBUG, IPSEC, "Cryptodev %u queue %u:"
" enqueued %u crypto ops out of %u\n",
cqp->id, cqp->qp,
ret, cqp->len);
for (i = ret; i < cqp->len; i++)
rte_pktmbuf_free(cqp->buf[i]->sym->m_src);
}
cqp->in_flight += ret;
cqp->len = 0;
}
}
static inline void
ipsec_enqueue(ipsec_xform_fn xform_func, struct ipsec_ctx *ipsec_ctx,
struct rte_mbuf *pkts[], struct ipsec_sa *sas[],
uint16_t nb_pkts)
{
int32_t ret = 0, i;
struct ipsec_mbuf_metadata *priv;
struct rte_crypto_sym_op *sym_cop;
struct ipsec_sa *sa;
for (i = 0; i < nb_pkts; i++) {
if (unlikely(sas[i] == NULL)) {
rte_pktmbuf_free(pkts[i]);
continue;
}
rte_prefetch0(sas[i]);
rte_prefetch0(pkts[i]);
priv = get_priv(pkts[i]);
sa = sas[i];
priv->sa = sa;
switch (sa->type) {
priv->cop.type = RTE_CRYPTO_OP_TYPE_SYMMETRIC;
rte_prefetch0(&priv->sym_cop);
if ((unlikely(sa->sec_session == NULL)) &&
create_session(ipsec_ctx, sa)) {
rte_pktmbuf_free(pkts[i]);
continue;
}
sym_cop = get_sym_cop(&priv->cop);
sym_cop->m_src = pkts[i];
sa->sec_session);
break;
priv->cop.type = RTE_CRYPTO_OP_TYPE_SYMMETRIC;
rte_prefetch0(&priv->sym_cop);
if ((unlikely(sa->crypto_session == NULL)) &&
create_session(ipsec_ctx, sa)) {
rte_pktmbuf_free(pkts[i]);
continue;
}
sa->crypto_session);
ret = xform_func(pkts[i], sa, &priv->cop);
if (unlikely(ret)) {
rte_pktmbuf_free(pkts[i]);
continue;
}
break;
if ((unlikely(sa->sec_session == NULL)) &&
create_session(ipsec_ctx, sa)) {
rte_pktmbuf_free(pkts[i]);
continue;
}
ipsec_ctx->ol_pkts[ipsec_ctx->ol_pkts_cnt++] = pkts[i];
sa->security_ctx,
sa->sec_session, pkts[i], NULL);
continue;
priv->cop.type = RTE_CRYPTO_OP_TYPE_SYMMETRIC;
rte_prefetch0(&priv->sym_cop);
if ((unlikely(sa->sec_session == NULL)) &&
create_session(ipsec_ctx, sa)) {
rte_pktmbuf_free(pkts[i]);
continue;
}
sa->sec_session);
ret = xform_func(pkts[i], sa, &priv->cop);
if (unlikely(ret)) {
rte_pktmbuf_free(pkts[i]);
continue;
}
ipsec_ctx->ol_pkts[ipsec_ctx->ol_pkts_cnt++] = pkts[i];
sa->security_ctx,
sa->sec_session, pkts[i], NULL);
continue;
}
RTE_ASSERT(sa->cdev_id_qp < ipsec_ctx->nb_qps);
enqueue_cop(&ipsec_ctx->tbl[sa->cdev_id_qp], &priv->cop);
}
}
static inline int
ipsec_dequeue(ipsec_xform_fn xform_func, struct ipsec_ctx *ipsec_ctx,
struct rte_mbuf *pkts[], uint16_t max_pkts)
{
int32_t nb_pkts = 0, ret = 0, i, j, nb_cops;
struct ipsec_mbuf_metadata *priv;
struct rte_crypto_op *cops[max_pkts];
struct ipsec_sa *sa;
struct rte_mbuf *pkt;
for (i = 0; i < ipsec_ctx->nb_qps && nb_pkts < max_pkts;) {
struct cdev_qp *cqp;
cqp = &ipsec_ctx->tbl[ipsec_ctx->last_qp];
while (ipsec_ctx->ol_pkts_cnt > 0 && nb_pkts < max_pkts) {
pkt = ipsec_ctx->ol_pkts[--ipsec_ctx->ol_pkts_cnt];
priv = get_priv(pkt);
sa = priv->sa;
ret = xform_func(pkt, sa, &priv->cop);
if (unlikely(ret)) {
continue;
}
pkts[nb_pkts++] = pkt;
}
if (cqp->in_flight == 0) {
ipsec_ctx->last_qp++;
if (ipsec_ctx->last_qp == ipsec_ctx->nb_qps)
ipsec_ctx->last_qp %= ipsec_ctx->nb_qps;
i++;
continue;
}
nb_cops = rte_cryptodev_dequeue_burst(cqp->id, cqp->qp,
cops, max_pkts - nb_pkts);
cqp->in_flight -= nb_cops;
for (j = 0; j < nb_cops; j++) {
pkt = cops[j]->sym->m_src;
priv = get_priv(pkt);
sa = priv->sa;
RTE_ASSERT(sa != NULL);
if (sa->type == RTE_SECURITY_ACTION_TYPE_NONE) {
ret = xform_func(pkt, sa, cops[j]);
if (unlikely(ret)) {
continue;
}
}
pkts[nb_pkts++] = pkt;
if (cqp->in_flight < max_pkts) {
ipsec_ctx->last_qp++;
if (ipsec_ctx->last_qp == ipsec_ctx->nb_qps)
ipsec_ctx->last_qp %= ipsec_ctx->nb_qps;
i++;
}
}
}
/* return packets */
return nb_pkts;
}
uint16_t
ipsec_inbound(struct ipsec_ctx *ctx, struct rte_mbuf *pkts[],
uint16_t nb_pkts, uint16_t len)
{
struct ipsec_sa *sas[nb_pkts];
inbound_sa_lookup(ctx->sa_ctx, pkts, sas, nb_pkts);
ipsec_enqueue(esp_inbound, ctx, pkts, sas, nb_pkts);
return ipsec_dequeue(esp_inbound_post, ctx, pkts, len);
}
uint16_t
ipsec_outbound(struct ipsec_ctx *ctx, struct rte_mbuf *pkts[],
uint32_t sa_idx[], uint16_t nb_pkts, uint16_t len)
{
struct ipsec_sa *sas[nb_pkts];
outbound_sa_lookup(ctx->sa_ctx, sa_idx, sas, nb_pkts);
ipsec_enqueue(esp_outbound, ctx, pkts, sas, nb_pkts);
return ipsec_dequeue(esp_outbound_post, ctx, pkts, len);
}