DPDK  16.11.11
ip_pipeline/pipeline/pipeline_flow_classification_be.c
/*-
* BSD LICENSE
*
* Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string.h>
#include <rte_common.h>
#include <rte_malloc.h>
#include <rte_table_hash.h>
#include <rte_byteorder.h>
#include <pipeline.h>
#include "pipeline_flow_classification_be.h"
#include "pipeline_actions_common.h"
#include "parser.h"
#include "hash_func.h"
struct pipeline_flow_classification {
struct pipeline p;
pipeline_msg_req_handler custom_handlers[PIPELINE_FC_MSG_REQS];
uint32_t n_flows;
uint32_t key_size;
uint32_t flow_id;
uint32_t key_offset;
uint32_t hash_offset;
uint8_t key_mask[PIPELINE_FC_FLOW_KEY_MAX_SIZE];
uint32_t key_mask_present;
uint32_t flow_id_offset;
static void *
pipeline_fc_msg_req_custom_handler(struct pipeline *p, void *msg);
static pipeline_msg_req_handler handlers[] = {
[PIPELINE_MSG_REQ_PING] =
pipeline_msg_req_ping_handler,
[PIPELINE_MSG_REQ_STATS_PORT_IN] =
pipeline_msg_req_stats_port_in_handler,
[PIPELINE_MSG_REQ_STATS_PORT_OUT] =
pipeline_msg_req_stats_port_out_handler,
[PIPELINE_MSG_REQ_STATS_TABLE] =
pipeline_msg_req_stats_table_handler,
[PIPELINE_MSG_REQ_PORT_IN_ENABLE] =
pipeline_msg_req_port_in_enable_handler,
[PIPELINE_MSG_REQ_PORT_IN_DISABLE] =
pipeline_msg_req_port_in_disable_handler,
[PIPELINE_MSG_REQ_CUSTOM] =
pipeline_fc_msg_req_custom_handler,
};
static void *
pipeline_fc_msg_req_add_handler(struct pipeline *p, void *msg);
static void *
pipeline_fc_msg_req_add_bulk_handler(struct pipeline *p, void *msg);
static void *
pipeline_fc_msg_req_del_handler(struct pipeline *p, void *msg);
static void *
pipeline_fc_msg_req_add_default_handler(struct pipeline *p, void *msg);
static void *
pipeline_fc_msg_req_del_default_handler(struct pipeline *p, void *msg);
static pipeline_msg_req_handler custom_handlers[] = {
[PIPELINE_FC_MSG_REQ_FLOW_ADD] =
pipeline_fc_msg_req_add_handler,
[PIPELINE_FC_MSG_REQ_FLOW_ADD_BULK] =
pipeline_fc_msg_req_add_bulk_handler,
[PIPELINE_FC_MSG_REQ_FLOW_DEL] =
pipeline_fc_msg_req_del_handler,
[PIPELINE_FC_MSG_REQ_FLOW_ADD_DEFAULT] =
pipeline_fc_msg_req_add_default_handler,
[PIPELINE_FC_MSG_REQ_FLOW_DEL_DEFAULT] =
pipeline_fc_msg_req_del_default_handler,
};
/*
* Flow table
*/
struct flow_table_entry {
uint32_t flow_id;
uint32_t pad;
};
rte_table_hash_op_hash hash_func[] = {
hash_default_key8,
hash_default_key16,
hash_default_key24,
hash_default_key32,
hash_default_key40,
hash_default_key48,
hash_default_key56,
hash_default_key64
};
/*
* Flow table AH - Write flow_id to packet meta-data
*/
static inline void
pkt_work_flow_id(
struct rte_mbuf *pkt,
struct rte_pipeline_table_entry *table_entry,
void *arg)
{
struct pipeline_flow_classification *p_fc = arg;
uint32_t *flow_id_ptr =
RTE_MBUF_METADATA_UINT32_PTR(pkt, p_fc->flow_id_offset);
struct flow_table_entry *entry =
(struct flow_table_entry *) table_entry;
/* Read */
uint32_t flow_id = entry->flow_id;
/* Compute */
/* Write */
*flow_id_ptr = flow_id;
}
static inline void
pkt4_work_flow_id(
struct rte_mbuf **pkts,
struct rte_pipeline_table_entry **table_entries,
void *arg)
{
struct pipeline_flow_classification *p_fc = arg;
uint32_t *flow_id_ptr0 =
RTE_MBUF_METADATA_UINT32_PTR(pkts[0], p_fc->flow_id_offset);
uint32_t *flow_id_ptr1 =
RTE_MBUF_METADATA_UINT32_PTR(pkts[1], p_fc->flow_id_offset);
uint32_t *flow_id_ptr2 =
RTE_MBUF_METADATA_UINT32_PTR(pkts[2], p_fc->flow_id_offset);
uint32_t *flow_id_ptr3 =
RTE_MBUF_METADATA_UINT32_PTR(pkts[3], p_fc->flow_id_offset);
struct flow_table_entry *entry0 =
(struct flow_table_entry *) table_entries[0];
struct flow_table_entry *entry1 =
(struct flow_table_entry *) table_entries[1];
struct flow_table_entry *entry2 =
(struct flow_table_entry *) table_entries[2];
struct flow_table_entry *entry3 =
(struct flow_table_entry *) table_entries[3];
/* Read */
uint32_t flow_id0 = entry0->flow_id;
uint32_t flow_id1 = entry1->flow_id;
uint32_t flow_id2 = entry2->flow_id;
uint32_t flow_id3 = entry3->flow_id;
/* Compute */
/* Write */
*flow_id_ptr0 = flow_id0;
*flow_id_ptr1 = flow_id1;
*flow_id_ptr2 = flow_id2;
*flow_id_ptr3 = flow_id3;
}
PIPELINE_TABLE_AH_HIT(fc_table_ah_hit,
pkt_work_flow_id, pkt4_work_flow_id);
get_fc_table_ah_hit(struct pipeline_flow_classification *p)
{
if (p->flow_id)
return fc_table_ah_hit;
return NULL;
}
/*
* Argument parsing
*/
static int
pipeline_fc_parse_args(struct pipeline_flow_classification *p,
struct pipeline_params *params)
{
uint32_t n_flows_present = 0;
uint32_t key_offset_present = 0;
uint32_t key_size_present = 0;
uint32_t hash_offset_present = 0;
uint32_t key_mask_present = 0;
uint32_t flow_id_offset_present = 0;
uint32_t i;
char key_mask_str[PIPELINE_FC_FLOW_KEY_MAX_SIZE * 2 + 1];
p->hash_offset = 0;
/* default values */
p->flow_id = 0;
for (i = 0; i < params->n_args; i++) {
char *arg_name = params->args_name[i];
char *arg_value = params->args_value[i];
/* n_flows */
if (strcmp(arg_name, "n_flows") == 0) {
int status;
PIPELINE_PARSE_ERR_DUPLICATE(
n_flows_present == 0, params->name,
arg_name);
n_flows_present = 1;
status = parser_read_uint32(&p->n_flows,
arg_value);
PIPELINE_PARSE_ERR_INV_VAL(((status != -EINVAL) &&
(p->n_flows != 0)), params->name,
arg_name, arg_value);
PIPELINE_PARSE_ERR_OUT_RNG((status != -ERANGE),
params->name, arg_name, arg_value);
continue;
}
/* key_offset */
if (strcmp(arg_name, "key_offset") == 0) {
int status;
PIPELINE_PARSE_ERR_DUPLICATE(
key_offset_present == 0, params->name,
arg_name);
key_offset_present = 1;
status = parser_read_uint32(&p->key_offset,
arg_value);
PIPELINE_PARSE_ERR_INV_VAL((status != -EINVAL),
params->name, arg_name, arg_value);
PIPELINE_PARSE_ERR_OUT_RNG((status != -ERANGE),
params->name, arg_name, arg_value);
continue;
}
/* key_size */
if (strcmp(arg_name, "key_size") == 0) {
int status;
PIPELINE_PARSE_ERR_DUPLICATE(
key_size_present == 0, params->name,
arg_name);
key_size_present = 1;
status = parser_read_uint32(&p->key_size,
arg_value);
PIPELINE_PARSE_ERR_INV_VAL(((status != -EINVAL) &&
(p->key_size != 0) &&
(p->key_size % 8 == 0)),
params->name, arg_name, arg_value);
PIPELINE_PARSE_ERR_OUT_RNG(((status != -ERANGE) &&
(p->key_size <=
PIPELINE_FC_FLOW_KEY_MAX_SIZE)),
params->name, arg_name, arg_value);
continue;
}
/* key_mask */
if (strcmp(arg_name, "key_mask") == 0) {
int mask_str_len = strlen(arg_value);
PIPELINE_PARSE_ERR_DUPLICATE(
key_mask_present == 0,
params->name, arg_name);
key_mask_present = 1;
PIPELINE_ARG_CHECK((mask_str_len <=
(PIPELINE_FC_FLOW_KEY_MAX_SIZE * 2)),
"Parse error in section \"%s\": entry "
"\"%s\" is too long", params->name,
arg_name);
snprintf(key_mask_str, mask_str_len + 1, "%s",
arg_value);
continue;
}
/* hash_offset */
if (strcmp(arg_name, "hash_offset") == 0) {
int status;
PIPELINE_PARSE_ERR_DUPLICATE(
hash_offset_present == 0, params->name,
arg_name);
hash_offset_present = 1;
status = parser_read_uint32(&p->hash_offset,
arg_value);
PIPELINE_PARSE_ERR_INV_VAL((status != -EINVAL),
params->name, arg_name, arg_value);
PIPELINE_PARSE_ERR_OUT_RNG((status != -ERANGE),
params->name, arg_name, arg_value);
continue;
}
/* flow_id_offset */
if (strcmp(arg_name, "flowid_offset") == 0) {
int status;
PIPELINE_PARSE_ERR_DUPLICATE(
flow_id_offset_present == 0, params->name,
arg_name);
flow_id_offset_present = 1;
status = parser_read_uint32(&p->flow_id_offset,
arg_value);
PIPELINE_PARSE_ERR_INV_VAL((status != -EINVAL),
params->name, arg_name, arg_value);
PIPELINE_PARSE_ERR_OUT_RNG((status != -ERANGE),
params->name, arg_name, arg_value);
p->flow_id = 1;
continue;
}
/* Unknown argument */
PIPELINE_PARSE_ERR_INV_ENT(0, params->name, arg_name);
}
/* Check that mandatory arguments are present */
PIPELINE_PARSE_ERR_MANDATORY((n_flows_present), params->name,
"n_flows");
PIPELINE_PARSE_ERR_MANDATORY((key_offset_present), params->name,
"key_offset");
PIPELINE_PARSE_ERR_MANDATORY((key_size_present), params->name,
"key_size");
if (key_mask_present) {
uint32_t key_size = p->key_size;
int status;
PIPELINE_ARG_CHECK(((key_size == 8) || (key_size == 16)),
"Parse error in section \"%s\": entry key_mask "
"only allowed for key_size of 8 or 16 bytes",
params->name);
PIPELINE_ARG_CHECK((strlen(key_mask_str) ==
(key_size * 2)), "Parse error in section "
"\"%s\": key_mask should have exactly %u hex "
"digits", params->name, (key_size * 2));
PIPELINE_ARG_CHECK((hash_offset_present == 0), "Parse "
"error in section \"%s\": entry hash_offset only "
"allowed when key_mask is not present",
params->name);
status = parse_hex_string(key_mask_str, p->key_mask,
&p->key_size);
PIPELINE_PARSE_ERR_INV_VAL(((status == 0) &&
(key_size == p->key_size)), params->name,
"key_mask", key_mask_str);
}
p->key_mask_present = key_mask_present;
return 0;
}
static void *pipeline_fc_init(struct pipeline_params *params,
__rte_unused void *arg)
{
struct pipeline *p;
struct pipeline_flow_classification *p_fc;
uint32_t size, i;
/* Check input arguments */
if (params == NULL)
return NULL;
/* Memory allocation */
sizeof(struct pipeline_flow_classification));
p = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE);
if (p == NULL)
return NULL;
p_fc = (struct pipeline_flow_classification *) p;
strcpy(p->name, params->name);
p->log_level = params->log_level;
PLOG(p, HIGH, "Flow classification");
/* Parse arguments */
if (pipeline_fc_parse_args(p_fc, params))
return NULL;
/* Pipeline */
{
struct rte_pipeline_params pipeline_params = {
.name = params->name,
.socket_id = params->socket_id,
.offset_port_id = 0,
};
p->p = rte_pipeline_create(&pipeline_params);
if (p->p == NULL) {
return NULL;
}
}
/* Input ports */
p->n_ports_in = params->n_ports_in;
for (i = 0; i < p->n_ports_in; i++) {
struct rte_pipeline_port_in_params port_params = {
.ops = pipeline_port_in_params_get_ops(
&params->port_in[i]),
.arg_create = pipeline_port_in_params_convert(
&params->port_in[i]),
.f_action = NULL,
.arg_ah = NULL,
.burst_size = params->port_in[i].burst_size,
};
int status = rte_pipeline_port_in_create(p->p,
&port_params,
&p->port_in_id[i]);
if (status) {
return NULL;
}
}
/* Output ports */
p->n_ports_out = params->n_ports_out;
for (i = 0; i < p->n_ports_out; i++) {
struct rte_pipeline_port_out_params port_params = {
.ops = pipeline_port_out_params_get_ops(
&params->port_out[i]),
.arg_create = pipeline_port_out_params_convert(
&params->port_out[i]),
.f_action = NULL,
.arg_ah = NULL,
};
int status = rte_pipeline_port_out_create(p->p,
&port_params,
&p->port_out_id[i]);
if (status) {
return NULL;
}
}
/* Tables */
p->n_tables = 1;
{
table_hash_key8_params = {
.n_entries = p_fc->n_flows,
.n_entries_ext = p_fc->n_flows,
.signature_offset = p_fc->hash_offset,
.key_offset = p_fc->key_offset,
.f_hash = hash_func[(p_fc->key_size / 8) - 1],
.key_mask = (p_fc->key_mask_present) ?
p_fc->key_mask : NULL,
.seed = 0,
};
table_hash_key16_params = {
.n_entries = p_fc->n_flows,
.n_entries_ext = p_fc->n_flows,
.signature_offset = p_fc->hash_offset,
.key_offset = p_fc->key_offset,
.f_hash = hash_func[(p_fc->key_size / 8) - 1],
.key_mask = (p_fc->key_mask_present) ?
p_fc->key_mask : NULL,
.seed = 0,
};
table_hash_params = {
.key_size = p_fc->key_size,
.n_keys = p_fc->n_flows,
.n_buckets = p_fc->n_flows / 4,
.n_buckets_ext = p_fc->n_flows / 4,
.f_hash = hash_func[(p_fc->key_size / 8) - 1],
.seed = 0,
.signature_offset = p_fc->hash_offset,
.key_offset = p_fc->key_offset,
};
struct rte_pipeline_table_params table_params = {
.ops = NULL, /* set below */
.arg_create = NULL, /* set below */
.f_action_hit = get_fc_table_ah_hit(p_fc),
.f_action_miss = NULL,
.arg_ah = p_fc,
.action_data_size = sizeof(struct flow_table_entry) -
sizeof(struct rte_pipeline_table_entry),
};
int status;
switch (p_fc->key_size) {
case 8:
if (p_fc->hash_offset != 0) {
table_params.ops =
} else {
table_params.ops =
}
table_params.arg_create = &table_hash_key8_params;
break;
case 16:
if (p_fc->hash_offset != 0) {
table_params.ops =
} else {
table_params.ops =
}
table_params.arg_create = &table_hash_key16_params;
break;
default:
table_params.ops = &rte_table_hash_ext_ops;
table_params.arg_create = &table_hash_params;
}
&table_params,
&p->table_id[0]);
if (status) {
return NULL;
}
}
/* Connecting input ports to tables */
for (i = 0; i < p->n_ports_in; i++) {
p->port_in_id[i],
p->table_id[0]);
if (status) {
return NULL;
}
}
/* Enable input ports */
for (i = 0; i < p->n_ports_in; i++) {
int status = rte_pipeline_port_in_enable(p->p,
p->port_in_id[i]);
if (status) {
return NULL;
}
}
/* Check pipeline consistency */
if (rte_pipeline_check(p->p) < 0) {
return NULL;
}
/* Message queues */
p->n_msgq = params->n_msgq;
for (i = 0; i < p->n_msgq; i++)
p->msgq_in[i] = params->msgq_in[i];
for (i = 0; i < p->n_msgq; i++)
p->msgq_out[i] = params->msgq_out[i];
/* Message handlers */
memcpy(p->handlers, handlers, sizeof(p->handlers));
memcpy(p_fc->custom_handlers,
custom_handlers,
sizeof(p_fc->custom_handlers));
return p;
}
static int
pipeline_fc_free(void *pipeline)
{
struct pipeline *p = (struct pipeline *) pipeline;
/* Check input arguments */
if (p == NULL)
return -1;
/* Free resources */
return 0;
}
static int
pipeline_fc_timer(void *pipeline)
{
struct pipeline *p = (struct pipeline *) pipeline;
pipeline_msg_req_handle(p);
return 0;
}
static void *
pipeline_fc_msg_req_custom_handler(struct pipeline *p, void *msg)
{
struct pipeline_flow_classification *p_fc =
(struct pipeline_flow_classification *) p;
struct pipeline_custom_msg_req *req = msg;
pipeline_msg_req_handler f_handle;
f_handle = (req->subtype < PIPELINE_FC_MSG_REQS) ?
p_fc->custom_handlers[req->subtype] :
pipeline_msg_req_invalid_handler;
if (f_handle == NULL)
f_handle = pipeline_msg_req_invalid_handler;
return f_handle(p, req);
}
static void *
pipeline_fc_msg_req_add_handler(struct pipeline *p, void *msg)
{
struct pipeline_fc_add_msg_req *req = msg;
struct pipeline_fc_add_msg_rsp *rsp = msg;
struct flow_table_entry entry = {
.head = {
{.port_id = p->port_out_id[req->port_id]},
},
.flow_id = req->flow_id,
};
rsp->status = rte_pipeline_table_entry_add(p->p,
p->table_id[0],
&req->key,
(struct rte_pipeline_table_entry *) &entry,
&rsp->key_found,
(struct rte_pipeline_table_entry **) &rsp->entry_ptr);
return rsp;
}
static void *
pipeline_fc_msg_req_add_bulk_handler(struct pipeline *p, void *msg)
{
struct pipeline_fc_add_bulk_msg_req *req = msg;
struct pipeline_fc_add_bulk_msg_rsp *rsp = msg;
uint32_t i;
for (i = 0; i < req->n_keys; i++) {
struct pipeline_fc_add_bulk_flow_req *flow_req = &req->req[i];
struct pipeline_fc_add_bulk_flow_rsp *flow_rsp = &req->rsp[i];
struct flow_table_entry entry = {
.head = {
{.port_id = p->port_out_id[flow_req->port_id]},
},
.flow_id = flow_req->flow_id,
};
int status = rte_pipeline_table_entry_add(p->p,
p->table_id[0],
&flow_req->key,
(struct rte_pipeline_table_entry *) &entry,
&flow_rsp->key_found,
&flow_rsp->entry_ptr);
if (status)
break;
}
rsp->n_keys = i;
return rsp;
}
static void *
pipeline_fc_msg_req_del_handler(struct pipeline *p, void *msg)
{
struct pipeline_fc_del_msg_req *req = msg;
struct pipeline_fc_del_msg_rsp *rsp = msg;
rsp->status = rte_pipeline_table_entry_delete(p->p,
p->table_id[0],
&req->key,
&rsp->key_found,
NULL);
return rsp;
}
static void *
pipeline_fc_msg_req_add_default_handler(struct pipeline *p, void *msg)
{
struct pipeline_fc_add_default_msg_req *req = msg;
struct pipeline_fc_add_default_msg_rsp *rsp = msg;
struct flow_table_entry default_entry = {
.head = {
{.port_id = p->port_out_id[req->port_id]},
},
.flow_id = 0,
};
p->table_id[0],
(struct rte_pipeline_table_entry *) &default_entry,
(struct rte_pipeline_table_entry **) &rsp->entry_ptr);
return rsp;
}
static void *
pipeline_fc_msg_req_del_default_handler(struct pipeline *p, void *msg)
{
struct pipeline_fc_del_default_msg_rsp *rsp = msg;
p->table_id[0],
NULL);
return rsp;
}
struct pipeline_be_ops pipeline_flow_classification_be_ops = {
.f_init = pipeline_fc_init,
.f_free = pipeline_fc_free,
.f_run = NULL,
.f_timer = pipeline_fc_timer,
};