DPDK  16.07.2
l3fwd-vf/main.c
/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <string.h>
#include <sys/queue.h>
#include <stdarg.h>
#include <errno.h>
#include <getopt.h>
#include <signal.h>
#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_memzone.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_launch.h>
#include <rte_atomic.h>
#include <rte_spinlock.h>
#include <rte_cycles.h>
#include <rte_prefetch.h>
#include <rte_lcore.h>
#include <rte_per_lcore.h>
#include <rte_interrupts.h>
#include <rte_pci.h>
#include <rte_random.h>
#include <rte_debug.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_ring.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#include <rte_udp.h>
#include <rte_string_fns.h>
#define APP_LOOKUP_EXACT_MATCH 0
#define APP_LOOKUP_LPM 1
#define DO_RFC_1812_CHECKS
//#define APP_LOOKUP_METHOD APP_LOOKUP_EXACT_MATCH
#ifndef APP_LOOKUP_METHOD
#define APP_LOOKUP_METHOD APP_LOOKUP_LPM
#endif
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
#include <rte_hash.h>
#elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
#include <rte_lpm.h>
#else
#error "APP_LOOKUP_METHOD set to incorrect value"
#endif
#define RTE_LOGTYPE_L3FWD RTE_LOGTYPE_USER1
#define MEMPOOL_CACHE_SIZE 256
/*
* This expression is used to calculate the number of mbufs needed depending on user input, taking
* into account memory for rx and tx hardware rings, cache per lcore and mtable per port per lcore.
* RTE_MAX is used to ensure that NB_MBUF never goes below a minimum value of 8192
*/
#define NB_MBUF RTE_MAX ( \
(nb_ports*nb_rx_queue*RTE_TEST_RX_DESC_DEFAULT + \
nb_ports*nb_lcores*MAX_PKT_BURST + \
nb_ports*n_tx_queue*RTE_TEST_TX_DESC_DEFAULT + \
nb_lcores*MEMPOOL_CACHE_SIZE), \
(unsigned)8192)
/*
* RX and TX Prefetch, Host, and Write-back threshold values should be
* carefully set for optimal performance. Consult the network
* controller's datasheet and supporting DPDK documentation for guidance
* on how these parameters should be set.
*/
#define RX_PTHRESH 8
#define RX_HTHRESH 8
#define RX_WTHRESH 4
/*
* These default values are optimized for use with the Intel(R) 82599 10 GbE
* Controller and the DPDK ixgbe PMD. Consider using other values for other
* network controllers and/or network drivers.
*/
#define TX_PTHRESH 36
#define TX_HTHRESH 0
#define TX_WTHRESH 0
#define MAX_PKT_BURST 32
#define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
#define NB_SOCKETS 8
#define SOCKET0 0
/* Configure how many packets ahead to prefetch, when reading packets */
#define PREFETCH_OFFSET 3
/*
* Configurable number of RX/TX ring descriptors
*/
#define RTE_TEST_RX_DESC_DEFAULT 128
#define RTE_TEST_TX_DESC_DEFAULT 512
static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
/* ethernet addresses of ports */
static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
/* mask of enabled ports */
static uint32_t enabled_port_mask = 0;
static int numa_on = 1;
struct mbuf_table {
uint16_t len;
struct rte_mbuf *m_table[MAX_PKT_BURST];
};
struct lcore_rx_queue {
uint8_t port_id;
uint8_t queue_id;
#define MAX_RX_QUEUE_PER_LCORE 16
#define MAX_TX_QUEUE_PER_PORT 1
#define MAX_RX_QUEUE_PER_PORT 1
#define MAX_LCORE_PARAMS 1024
struct lcore_params {
uint8_t port_id;
uint8_t queue_id;
uint8_t lcore_id;
static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
static struct lcore_params lcore_params_array_default[] = {
{0, 0, 2},
{0, 1, 2},
{0, 2, 2},
{1, 0, 2},
{1, 1, 2},
{1, 2, 2},
{2, 0, 2},
{3, 0, 3},
{3, 1, 3},
};
static struct lcore_params * lcore_params = lcore_params_array_default;
static uint16_t nb_lcore_params = sizeof(lcore_params_array_default) /
sizeof(lcore_params_array_default[0]);
static struct rte_eth_conf port_conf = {
.rxmode = {
.max_rx_pkt_len = ETHER_MAX_LEN,
.split_hdr_size = 0,
.header_split = 0,
.hw_ip_checksum = 1,
.hw_vlan_filter = 0,
.jumbo_frame = 0,
.hw_strip_crc = 0,
},
.rx_adv_conf = {
.rss_conf = {
.rss_key = NULL,
.rss_hf = ETH_RSS_IP,
},
},
.txmode = {
.mq_mode = ETH_MQ_TX_NONE,
},
};
static struct rte_mempool * pktmbuf_pool[NB_SOCKETS];
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
#ifdef RTE_MACHINE_CPUFLAG_SSE4_2
#include <rte_hash_crc.h>
#define DEFAULT_HASH_FUNC rte_hash_crc
#else
#include <rte_jhash.h>
#define DEFAULT_HASH_FUNC rte_jhash
#endif
struct ipv4_5tuple {
uint32_t ip_dst;
uint32_t ip_src;
uint16_t port_dst;
uint16_t port_src;
uint8_t proto;
} __attribute__((__packed__));
struct l3fwd_route {
struct ipv4_5tuple key;
uint8_t if_out;
};
static struct l3fwd_route l3fwd_route_array[] = {
{{IPv4(100,10,0,1), IPv4(200,10,0,1), 101, 11, IPPROTO_TCP}, 0},
{{IPv4(100,20,0,2), IPv4(200,20,0,2), 102, 12, IPPROTO_TCP}, 1},
{{IPv4(100,30,0,3), IPv4(200,30,0,3), 103, 13, IPPROTO_TCP}, 2},
{{IPv4(100,40,0,4), IPv4(200,40,0,4), 104, 14, IPPROTO_TCP}, 3},
};
typedef struct rte_hash lookup_struct_t;
static lookup_struct_t *l3fwd_lookup_struct[NB_SOCKETS];
#define L3FWD_HASH_ENTRIES 1024
struct rte_hash_parameters l3fwd_hash_params = {
.name = "l3fwd_hash_0",
.entries = L3FWD_HASH_ENTRIES,
.key_len = sizeof(struct ipv4_5tuple),
.hash_func = DEFAULT_HASH_FUNC,
.hash_func_init_val = 0,
.socket_id = SOCKET0,
};
#define L3FWD_NUM_ROUTES \
(sizeof(l3fwd_route_array) / sizeof(l3fwd_route_array[0]))
static uint8_t l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
#endif
#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
struct l3fwd_route {
uint32_t ip;
uint8_t depth;
uint8_t if_out;
};
static struct l3fwd_route l3fwd_route_array[] = {
{IPv4(1,1,1,0), 24, 0},
{IPv4(2,1,1,0), 24, 1},
{IPv4(3,1,1,0), 24, 2},
{IPv4(4,1,1,0), 24, 3},
{IPv4(5,1,1,0), 24, 4},
{IPv4(6,1,1,0), 24, 5},
{IPv4(7,1,1,0), 24, 6},
{IPv4(8,1,1,0), 24, 7},
};
#define L3FWD_NUM_ROUTES \
(sizeof(l3fwd_route_array) / sizeof(l3fwd_route_array[0]))
#define L3FWD_LPM_MAX_RULES 1024
typedef struct rte_lpm lookup_struct_t;
static lookup_struct_t *l3fwd_lookup_struct[NB_SOCKETS];
#endif
struct lcore_conf {
uint16_t n_rx_queue;
struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
uint16_t tx_queue_id;
struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];
lookup_struct_t * lookup_struct;
static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
static rte_spinlock_t spinlock_conf[RTE_MAX_ETHPORTS] = {RTE_SPINLOCK_INITIALIZER};
/* Send burst of packets on an output interface */
static inline int
send_burst(struct lcore_conf *qconf, uint16_t n, uint8_t port)
{
struct rte_mbuf **m_table;
int ret;
uint16_t queueid;
queueid = qconf->tx_queue_id;
m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
rte_spinlock_lock(&spinlock_conf[port]);
ret = rte_eth_tx_burst(port, queueid, m_table, n);
rte_spinlock_unlock(&spinlock_conf[port]);
if (unlikely(ret < n)) {
do {
rte_pktmbuf_free(m_table[ret]);
} while (++ret < n);
}
return 0;
}
/* Enqueue a single packet, and send burst if queue is filled */
static inline int
send_single_packet(struct rte_mbuf *m, uint8_t port)
{
uint32_t lcore_id;
uint16_t len;
struct lcore_conf *qconf;
lcore_id = rte_lcore_id();
qconf = &lcore_conf[lcore_id];
len = qconf->tx_mbufs[port].len;
qconf->tx_mbufs[port].m_table[len] = m;
len++;
/* enough pkts to be sent */
if (unlikely(len == MAX_PKT_BURST)) {
send_burst(qconf, MAX_PKT_BURST, port);
len = 0;
}
qconf->tx_mbufs[port].len = len;
return 0;
}
#ifdef DO_RFC_1812_CHECKS
static inline int
is_valid_ipv4_pkt(struct ipv4_hdr *pkt, uint32_t link_len)
{
/* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */
/*
* 1. The packet length reported by the Link Layer must be large
* enough to hold the minimum length legal IP datagram (20 bytes).
*/
if (link_len < sizeof(struct ipv4_hdr))
return -1;
/* 2. The IP checksum must be correct. */
/* this is checked in H/W */
/*
* 3. The IP version number must be 4. If the version number is not 4
* then the packet may be another version of IP, such as IPng or
* ST-II.
*/
if (((pkt->version_ihl) >> 4) != 4)
return -3;
/*
* 4. The IP header length field must be large enough to hold the
* minimum length legal IP datagram (20 bytes = 5 words).
*/
if ((pkt->version_ihl & 0xf) < 5)
return -4;
/*
* 5. The IP total length field must be large enough to hold the IP
* datagram header, whose length is specified in the IP header length
* field.
*/
if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct ipv4_hdr))
return -5;
return 0;
}
#endif
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
static void
print_key(struct ipv4_5tuple key)
{
printf("IP dst = %08x, IP src = %08x, port dst = %d, port src = %d, proto = %d\n",
(unsigned)key.ip_dst, (unsigned)key.ip_src, key.port_dst, key.port_src, key.proto);
}
static inline uint8_t
get_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid, lookup_struct_t * l3fwd_lookup_struct)
{
struct ipv4_5tuple key;
struct tcp_hdr *tcp;
struct udp_hdr *udp;
int ret = 0;
key.ip_dst = rte_be_to_cpu_32(ipv4_hdr->dst_addr);
key.ip_src = rte_be_to_cpu_32(ipv4_hdr->src_addr);
key.proto = ipv4_hdr->next_proto_id;
switch (ipv4_hdr->next_proto_id) {
case IPPROTO_TCP:
tcp = (struct tcp_hdr *)((unsigned char *) ipv4_hdr +
sizeof(struct ipv4_hdr));
key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
key.port_src = rte_be_to_cpu_16(tcp->src_port);
break;
case IPPROTO_UDP:
udp = (struct udp_hdr *)((unsigned char *) ipv4_hdr +
sizeof(struct ipv4_hdr));
key.port_dst = rte_be_to_cpu_16(udp->dst_port);
key.port_src = rte_be_to_cpu_16(udp->src_port);
break;
default:
key.port_dst = 0;
key.port_src = 0;
}
/* Find destination port */
ret = rte_hash_lookup(l3fwd_lookup_struct, (const void *)&key);
return (uint8_t)((ret < 0)? portid : l3fwd_out_if[ret]);
}
#endif
#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
static inline uint8_t
get_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid, lookup_struct_t * l3fwd_lookup_struct)
{
uint32_t next_hop;
return (uint8_t) ((rte_lpm_lookup(l3fwd_lookup_struct,
rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)?
next_hop : portid);
}
#endif
static inline void
l3fwd_simple_forward(struct rte_mbuf *m, uint8_t portid, lookup_struct_t * l3fwd_lookup_struct)
{
struct ether_hdr *eth_hdr;
struct ipv4_hdr *ipv4_hdr;
void *tmp;
uint8_t dst_port;
eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *,
sizeof(struct ether_hdr));
#ifdef DO_RFC_1812_CHECKS
/* Check to make sure the packet is valid (RFC1812) */
if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) {
return;
}
#endif
dst_port = get_dst_port(ipv4_hdr, portid, l3fwd_lookup_struct);
if (dst_port >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port) == 0)
dst_port = portid;
/* 02:00:00:00:00:xx */
tmp = &eth_hdr->d_addr.addr_bytes[0];
*((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dst_port << 40);
#ifdef DO_RFC_1812_CHECKS
/* Update time to live and header checksum */
--(ipv4_hdr->time_to_live);
++(ipv4_hdr->hdr_checksum);
#endif
/* src addr */
ether_addr_copy(&ports_eth_addr[dst_port], &eth_hdr->s_addr);
send_single_packet(m, dst_port);
}
/* main processing loop */
static int
main_loop(__attribute__((unused)) void *dummy)
{
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
unsigned lcore_id;
uint64_t prev_tsc, diff_tsc, cur_tsc;
int i, j, nb_rx;
uint8_t portid, queueid;
struct lcore_conf *qconf;
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
prev_tsc = 0;
lcore_id = rte_lcore_id();
qconf = &lcore_conf[lcore_id];
if (qconf->n_rx_queue == 0) {
RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id);
return 0;
}
RTE_LOG(INFO, L3FWD, "entering main loop on lcore %u\n", lcore_id);
for (i = 0; i < qconf->n_rx_queue; i++) {
portid = qconf->rx_queue_list[i].port_id;
queueid = qconf->rx_queue_list[i].queue_id;
RTE_LOG(INFO, L3FWD, " -- lcoreid=%u portid=%hhu rxqueueid=%hhu\n", lcore_id,
portid, queueid);
}
while (1) {
cur_tsc = rte_rdtsc();
/*
* TX burst queue drain
*/
diff_tsc = cur_tsc - prev_tsc;
if (unlikely(diff_tsc > drain_tsc)) {
/*
* This could be optimized (use queueid instead of
* portid), but it is not called so often
*/
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
if (qconf->tx_mbufs[portid].len == 0)
continue;
send_burst(&lcore_conf[lcore_id],
qconf->tx_mbufs[portid].len,
portid);
qconf->tx_mbufs[portid].len = 0;
}
prev_tsc = cur_tsc;
}
/*
* Read packet from RX queues
*/
for (i = 0; i < qconf->n_rx_queue; ++i) {
portid = qconf->rx_queue_list[i].port_id;
queueid = qconf->rx_queue_list[i].queue_id;
nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst, MAX_PKT_BURST);
/* Prefetch first packets */
for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
pkts_burst[j], void *));
}
/* Prefetch and forward already prefetched packets */
for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
j + PREFETCH_OFFSET], void *));
l3fwd_simple_forward(pkts_burst[j], portid, qconf->lookup_struct);
}
/* Forward remaining prefetched packets */
for (; j < nb_rx; j++) {
l3fwd_simple_forward(pkts_burst[j], portid, qconf->lookup_struct);
}
}
}
}
static int
check_lcore_params(void)
{
uint8_t queue, lcore;
uint16_t i;
int socketid;
for (i = 0; i < nb_lcore_params; ++i) {
queue = lcore_params[i].queue_id;
if (queue >= MAX_RX_QUEUE_PER_PORT) {
printf("invalid queue number: %hhu\n", queue);
return -1;
}
lcore = lcore_params[i].lcore_id;
if (!rte_lcore_is_enabled(lcore)) {
printf("error: lcore %hhu is not enabled in lcore mask\n", lcore);
return -1;
}
if ((socketid = rte_lcore_to_socket_id(lcore) != 0) &&
(numa_on == 0)) {
printf("warning: lcore %hhu is on socket %d with numa off \n",
lcore, socketid);
}
}
return 0;
}
static int
check_port_config(const unsigned nb_ports)
{
unsigned portid;
uint16_t i;
for (i = 0; i < nb_lcore_params; ++i) {
portid = lcore_params[i].port_id;
if ((enabled_port_mask & (1 << portid)) == 0) {
printf("port %u is not enabled in port mask\n", portid);
return -1;
}
if (portid >= nb_ports) {
printf("port %u is not present on the board\n", portid);
return -1;
}
}
return 0;
}
static uint8_t
get_port_n_rx_queues(const uint8_t port)
{
int queue = -1;
uint16_t i;
for (i = 0; i < nb_lcore_params; ++i) {
if (lcore_params[i].port_id == port && lcore_params[i].queue_id > queue)
queue = lcore_params[i].queue_id;
}
return (uint8_t)(++queue);
}
static int
init_lcore_rx_queues(void)
{
uint16_t i, nb_rx_queue;
uint8_t lcore;
for (i = 0; i < nb_lcore_params; ++i) {
lcore = lcore_params[i].lcore_id;
nb_rx_queue = lcore_conf[lcore].n_rx_queue;
if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
printf("error: too many queues (%u) for lcore: %u\n",
(unsigned)nb_rx_queue + 1, (unsigned)lcore);
return -1;
} else {
lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
lcore_params[i].port_id;
lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
lcore_params[i].queue_id;
lcore_conf[lcore].n_rx_queue++;
}
}
return 0;
}
/* display usage */
static void
print_usage(const char *prgname)
{
printf ("%s [EAL options] -- -p PORTMASK"
" [--config (port,queue,lcore)[,(port,queue,lcore]]\n"
" -p PORTMASK: hexadecimal bitmask of ports to configure\n"
" --config (port,queue,lcore): rx queues configuration\n"
" --no-numa: optional, disable numa awareness\n",
prgname);
}
/* Custom handling of signals to handle process terminal */
static void
signal_handler(int signum)
{
uint8_t portid;
uint8_t nb_ports = rte_eth_dev_count();
/* When we receive a SIGINT signal */
if (signum == SIGINT) {
for (portid = 0; portid < nb_ports; portid++) {
/* skip ports that are not enabled */
if ((enabled_port_mask & (1 << portid)) == 0)
continue;
}
}
rte_exit(EXIT_SUCCESS, "\n User forced exit\n");
}
static int
parse_portmask(const char *portmask)
{
char *end = NULL;
unsigned long pm;
/* parse hexadecimal string */
pm = strtoul(portmask, &end, 16);
if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
return -1;
if (pm == 0)
return -1;
return pm;
}
static int
parse_config(const char *q_arg)
{
char s[256];
const char *p, *p0 = q_arg;
char *end;
enum fieldnames {
FLD_PORT = 0,
FLD_QUEUE,
FLD_LCORE,
_NUM_FLD
};
unsigned long int_fld[_NUM_FLD];
char *str_fld[_NUM_FLD];
int i;
unsigned size;
nb_lcore_params = 0;
while ((p = strchr(p0,'(')) != NULL) {
++p;
if((p0 = strchr(p,')')) == NULL)
return -1;
size = p0 - p;
if(size >= sizeof(s))
return -1;
snprintf(s, sizeof(s), "%.*s", size, p);
if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != _NUM_FLD)
return -1;
for (i = 0; i < _NUM_FLD; i++){
errno = 0;
int_fld[i] = strtoul(str_fld[i], &end, 0);
if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
return -1;
}
if (nb_lcore_params >= MAX_LCORE_PARAMS) {
printf("exceeded max number of lcore params: %hu\n",
nb_lcore_params);
return -1;
}
lcore_params_array[nb_lcore_params].port_id = (uint8_t)int_fld[FLD_PORT];
lcore_params_array[nb_lcore_params].queue_id = (uint8_t)int_fld[FLD_QUEUE];
lcore_params_array[nb_lcore_params].lcore_id = (uint8_t)int_fld[FLD_LCORE];
++nb_lcore_params;
}
lcore_params = lcore_params_array;
return 0;
}
/* Parse the argument given in the command line of the application */
static int
parse_args(int argc, char **argv)
{
int opt, ret;
char **argvopt;
int option_index;
char *prgname = argv[0];
static struct option lgopts[] = {
{"config", 1, 0, 0},
{"no-numa", 0, 0, 0},
{NULL, 0, 0, 0}
};
argvopt = argv;
while ((opt = getopt_long(argc, argvopt, "p:",
lgopts, &option_index)) != EOF) {
switch (opt) {
/* portmask */
case 'p':
enabled_port_mask = parse_portmask(optarg);
if (enabled_port_mask == 0) {
printf("invalid portmask\n");
print_usage(prgname);
return -1;
}
break;
/* long options */
case 0:
if (!strcmp(lgopts[option_index].name, "config")) {
ret = parse_config(optarg);
if (ret) {
printf("invalid config\n");
print_usage(prgname);
return -1;
}
}
if (!strcmp(lgopts[option_index].name, "no-numa")) {
printf("numa is disabled \n");
numa_on = 0;
}
break;
default:
print_usage(prgname);
return -1;
}
}
if (optind >= 0)
argv[optind-1] = prgname;
ret = optind-1;
optind = 0; /* reset getopt lib */
return ret;
}
static void
print_ethaddr(const char *name, const struct ether_addr *eth_addr)
{
char buf[ETHER_ADDR_FMT_SIZE];
ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
printf("%s%s", name, buf);
}
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
static void
setup_hash(int socketid)
{
unsigned i;
int ret;
char s[64];
/* create hashes */
snprintf(s, sizeof(s), "l3fwd_hash_%d", socketid);
l3fwd_hash_params.name = s;
l3fwd_hash_params.socket_id = socketid;
l3fwd_lookup_struct[socketid] = rte_hash_create(&l3fwd_hash_params);
if (l3fwd_lookup_struct[socketid] == NULL)
rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
"socket %d\n", socketid);
/* populate the hash */
for (i = 0; i < L3FWD_NUM_ROUTES; i++) {
ret = rte_hash_add_key (l3fwd_lookup_struct[socketid],
(void *) &l3fwd_route_array[i].key);
if (ret < 0) {
rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
"l3fwd hash on socket %d\n", i, socketid);
}
l3fwd_out_if[ret] = l3fwd_route_array[i].if_out;
printf("Hash: Adding key\n");
print_key(l3fwd_route_array[i].key);
}
}
#endif
#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
static void
setup_lpm(int socketid)
{
unsigned i;
int ret;
char s[64];
struct rte_lpm_config lpm_ipv4_config;
lpm_ipv4_config.max_rules = L3FWD_LPM_MAX_RULES;
lpm_ipv4_config.number_tbl8s = 256;
lpm_ipv4_config.flags = 0;
/* create the LPM table */
snprintf(s, sizeof(s), "L3FWD_LPM_%d", socketid);
l3fwd_lookup_struct[socketid] =
rte_lpm_create(s, socketid, &lpm_ipv4_config);
if (l3fwd_lookup_struct[socketid] == NULL)
rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
" on socket %d\n", socketid);
/* populate the LPM table */
for (i = 0; i < L3FWD_NUM_ROUTES; i++) {
ret = rte_lpm_add(l3fwd_lookup_struct[socketid],
l3fwd_route_array[i].ip,
l3fwd_route_array[i].depth,
l3fwd_route_array[i].if_out);
if (ret < 0) {
rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
"l3fwd LPM table on socket %d\n",
i, socketid);
}
printf("LPM: Adding route 0x%08x / %d (%d)\n",
(unsigned)l3fwd_route_array[i].ip,
l3fwd_route_array[i].depth,
l3fwd_route_array[i].if_out);
}
}
#endif
static int
init_mem(unsigned nb_mbuf)
{
struct lcore_conf *qconf;
int socketid;
unsigned lcore_id;
char s[64];
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;
if (numa_on)
socketid = rte_lcore_to_socket_id(lcore_id);
else
socketid = 0;
if (socketid >= NB_SOCKETS) {
rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is out of range %d\n",
socketid, lcore_id, NB_SOCKETS);
}
if (pktmbuf_pool[socketid] == NULL) {
snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
pktmbuf_pool[socketid] = rte_pktmbuf_pool_create(s,
nb_mbuf, MEMPOOL_CACHE_SIZE, 0,
RTE_MBUF_DEFAULT_BUF_SIZE, socketid);
if (pktmbuf_pool[socketid] == NULL)
rte_exit(EXIT_FAILURE, "Cannot init mbuf pool on socket %d\n", socketid);
else
printf("Allocated mbuf pool on socket %d\n", socketid);
#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
setup_lpm(socketid);
#else
setup_hash(socketid);
#endif
}
qconf = &lcore_conf[lcore_id];
qconf->lookup_struct = l3fwd_lookup_struct[socketid];
}
return 0;
}
int
main(int argc, char **argv)
{
struct lcore_conf *qconf;
struct rte_eth_dev_info dev_info;
struct rte_eth_txconf *txconf;
int ret;
unsigned nb_ports;
uint16_t queueid;
unsigned lcore_id;
uint32_t nb_lcores;
uint16_t n_tx_queue;
uint8_t portid, nb_rx_queue, queue, socketid;
signal(SIGINT, signal_handler);
/* init EAL */
ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
argc -= ret;
argv += ret;
/* parse application arguments (after the EAL ones) */
ret = parse_args(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid L3FWD-VF parameters\n");
if (check_lcore_params() < 0)
rte_exit(EXIT_FAILURE, "check_lcore_params failed\n");
ret = init_lcore_rx_queues();
if (ret < 0)
rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
nb_ports = rte_eth_dev_count();
if (check_port_config(nb_ports) < 0)
rte_exit(EXIT_FAILURE, "check_port_config failed\n");
nb_lcores = rte_lcore_count();
/* initialize all ports */
for (portid = 0; portid < nb_ports; portid++) {
/* skip ports that are not enabled */
if ((enabled_port_mask & (1 << portid)) == 0) {
printf("\nSkipping disabled port %d\n", portid);
continue;
}
/* init port */
printf("Initializing port %d ... ", portid );
fflush(stdout);
/* must always equal(=1) */
nb_rx_queue = get_port_n_rx_queues(portid);
n_tx_queue = MAX_TX_QUEUE_PER_PORT;
printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
nb_rx_queue, (unsigned)1 );
ret = rte_eth_dev_configure(portid, nb_rx_queue, n_tx_queue, &port_conf);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n",
ret, portid);
rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
print_ethaddr(" Address:", &ports_eth_addr[portid]);
printf(", ");
ret = init_mem(NB_MBUF);
if (ret < 0)
rte_exit(EXIT_FAILURE, "init_mem failed\n");
/* init one TX queue */
printf("txq=%d,%d,%d ", portid, 0, socketid);
fflush(stdout);
rte_eth_dev_info_get(portid, &dev_info);
txconf = &dev_info.default_txconf;
if (port_conf.rxmode.jumbo_frame)
txconf->txq_flags = 0;
ret = rte_eth_tx_queue_setup(portid, 0, nb_txd,
socketid, txconf);
if (ret < 0)
rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, "
"port=%d\n", ret, portid);
printf("\n");
}
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;
qconf = &lcore_conf[lcore_id];
qconf->tx_queue_id = 0;
printf("\nInitializing rx queues on lcore %u ... ", lcore_id );
fflush(stdout);
/* init RX queues */
for(queue = 0; queue < qconf->n_rx_queue; ++queue) {
portid = qconf->rx_queue_list[queue].port_id;
queueid = qconf->rx_queue_list[queue].queue_id;
if (numa_on)
socketid = (uint8_t)rte_lcore_to_socket_id(lcore_id);
else
socketid = 0;
printf("rxq=%d,%d,%d ", portid, queueid, socketid);
fflush(stdout);
ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
socketid, NULL,
pktmbuf_pool[socketid]);
if (ret < 0)
rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d,"
"port=%d\n", ret, portid);
}
}
printf("\n");
/* start ports */
for (portid = 0; portid < nb_ports; portid++) {
if ((enabled_port_mask & (1 << portid)) == 0) {
continue;
}
/* Start device */
ret = rte_eth_dev_start(portid);
if (ret < 0)
rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
ret, portid);
printf("done: Port %d\n", portid);
}
/* launch per-lcore init on every lcore */
if (rte_eal_wait_lcore(lcore_id) < 0)
return -1;
}
return 0;
}