DPDK  16.11.11
ip_pipeline/pipeline/pipeline_passthrough_be.c
/*-
* BSD LICENSE
*
* Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <string.h>
#include <rte_common.h>
#include <rte_malloc.h>
#include <rte_byteorder.h>
#include <rte_table_stub.h>
#include <rte_table_hash.h>
#include <rte_pipeline.h>
#include "pipeline_passthrough_be.h"
#include "pipeline_actions_common.h"
#include "parser.h"
#include "hash_func.h"
#define SWAP_DIM (PIPELINE_PASSTHROUGH_SWAP_N_FIELDS_MAX * \
(PIPELINE_PASSTHROUGH_SWAP_FIELD_SIZE_MAX / sizeof(uint64_t)))
struct pipeline_passthrough {
struct pipeline p;
struct pipeline_passthrough_params params;
uint32_t swap_field0_offset[SWAP_DIM];
uint32_t swap_field1_offset[SWAP_DIM];
uint64_t swap_field_mask[SWAP_DIM];
uint32_t swap_n_fields;
static pipeline_msg_req_handler handlers[] = {
[PIPELINE_MSG_REQ_PING] =
pipeline_msg_req_ping_handler,
[PIPELINE_MSG_REQ_STATS_PORT_IN] =
pipeline_msg_req_stats_port_in_handler,
[PIPELINE_MSG_REQ_STATS_PORT_OUT] =
pipeline_msg_req_stats_port_out_handler,
[PIPELINE_MSG_REQ_STATS_TABLE] =
pipeline_msg_req_stats_table_handler,
[PIPELINE_MSG_REQ_PORT_IN_ENABLE] =
pipeline_msg_req_port_in_enable_handler,
[PIPELINE_MSG_REQ_PORT_IN_DISABLE] =
pipeline_msg_req_port_in_disable_handler,
[PIPELINE_MSG_REQ_CUSTOM] =
pipeline_msg_req_invalid_handler,
};
static inline __attribute__((always_inline)) void
pkt_work_dma(
struct rte_mbuf *pkt,
void *arg,
uint32_t dma_size,
uint32_t hash_enabled,
uint32_t lb_hash,
uint32_t port_out_pow2)
{
struct pipeline_passthrough *p = arg;
uint64_t *dma_dst = RTE_MBUF_METADATA_UINT64_PTR(pkt,
p->params.dma_dst_offset);
uint64_t *dma_src = RTE_MBUF_METADATA_UINT64_PTR(pkt,
p->params.dma_src_offset);
uint64_t *dma_mask = (uint64_t *) p->params.dma_src_mask;
uint32_t *dma_hash = RTE_MBUF_METADATA_UINT32_PTR(pkt,
p->params.dma_hash_offset);
uint32_t i;
/* Read (dma_src), compute (dma_dst), write (dma_dst) */
for (i = 0; i < (dma_size / 8); i++)
dma_dst[i] = dma_src[i] & dma_mask[i];
/* Read (dma_dst), compute (hash), write (hash) */
if (hash_enabled) {
uint32_t hash = p->f_hash(dma_dst, dma_size, 0);
*dma_hash = hash;
if (lb_hash) {
uint32_t port_out;
if (port_out_pow2)
port_out
= hash & (p->p.n_ports_out - 1);
else
port_out
= hash % p->p.n_ports_out;
port_out, pkt);
}
}
}
static inline __attribute__((always_inline)) void
pkt4_work_dma(
struct rte_mbuf **pkts,
void *arg,
uint32_t dma_size,
uint32_t hash_enabled,
uint32_t lb_hash,
uint32_t port_out_pow2)
{
struct pipeline_passthrough *p = arg;
uint64_t *dma_dst0 = RTE_MBUF_METADATA_UINT64_PTR(pkts[0],
p->params.dma_dst_offset);
uint64_t *dma_dst1 = RTE_MBUF_METADATA_UINT64_PTR(pkts[1],
p->params.dma_dst_offset);
uint64_t *dma_dst2 = RTE_MBUF_METADATA_UINT64_PTR(pkts[2],
p->params.dma_dst_offset);
uint64_t *dma_dst3 = RTE_MBUF_METADATA_UINT64_PTR(pkts[3],
p->params.dma_dst_offset);
uint64_t *dma_src0 = RTE_MBUF_METADATA_UINT64_PTR(pkts[0],
p->params.dma_src_offset);
uint64_t *dma_src1 = RTE_MBUF_METADATA_UINT64_PTR(pkts[1],
p->params.dma_src_offset);
uint64_t *dma_src2 = RTE_MBUF_METADATA_UINT64_PTR(pkts[2],
p->params.dma_src_offset);
uint64_t *dma_src3 = RTE_MBUF_METADATA_UINT64_PTR(pkts[3],
p->params.dma_src_offset);
uint64_t *dma_mask = (uint64_t *) p->params.dma_src_mask;
uint32_t *dma_hash0 = RTE_MBUF_METADATA_UINT32_PTR(pkts[0],
p->params.dma_hash_offset);
uint32_t *dma_hash1 = RTE_MBUF_METADATA_UINT32_PTR(pkts[1],
p->params.dma_hash_offset);
uint32_t *dma_hash2 = RTE_MBUF_METADATA_UINT32_PTR(pkts[2],
p->params.dma_hash_offset);
uint32_t *dma_hash3 = RTE_MBUF_METADATA_UINT32_PTR(pkts[3],
p->params.dma_hash_offset);
uint32_t i;
/* Read (dma_src), compute (dma_dst), write (dma_dst) */
for (i = 0; i < (dma_size / 8); i++) {
dma_dst0[i] = dma_src0[i] & dma_mask[i];
dma_dst1[i] = dma_src1[i] & dma_mask[i];
dma_dst2[i] = dma_src2[i] & dma_mask[i];
dma_dst3[i] = dma_src3[i] & dma_mask[i];
}
/* Read (dma_dst), compute (hash), write (hash) */
if (hash_enabled) {
uint32_t hash0 = p->f_hash(dma_dst0, dma_size, 0);
uint32_t hash1 = p->f_hash(dma_dst1, dma_size, 0);
uint32_t hash2 = p->f_hash(dma_dst2, dma_size, 0);
uint32_t hash3 = p->f_hash(dma_dst3, dma_size, 0);
*dma_hash0 = hash0;
*dma_hash1 = hash1;
*dma_hash2 = hash2;
*dma_hash3 = hash3;
if (lb_hash) {
uint32_t port_out0, port_out1, port_out2, port_out3;
if (port_out_pow2) {
port_out0
= hash0 & (p->p.n_ports_out - 1);
port_out1
= hash1 & (p->p.n_ports_out - 1);
port_out2
= hash2 & (p->p.n_ports_out - 1);
port_out3
= hash3 & (p->p.n_ports_out - 1);
} else {
port_out0
= hash0 % p->p.n_ports_out;
port_out1
= hash1 % p->p.n_ports_out;
port_out2
= hash2 % p->p.n_ports_out;
port_out3
= hash3 % p->p.n_ports_out;
}
port_out0, pkts[0]);
port_out1, pkts[1]);
port_out2, pkts[2]);
port_out3, pkts[3]);
}
}
}
static inline __attribute__((always_inline)) void
pkt_work_swap(
struct rte_mbuf *pkt,
void *arg)
{
struct pipeline_passthrough *p = arg;
uint32_t i;
/* Read(field0, field1), compute(field0, field1), write(field0, field1) */
for (i = 0; i < p->swap_n_fields; i++) {
uint64_t *field0_ptr = RTE_MBUF_METADATA_UINT64_PTR(pkt,
p->swap_field0_offset[i]);
uint64_t *field1_ptr = RTE_MBUF_METADATA_UINT64_PTR(pkt,
p->swap_field1_offset[i]);
uint64_t mask = p->swap_field_mask[i];
uint64_t field0 = *field0_ptr;
uint64_t field1 = *field1_ptr;
*field0_ptr = (field0 & (~mask)) + (field1 & mask);
*field1_ptr = (field0 & mask) + (field1 & (~mask));
}
}
static inline __attribute__((always_inline)) void
pkt4_work_swap(
struct rte_mbuf **pkts,
void *arg)
{
struct pipeline_passthrough *p = arg;
uint32_t i;
/* Read(field0, field1), compute(field0, field1), write(field0, field1) */
for (i = 0; i < p->swap_n_fields; i++) {
uint64_t *pkt0_field0_ptr = RTE_MBUF_METADATA_UINT64_PTR(pkts[0],
p->swap_field0_offset[i]);
uint64_t *pkt1_field0_ptr = RTE_MBUF_METADATA_UINT64_PTR(pkts[1],
p->swap_field0_offset[i]);
uint64_t *pkt2_field0_ptr = RTE_MBUF_METADATA_UINT64_PTR(pkts[2],
p->swap_field0_offset[i]);
uint64_t *pkt3_field0_ptr = RTE_MBUF_METADATA_UINT64_PTR(pkts[3],
p->swap_field0_offset[i]);
uint64_t *pkt0_field1_ptr = RTE_MBUF_METADATA_UINT64_PTR(pkts[0],
p->swap_field1_offset[i]);
uint64_t *pkt1_field1_ptr = RTE_MBUF_METADATA_UINT64_PTR(pkts[1],
p->swap_field1_offset[i]);
uint64_t *pkt2_field1_ptr = RTE_MBUF_METADATA_UINT64_PTR(pkts[2],
p->swap_field1_offset[i]);
uint64_t *pkt3_field1_ptr = RTE_MBUF_METADATA_UINT64_PTR(pkts[3],
p->swap_field1_offset[i]);
uint64_t mask = p->swap_field_mask[i];
uint64_t pkt0_field0 = *pkt0_field0_ptr;
uint64_t pkt1_field0 = *pkt1_field0_ptr;
uint64_t pkt2_field0 = *pkt2_field0_ptr;
uint64_t pkt3_field0 = *pkt3_field0_ptr;
uint64_t pkt0_field1 = *pkt0_field1_ptr;
uint64_t pkt1_field1 = *pkt1_field1_ptr;
uint64_t pkt2_field1 = *pkt2_field1_ptr;
uint64_t pkt3_field1 = *pkt3_field1_ptr;
*pkt0_field0_ptr = (pkt0_field0 & (~mask)) + (pkt0_field1 & mask);
*pkt1_field0_ptr = (pkt1_field0 & (~mask)) + (pkt1_field1 & mask);
*pkt2_field0_ptr = (pkt2_field0 & (~mask)) + (pkt2_field1 & mask);
*pkt3_field0_ptr = (pkt3_field0 & (~mask)) + (pkt3_field1 & mask);
*pkt0_field1_ptr = (pkt0_field0 & mask) + (pkt0_field1 & (~mask));
*pkt1_field1_ptr = (pkt1_field0 & mask) + (pkt1_field1 & (~mask));
*pkt2_field1_ptr = (pkt2_field0 & mask) + (pkt2_field1 & (~mask));
*pkt3_field1_ptr = (pkt3_field0 & mask) + (pkt3_field1 & (~mask));
}
}
#define PKT_WORK_DMA(dma_size, hash_enabled, lb_hash, port_pow2) \
static inline void \
pkt_work_dma_size##dma_size##_hash##hash_enabled \
##_lb##lb_hash##_pw##port_pow2( \
struct rte_mbuf *pkt, \
void *arg) \
{ \
pkt_work_dma(pkt, arg, dma_size, hash_enabled, lb_hash, port_pow2); \
}
#define PKT4_WORK_DMA(dma_size, hash_enabled, lb_hash, port_pow2) \
static inline void \
pkt4_work_dma_size##dma_size##_hash##hash_enabled \
##_lb##lb_hash##_pw##port_pow2( \
struct rte_mbuf **pkts, \
void *arg) \
{ \
pkt4_work_dma(pkts, arg, dma_size, hash_enabled, lb_hash, port_pow2); \
}
#define port_in_ah_dma(dma_size, hash_enabled, lb_hash, port_pow2) \
PKT_WORK_DMA(dma_size, hash_enabled, lb_hash, port_pow2) \
PKT4_WORK_DMA(dma_size, hash_enabled, lb_hash, port_pow2) \
PIPELINE_PORT_IN_AH(port_in_ah_dma_size##dma_size##_hash \
##hash_enabled##_lb##lb_hash##_pw##port_pow2, \
pkt_work_dma_size##dma_size##_hash##hash_enabled \
##_lb##lb_hash##_pw##port_pow2, \
pkt4_work_dma_size##dma_size##_hash##hash_enabled \
##_lb##lb_hash##_pw##port_pow2)
#define port_in_ah_lb(dma_size, hash_enabled, lb_hash, port_pow2) \
PKT_WORK_DMA(dma_size, hash_enabled, lb_hash, port_pow2) \
PKT4_WORK_DMA(dma_size, hash_enabled, lb_hash, port_pow2) \
PIPELINE_PORT_IN_AH_HIJACK_ALL( \
port_in_ah_lb_size##dma_size##_hash##hash_enabled \
##_lb##lb_hash##_pw##port_pow2, \
pkt_work_dma_size##dma_size##_hash##hash_enabled \
##_lb##lb_hash##_pw##port_pow2, \
pkt4_work_dma_size##dma_size##_hash##hash_enabled \
##_lb##lb_hash##_pw##port_pow2)
PIPELINE_PORT_IN_AH(port_in_ah_swap, pkt_work_swap, pkt4_work_swap)
/* Port in AH DMA(dma_size, hash_enabled, lb_hash, port_pow2) */
port_in_ah_dma(8, 0, 0, 0)
port_in_ah_dma(8, 1, 0, 0)
port_in_ah_lb(8, 1, 1, 0)
port_in_ah_lb(8, 1, 1, 1)
port_in_ah_dma(16, 0, 0, 0)
port_in_ah_dma(16, 1, 0, 0)
port_in_ah_lb(16, 1, 1, 0)
port_in_ah_lb(16, 1, 1, 1)
port_in_ah_dma(24, 0, 0, 0)
port_in_ah_dma(24, 1, 0, 0)
port_in_ah_lb(24, 1, 1, 0)
port_in_ah_lb(24, 1, 1, 1)
port_in_ah_dma(32, 0, 0, 0)
port_in_ah_dma(32, 1, 0, 0)
port_in_ah_lb(32, 1, 1, 0)
port_in_ah_lb(32, 1, 1, 1)
port_in_ah_dma(40, 0, 0, 0)
port_in_ah_dma(40, 1, 0, 0)
port_in_ah_lb(40, 1, 1, 0)
port_in_ah_lb(40, 1, 1, 1)
port_in_ah_dma(48, 0, 0, 0)
port_in_ah_dma(48, 1, 0, 0)
port_in_ah_lb(48, 1, 1, 0)
port_in_ah_lb(48, 1, 1, 1)
port_in_ah_dma(56, 0, 0, 0)
port_in_ah_dma(56, 1, 0, 0)
port_in_ah_lb(56, 1, 1, 0)
port_in_ah_lb(56, 1, 1, 1)
port_in_ah_dma(64, 0, 0, 0)
port_in_ah_dma(64, 1, 0, 0)
port_in_ah_lb(64, 1, 1, 0)
port_in_ah_lb(64, 1, 1, 1)
get_port_in_ah(struct pipeline_passthrough *p)
{
if ((p->params.dma_enabled == 0) &&
(p->params.swap_enabled == 0))
return NULL;
if (p->params.swap_enabled)
return port_in_ah_swap;
if (p->params.dma_hash_enabled) {
if (p->params.dma_hash_lb_enabled) {
if (rte_is_power_of_2(p->p.n_ports_out))
switch (p->params.dma_size) {
case 8: return port_in_ah_lb_size8_hash1_lb1_pw1;
case 16: return port_in_ah_lb_size16_hash1_lb1_pw1;
case 24: return port_in_ah_lb_size24_hash1_lb1_pw1;
case 32: return port_in_ah_lb_size32_hash1_lb1_pw1;
case 40: return port_in_ah_lb_size40_hash1_lb1_pw1;
case 48: return port_in_ah_lb_size48_hash1_lb1_pw1;
case 56: return port_in_ah_lb_size56_hash1_lb1_pw1;
case 64: return port_in_ah_lb_size64_hash1_lb1_pw1;
default: return NULL;
}
else
switch (p->params.dma_size) {
case 8: return port_in_ah_lb_size8_hash1_lb1_pw0;
case 16: return port_in_ah_lb_size16_hash1_lb1_pw0;
case 24: return port_in_ah_lb_size24_hash1_lb1_pw0;
case 32: return port_in_ah_lb_size32_hash1_lb1_pw0;
case 40: return port_in_ah_lb_size40_hash1_lb1_pw0;
case 48: return port_in_ah_lb_size48_hash1_lb1_pw0;
case 56: return port_in_ah_lb_size56_hash1_lb1_pw0;
case 64: return port_in_ah_lb_size64_hash1_lb1_pw0;
default: return NULL;
}
} else
switch (p->params.dma_size) {
case 8: return port_in_ah_dma_size8_hash1_lb0_pw0;
case 16: return port_in_ah_dma_size16_hash1_lb0_pw0;
case 24: return port_in_ah_dma_size24_hash1_lb0_pw0;
case 32: return port_in_ah_dma_size32_hash1_lb0_pw0;
case 40: return port_in_ah_dma_size40_hash1_lb0_pw0;
case 48: return port_in_ah_dma_size48_hash1_lb0_pw0;
case 56: return port_in_ah_dma_size56_hash1_lb0_pw0;
case 64: return port_in_ah_dma_size64_hash1_lb0_pw0;
default: return NULL;
}
} else
switch (p->params.dma_size) {
case 8: return port_in_ah_dma_size8_hash0_lb0_pw0;
case 16: return port_in_ah_dma_size16_hash0_lb0_pw0;
case 24: return port_in_ah_dma_size24_hash0_lb0_pw0;
case 32: return port_in_ah_dma_size32_hash0_lb0_pw0;
case 40: return port_in_ah_dma_size40_hash0_lb0_pw0;
case 48: return port_in_ah_dma_size48_hash0_lb0_pw0;
case 56: return port_in_ah_dma_size56_hash0_lb0_pw0;
case 64: return port_in_ah_dma_size64_hash0_lb0_pw0;
default: return NULL;
}
}
int
pipeline_passthrough_parse_args(struct pipeline_passthrough_params *p,
struct pipeline_params *params)
{
uint32_t dma_dst_offset_present = 0;
uint32_t dma_src_offset_present = 0;
uint32_t dma_src_mask_present = 0;
char dma_mask_str[PIPELINE_PASSTHROUGH_DMA_SIZE_MAX * 2 + 1];
uint32_t dma_size_present = 0;
uint32_t dma_hash_offset_present = 0;
uint32_t dma_hash_lb_present = 0;
uint32_t i;
/* default values */
p->dma_enabled = 0;
p->dma_hash_enabled = 0;
p->dma_hash_lb_enabled = 0;
memset(p->dma_src_mask, 0xFF, sizeof(p->dma_src_mask));
p->swap_enabled = 0;
p->swap_n_fields = 0;
for (i = 0; i < params->n_args; i++) {
char *arg_name = params->args_name[i];
char *arg_value = params->args_value[i];
/* dma_dst_offset */
if (strcmp(arg_name, "dma_dst_offset") == 0) {
int status;
PIPELINE_PARSE_ERR_DUPLICATE(
dma_dst_offset_present == 0, params->name,
arg_name);
dma_dst_offset_present = 1;
status = parser_read_uint32(&p->dma_dst_offset,
arg_value);
PIPELINE_PARSE_ERR_INV_VAL((status != -EINVAL),
params->name, arg_name, arg_value);
PIPELINE_PARSE_ERR_OUT_RNG((status != -ERANGE),
params->name, arg_name, arg_value);
p->dma_enabled = 1;
continue;
}
/* dma_src_offset */
if (strcmp(arg_name, "dma_src_offset") == 0) {
int status;
PIPELINE_PARSE_ERR_DUPLICATE(
dma_src_offset_present == 0, params->name,
arg_name);
dma_src_offset_present = 1;
status = parser_read_uint32(&p->dma_src_offset,
arg_value);
PIPELINE_PARSE_ERR_INV_VAL((status != -EINVAL),
params->name, arg_name, arg_value);
PIPELINE_PARSE_ERR_OUT_RNG((status != -ERANGE),
params->name, arg_name, arg_value);
p->dma_enabled = 1;
continue;
}
/* dma_size */
if (strcmp(arg_name, "dma_size") == 0) {
int status;
PIPELINE_PARSE_ERR_DUPLICATE(
dma_size_present == 0, params->name,
arg_name);
dma_size_present = 1;
status = parser_read_uint32(&p->dma_size,
arg_value);
PIPELINE_PARSE_ERR_INV_VAL(((status != -EINVAL) &&
(p->dma_size != 0) &&
((p->dma_size % 8) == 0)),
params->name, arg_name, arg_value);
PIPELINE_PARSE_ERR_OUT_RNG(((status != -ERANGE) &&
(p->dma_size <=
PIPELINE_PASSTHROUGH_DMA_SIZE_MAX)),
params->name, arg_name, arg_value);
p->dma_enabled = 1;
continue;
}
/* dma_src_mask */
if (strcmp(arg_name, "dma_src_mask") == 0) {
int mask_str_len = strlen(arg_value);
PIPELINE_PARSE_ERR_DUPLICATE(
dma_src_mask_present == 0,
params->name, arg_name);
dma_src_mask_present = 1;
PIPELINE_ARG_CHECK((mask_str_len <=
(PIPELINE_PASSTHROUGH_DMA_SIZE_MAX * 2)),
"Parse error in section \"%s\": entry "
"\"%s\" too long", params->name,
arg_name);
snprintf(dma_mask_str, mask_str_len + 1,
"%s", arg_value);
p->dma_enabled = 1;
continue;
}
/* dma_hash_offset */
if (strcmp(arg_name, "dma_hash_offset") == 0) {
int status;
PIPELINE_PARSE_ERR_DUPLICATE(
dma_hash_offset_present == 0,
params->name, arg_name);
dma_hash_offset_present = 1;
status = parser_read_uint32(&p->dma_hash_offset,
arg_value);
PIPELINE_PARSE_ERR_INV_VAL((status != -EINVAL),
params->name, arg_name, arg_value);
PIPELINE_PARSE_ERR_OUT_RNG((status != -ERANGE),
params->name, arg_name, arg_value);
p->dma_hash_enabled = 1;
continue;
}
/* load_balance mode */
if (strcmp(arg_name, "lb") == 0) {
PIPELINE_PARSE_ERR_DUPLICATE(
dma_hash_lb_present == 0,
params->name, arg_name);
dma_hash_lb_present = 1;
if (strcmp(arg_value, "hash") &&
strcmp(arg_value, "HASH"))
PIPELINE_PARSE_ERR_INV_VAL(0,
params->name,
arg_name,
arg_value);
p->dma_hash_lb_enabled = 1;
continue;
}
/* swap */
if (strcmp(arg_name, "swap") == 0) {
uint32_t a, b, n_args;
int len;
n_args = sscanf(arg_value, "%" SCNu32 " %" SCNu32 "%n",
&a, &b, &len);
PIPELINE_PARSE_ERR_INV_VAL(((n_args == 2) &&
((size_t) len == strlen(arg_value))),
params->name, arg_name, arg_value);
p->swap_field0_offset[p->swap_n_fields] = a;
p->swap_field1_offset[p->swap_n_fields] = b;
p->swap_n_fields++;
p->swap_enabled = 1;
continue;
}
/* any other */
PIPELINE_PARSE_ERR_INV_ENT(0, params->name, arg_name);
}
/* Check correlations between arguments */
PIPELINE_ARG_CHECK((p->dma_enabled + p->swap_enabled < 2),
"Parse error in section \"%s\": DMA and SWAP actions are both enabled",
params->name);
PIPELINE_ARG_CHECK((dma_dst_offset_present == p->dma_enabled),
"Parse error in section \"%s\": missing entry "
"\"dma_dst_offset\"", params->name);
PIPELINE_ARG_CHECK((dma_src_offset_present == p->dma_enabled),
"Parse error in section \"%s\": missing entry "
"\"dma_src_offset\"", params->name);
PIPELINE_ARG_CHECK((dma_size_present == p->dma_enabled),
"Parse error in section \"%s\": missing entry "
"\"dma_size\"", params->name);
PIPELINE_ARG_CHECK((p->dma_hash_enabled <= p->dma_enabled),
"Parse error in section \"%s\": missing all DMA entries",
params->name);
PIPELINE_ARG_CHECK((p->dma_hash_lb_enabled <= p->dma_hash_enabled),
"Parse error in section \"%s\": missing all DMA hash entries ",
params->name);
if (dma_src_mask_present) {
uint32_t dma_size = p->dma_size;
int status;
PIPELINE_ARG_CHECK((strlen(dma_mask_str) ==
(dma_size * 2)), "Parse error in section "
"\"%s\": dma_src_mask should have exactly %u hex "
"digits", params->name, (dma_size * 2));
status = parse_hex_string(dma_mask_str, p->dma_src_mask,
&p->dma_size);
PIPELINE_PARSE_ERR_INV_VAL(((status == 0) &&
(dma_size == p->dma_size)), params->name,
"dma_src_mask", dma_mask_str);
}
if (p->dma_hash_lb_enabled)
PIPELINE_ARG_CHECK((params->n_ports_out > 1),
"Parse error in section \"%s\": entry \"lb\" not "
"allowed for single output port pipeline",
params->name);
else
PIPELINE_ARG_CHECK(((params->n_ports_in >= params->n_ports_out)
&& ((params->n_ports_in % params->n_ports_out) == 0)),
"Parse error in section \"%s\": n_ports_in needs to be "
"a multiple of n_ports_out (lb mode disabled)",
params->name);
return 0;
}
get_hash_function(struct pipeline_passthrough *p)
{
switch (p->params.dma_size) {
case 8: return hash_default_key8;
case 16: return hash_default_key16;
case 24: return hash_default_key24;
case 32: return hash_default_key32;
case 40: return hash_default_key40;
case 48: return hash_default_key48;
case 56: return hash_default_key56;
case 64: return hash_default_key64;
default: return NULL;
}
}
static int
pipeline_passthrough_swap_convert(struct pipeline_passthrough *p)
{
uint32_t i;
p->swap_n_fields = 0;
for (i = 0; i < p->params.swap_n_fields; i++) {
uint32_t offset0 = p->params.swap_field0_offset[i];
uint32_t offset1 = p->params.swap_field1_offset[i];
uint32_t size = offset1 - offset0;
uint32_t j;
/* Check */
if ((offset0 >= offset1) ||
(size > PIPELINE_PASSTHROUGH_SWAP_FIELD_SIZE_MAX) ||
(p->swap_n_fields >= SWAP_DIM))
return -1;
for (j = 0; j < (size / sizeof(uint64_t)); j++) {
p->swap_field0_offset[p->swap_n_fields] = offset0;
p->swap_field1_offset[p->swap_n_fields] = offset1;
p->swap_field_mask[p->swap_n_fields] = UINT64_MAX;
p->swap_n_fields++;
offset0 += sizeof(uint64_t);
offset1 += sizeof(uint64_t);
}
if (size % sizeof(uint64_t)) {
uint32_t n_bits = (size % sizeof(uint64_t)) * 8;
p->swap_field0_offset[p->swap_n_fields] = offset0;
p->swap_field1_offset[p->swap_n_fields] = offset1;
p->swap_field_mask[p->swap_n_fields] =
RTE_LEN2MASK(n_bits, uint64_t);
p->swap_n_fields++;
}
}
return 0;
}
static void*
pipeline_passthrough_init(struct pipeline_params *params,
__rte_unused void *arg)
{
struct pipeline *p;
struct pipeline_passthrough *p_pt;
uint32_t size, i;
/* Check input arguments */
if ((params == NULL) ||
(params->n_ports_in == 0) ||
(params->n_ports_out == 0))
return NULL;
/* Memory allocation */
size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct pipeline_passthrough));
p = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE);
p_pt = (struct pipeline_passthrough *) p;
if (p == NULL)
return NULL;
strcpy(p->name, params->name);
p->log_level = params->log_level;
PLOG(p, HIGH, "Pass-through");
/* Parse arguments */
if (pipeline_passthrough_parse_args(&p_pt->params, params))
return NULL;
if (pipeline_passthrough_swap_convert(p_pt))
return NULL;
p_pt->f_hash = get_hash_function(p_pt);
/* Pipeline */
{
struct rte_pipeline_params pipeline_params = {
.name = "PASS-THROUGH",
.socket_id = params->socket_id,
.offset_port_id = 0,
};
p->p = rte_pipeline_create(&pipeline_params);
if (p->p == NULL) {
return NULL;
}
}
p->n_ports_in = params->n_ports_in;
p->n_ports_out = params->n_ports_out;
p->n_tables = p->n_ports_in;
/*Input ports*/
for (i = 0; i < p->n_ports_in; i++) {
struct rte_pipeline_port_in_params port_params = {
.ops = pipeline_port_in_params_get_ops(
&params->port_in[i]),
.arg_create = pipeline_port_in_params_convert(
&params->port_in[i]),
.f_action = get_port_in_ah(p_pt),
.arg_ah = p_pt,
.burst_size = params->port_in[i].burst_size,
};
int status = rte_pipeline_port_in_create(p->p,
&port_params,
&p->port_in_id[i]);
if (status) {
return NULL;
}
}
/* Output ports */
for (i = 0; i < p->n_ports_out; i++) {
struct rte_pipeline_port_out_params port_params = {
.ops = pipeline_port_out_params_get_ops(
&params->port_out[i]),
.arg_create = pipeline_port_out_params_convert(
&params->port_out[i]),
.f_action = NULL,
.arg_ah = NULL,
};
int status = rte_pipeline_port_out_create(p->p,
&port_params,
&p->port_out_id[i]);
if (status) {
return NULL;
}
}
/* Tables */
for (i = 0; i < p->n_ports_in; i++) {
struct rte_pipeline_table_params table_params = {
.arg_create = NULL,
.f_action_hit = NULL,
.f_action_miss = NULL,
.arg_ah = NULL,
.action_data_size = 0,
};
int status = rte_pipeline_table_create(p->p,
&table_params,
&p->table_id[i]);
if (status) {
return NULL;
}
}
/* Connecting input ports to tables */
for (i = 0; i < p->n_ports_in; i++) {
p->port_in_id[i],
p->table_id[i]);
if (status) {
return NULL;
}
}
/* Add entries to tables */
for (i = 0; i < p->n_ports_in; i++) {
uint32_t port_out_id = (p_pt->params.dma_hash_lb_enabled == 0) ?
(i / (p->n_ports_in / p->n_ports_out)) :
0;
struct rte_pipeline_table_entry default_entry = {
{.port_id = p->port_out_id[port_out_id]},
};
struct rte_pipeline_table_entry *default_entry_ptr;
p->table_id[i],
&default_entry,
&default_entry_ptr);
if (status) {
return NULL;
}
}
/* Enable input ports */
for (i = 0; i < p->n_ports_in; i++) {
int status = rte_pipeline_port_in_enable(p->p,
p->port_in_id[i]);
if (status) {
return NULL;
}
}
/* Check pipeline consistency */
if (rte_pipeline_check(p->p) < 0) {
return NULL;
}
/* Message queues */
p->n_msgq = params->n_msgq;
for (i = 0; i < p->n_msgq; i++)
p->msgq_in[i] = params->msgq_in[i];
for (i = 0; i < p->n_msgq; i++)
p->msgq_out[i] = params->msgq_out[i];
/* Message handlers */
memcpy(p->handlers, handlers, sizeof(p->handlers));
return p;
}
static int
pipeline_passthrough_free(void *pipeline)
{
struct pipeline *p = (struct pipeline *) pipeline;
/* Check input arguments */
if (p == NULL)
return -1;
/* Free resources */
return 0;
}
static int
pipeline_passthrough_timer(void *pipeline)
{
struct pipeline *p = (struct pipeline *) pipeline;
pipeline_msg_req_handle(p);
return 0;
}
struct pipeline_be_ops pipeline_passthrough_be_ops = {
.f_init = pipeline_passthrough_init,
.f_free = pipeline_passthrough_free,
.f_run = NULL,
.f_timer = pipeline_passthrough_timer,
};