DPDK  16.07.2
tep_termination/vxlan_setup.c
/*-
* BSD LICENSE
*
* Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <getopt.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/virtio_net.h>
#include <linux/virtio_ring.h>
#include <sys/param.h>
#include <unistd.h>
#include <rte_ethdev.h>
#include <rte_log.h>
#include <rte_string_fns.h>
#include <rte_mbuf.h>
#include <rte_malloc.h>
#include <rte_ip.h>
#include <rte_udp.h>
#include <rte_tcp.h>
#include "main.h"
#include "rte_virtio_net.h"
#include "vxlan.h"
#include "vxlan_setup.h"
#define IPV4_HEADER_LEN 20
#define UDP_HEADER_LEN 8
#define VXLAN_HEADER_LEN 8
#define IP_VERSION 0x40
#define IP_HDRLEN 0x05 /* default IP header length == five 32-bits words. */
#define IP_DEFTTL 64 /* from RFC 1340. */
#define IP_VHL_DEF (IP_VERSION | IP_HDRLEN)
#define IP_DN_FRAGMENT_FLAG 0x0040
/* Used to compare MAC addresses. */
#define MAC_ADDR_CMP 0xFFFFFFFFFFFFULL
/* Configurable number of RX/TX ring descriptors */
#define RTE_TEST_RX_DESC_DEFAULT 1024
#define RTE_TEST_TX_DESC_DEFAULT 512
/* Default inner VLAN ID */
#define INNER_VLAN_ID 100
/* VXLAN device */
struct vxlan_conf vxdev;
struct ipv4_hdr app_ip_hdr[VXLAN_N_PORTS];
struct ether_hdr app_l2_hdr[VXLAN_N_PORTS];
/* local VTEP IP address */
uint8_t vxlan_multicast_ips[2][4] = { {239, 1, 1, 1 }, {239, 1, 2, 1 } };
/* Remote VTEP IP address */
uint8_t vxlan_overlay_ips[2][4] = { {192, 168, 10, 1}, {192, 168, 30, 1} };
/* Remote VTEP MAC address */
uint8_t peer_mac[6] = {0x00, 0x11, 0x01, 0x00, 0x00, 0x01};
/* VXLAN RX filter type */
uint8_t tep_filter_type[] = {RTE_TUNNEL_FILTER_IMAC_TENID,
RTE_TUNNEL_FILTER_IMAC_IVLAN_TENID,
RTE_TUNNEL_FILTER_OMAC_TENID_IMAC,};
/* Options for configuring ethernet port */
static const struct rte_eth_conf port_conf = {
.rxmode = {
.header_split = 0,
.hw_ip_checksum = 0,
.hw_vlan_filter = 0,
.jumbo_frame = 0,
.hw_strip_crc = 0,
},
.txmode = {
.mq_mode = ETH_MQ_TX_NONE,
},
};
const uint16_t tenant_id_conf[] = {
1000, 1000, 1001, 1001, 1002, 1002, 1003, 1003,
1004, 1004, 1005, 1005, 1006, 1006, 1007, 1007,
1008, 1008, 1009, 1009, 1010, 1010, 1011, 1011,
1012, 1012, 1013, 1013, 1014, 1014, 1015, 1015,
1016, 1016, 1017, 1017, 1018, 1018, 1019, 1019,
1020, 1020, 1021, 1021, 1022, 1022, 1023, 1023,
1024, 1024, 1025, 1025, 1026, 1026, 1027, 1027,
1028, 1028, 1029, 1029, 1030, 1030, 1031, 1031,
};
int
vxlan_port_init(uint8_t port, struct rte_mempool *mbuf_pool)
{
int retval;
uint16_t q;
struct rte_eth_dev_info dev_info;
uint16_t rx_rings, tx_rings = (uint16_t)rte_lcore_count();
const uint16_t rx_ring_size = RTE_TEST_RX_DESC_DEFAULT;
const uint16_t tx_ring_size = RTE_TEST_TX_DESC_DEFAULT;
struct rte_eth_udp_tunnel tunnel_udp;
struct rte_eth_rxconf *rxconf;
struct rte_eth_txconf *txconf;
struct vxlan_conf *pconf = &vxdev;
pconf->dst_port = udp_port;
rte_eth_dev_info_get(port, &dev_info);
if (dev_info.max_rx_queues > MAX_QUEUES) {
rte_exit(EXIT_FAILURE,
"please define MAX_QUEUES no less than %u in %s\n",
dev_info.max_rx_queues, __FILE__);
}
rxconf = &dev_info.default_rxconf;
txconf = &dev_info.default_txconf;
txconf->txq_flags = 0;
if (port >= rte_eth_dev_count())
return -1;
rx_rings = nb_devices;
/* Configure ethernet device. */
retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
if (retval != 0)
return retval;
/* Setup the queues. */
for (q = 0; q < rx_rings; q++) {
retval = rte_eth_rx_queue_setup(port, q, rx_ring_size,
rxconf,
mbuf_pool);
if (retval < 0)
return retval;
}
for (q = 0; q < tx_rings; q++) {
retval = rte_eth_tx_queue_setup(port, q, tx_ring_size,
txconf);
if (retval < 0)
return retval;
}
/* Start the device. */
retval = rte_eth_dev_start(port);
if (retval < 0)
return retval;
/* Configure UDP port for UDP tunneling */
tunnel_udp.udp_port = udp_port;
tunnel_udp.prot_type = RTE_TUNNEL_TYPE_VXLAN;
retval = rte_eth_dev_udp_tunnel_port_add(port, &tunnel_udp);
if (retval < 0)
return retval;
rte_eth_macaddr_get(port, &ports_eth_addr[port]);
RTE_LOG(INFO, PORT, "Port %u MAC: %02"PRIx8" %02"PRIx8" %02"PRIx8
" %02"PRIx8" %02"PRIx8" %02"PRIx8"\n",
(unsigned)port,
ports_eth_addr[port].addr_bytes[0],
ports_eth_addr[port].addr_bytes[1],
ports_eth_addr[port].addr_bytes[2],
ports_eth_addr[port].addr_bytes[3],
ports_eth_addr[port].addr_bytes[4],
ports_eth_addr[port].addr_bytes[5]);
if (tso_segsz != 0) {
struct rte_eth_dev_info dev_info;
rte_eth_dev_info_get(port, &dev_info);
if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) == 0)
RTE_LOG(WARNING, PORT,
"hardware TSO offload is not supported\n");
}
return 0;
}
static int
vxlan_rx_process(struct rte_mbuf *pkt)
{
int ret = 0;
if (rx_decap)
ret = decapsulation(pkt);
return ret;
}
static void
vxlan_tx_process(uint8_t queue_id, struct rte_mbuf *pkt)
{
if (tx_encap)
encapsulation(pkt, queue_id);
return;
}
/*
* This function learns the MAC address of the device and set init
* L2 header and L3 header info.
*/
int
vxlan_link(struct vhost_dev *vdev, struct rte_mbuf *m)
{
int i, ret;
struct ether_hdr *pkt_hdr;
uint64_t portid = vdev->vid;
struct ipv4_hdr *ip;
struct rte_eth_tunnel_filter_conf tunnel_filter_conf;
if (unlikely(portid >= VXLAN_N_PORTS)) {
RTE_LOG(INFO, VHOST_DATA,
"(%d) WARNING: Not configuring device,"
"as already have %d ports for VXLAN.",
vdev->vid, VXLAN_N_PORTS);
return -1;
}
/* Learn MAC address of guest device from packet */
pkt_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
if (is_same_ether_addr(&(pkt_hdr->s_addr), &vdev->mac_address)) {
RTE_LOG(INFO, VHOST_DATA,
"(%d) WARNING: This device is using an existing"
" MAC address and has not been registered.\n",
vdev->vid);
return -1;
}
for (i = 0; i < ETHER_ADDR_LEN; i++) {
vdev->mac_address.addr_bytes[i] =
vxdev.port[portid].vport_mac.addr_bytes[i] =
pkt_hdr->s_addr.addr_bytes[i];
vxdev.port[portid].peer_mac.addr_bytes[i] = peer_mac[i];
}
memset(&tunnel_filter_conf, 0,
sizeof(struct rte_eth_tunnel_filter_conf));
ether_addr_copy(&ports_eth_addr[0], &tunnel_filter_conf.outer_mac);
tunnel_filter_conf.filter_type = tep_filter_type[filter_idx];
/* inner MAC */
ether_addr_copy(&vdev->mac_address, &tunnel_filter_conf.inner_mac);
tunnel_filter_conf.queue_id = vdev->rx_q;
tunnel_filter_conf.tenant_id = tenant_id_conf[vdev->rx_q];
if (tep_filter_type[filter_idx] == RTE_TUNNEL_FILTER_IMAC_IVLAN_TENID)
tunnel_filter_conf.inner_vlan = INNER_VLAN_ID;
tunnel_filter_conf.tunnel_type = RTE_TUNNEL_TYPE_VXLAN;
ret = rte_eth_dev_filter_ctrl(ports[0],
RTE_ETH_FILTER_TUNNEL,
&tunnel_filter_conf);
if (ret) {
RTE_LOG(ERR, VHOST_DATA,
"%d Failed to add device MAC address to cloud filter\n",
vdev->rx_q);
return -1;
}
/* Print out inner MAC and VNI info. */
RTE_LOG(INFO, VHOST_DATA,
"(%d) MAC_ADDRESS %02x:%02x:%02x:%02x:%02x:%02x and VNI %d registered\n",
vdev->rx_q,
vdev->mac_address.addr_bytes[0],
vdev->mac_address.addr_bytes[1],
vdev->mac_address.addr_bytes[2],
vdev->mac_address.addr_bytes[3],
vdev->mac_address.addr_bytes[4],
vdev->mac_address.addr_bytes[5],
tenant_id_conf[vdev->rx_q]);
vxdev.port[portid].vport_id = portid;
for (i = 0; i < 4; i++) {
/* Local VTEP IP */
vxdev.port_ip |= vxlan_multicast_ips[portid][i] << (8 * i);
/* Remote VTEP IP */
vxdev.port[portid].peer_ip |=
vxlan_overlay_ips[portid][i] << (8 * i);
}
vxdev.out_key = tenant_id_conf[vdev->rx_q];
ether_addr_copy(&vxdev.port[portid].peer_mac,
&app_l2_hdr[portid].d_addr);
ether_addr_copy(&ports_eth_addr[0],
&app_l2_hdr[portid].s_addr);
app_l2_hdr[portid].ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
ip = &app_ip_hdr[portid];
ip->version_ihl = IP_VHL_DEF;
ip->type_of_service = 0;
ip->total_length = 0;
ip->packet_id = 0;
ip->fragment_offset = IP_DN_FRAGMENT_FLAG;
ip->time_to_live = IP_DEFTTL;
ip->next_proto_id = IPPROTO_UDP;
ip->hdr_checksum = 0;
ip->src_addr = vxdev.port_ip;
ip->dst_addr = vxdev.port[portid].peer_ip;
/* Set device as ready for RX. */
vdev->ready = DEVICE_RX;
return 0;
}
void
vxlan_unlink(struct vhost_dev *vdev)
{
unsigned i = 0, rx_count;
int ret;
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
struct rte_eth_tunnel_filter_conf tunnel_filter_conf;
if (vdev->ready == DEVICE_RX) {
memset(&tunnel_filter_conf, 0,
sizeof(struct rte_eth_tunnel_filter_conf));
ether_addr_copy(&ports_eth_addr[0], &tunnel_filter_conf.outer_mac);
ether_addr_copy(&vdev->mac_address, &tunnel_filter_conf.inner_mac);
tunnel_filter_conf.tenant_id = tenant_id_conf[vdev->rx_q];
tunnel_filter_conf.filter_type = tep_filter_type[filter_idx];
if (tep_filter_type[filter_idx] ==
RTE_TUNNEL_FILTER_IMAC_IVLAN_TENID)
tunnel_filter_conf.inner_vlan = INNER_VLAN_ID;
tunnel_filter_conf.queue_id = vdev->rx_q;
tunnel_filter_conf.tunnel_type = RTE_TUNNEL_TYPE_VXLAN;
ret = rte_eth_dev_filter_ctrl(ports[0],
RTE_ETH_FILTER_TUNNEL,
&tunnel_filter_conf);
if (ret) {
RTE_LOG(ERR, VHOST_DATA,
"%d Failed to add device MAC address to cloud filter\n",
vdev->rx_q);
return;
}
for (i = 0; i < ETHER_ADDR_LEN; i++)
vdev->mac_address.addr_bytes[i] = 0;
/* Clear out the receive buffers */
rx_count = rte_eth_rx_burst(ports[0],
(uint16_t)vdev->rx_q,
pkts_burst, MAX_PKT_BURST);
while (rx_count) {
for (i = 0; i < rx_count; i++)
rte_pktmbuf_free(pkts_burst[i]);
rx_count = rte_eth_rx_burst(ports[0],
(uint16_t)vdev->rx_q,
pkts_burst, MAX_PKT_BURST);
}
vdev->ready = DEVICE_MAC_LEARNING;
}
}
/* Transmit packets after encapsulating */
int
vxlan_tx_pkts(uint8_t port_id, uint16_t queue_id,
struct rte_mbuf **tx_pkts, uint16_t nb_pkts) {
int ret = 0;
uint16_t i;
for (i = 0; i < nb_pkts; i++)
vxlan_tx_process(queue_id, tx_pkts[i]);
ret = rte_eth_tx_burst(port_id, queue_id, tx_pkts, nb_pkts);
return ret;
}
/* Check for decapsulation and pass packets directly to VIRTIO device */
int
vxlan_rx_pkts(int vid, struct rte_mbuf **pkts_burst, uint32_t rx_count)
{
uint32_t i = 0;
uint32_t count = 0;
int ret;
struct rte_mbuf *pkts_valid[rx_count];
for (i = 0; i < rx_count; i++) {
if (enable_stats) {
&dev_statistics[vid].rx_bad_ip_csum,
(pkts_burst[i]->ol_flags & PKT_RX_IP_CKSUM_BAD)
!= 0);
&dev_statistics[vid].rx_bad_ip_csum,
(pkts_burst[i]->ol_flags & PKT_RX_L4_CKSUM_BAD)
!= 0);
}
ret = vxlan_rx_process(pkts_burst[i]);
if (unlikely(ret < 0))
continue;
pkts_valid[count] = pkts_burst[i];
count++;
}
ret = rte_vhost_enqueue_burst(vid, VIRTIO_RXQ, pkts_valid, count);
return ret;
}